
Chin. Ann. Math.
34B(3), 2013, 461–478
DOI: 10.1007/s11401-013-0768-x

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2013

Strong Unique Continuation of Sub-elliptic Operator on
the Heisenberg Group∗

Hairong LIU1 Xiaoping YANG2

Abstract In this paper, the Almgren’s frequency function of the following sub-elliptic
equation with singular potential on the Heisenberg group:

−Lu + V (z, t)u = −Xi(aij(z, t)Xju) + V (z, t)u = 0

is introduced. The monotonicity property of the frequency is established and a doubling
condition is obtained. Consequently, a quantitative proof of the strong unique continuation
property for such equation is given.
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1 Introduction

The Heisenberg group Hn is a nilpotent Lie group of step two whose underlying manifold
is R2n ×R with coordinates (z, t) = (x, y, t) = (x1, · · · , xn, y1, · · · , yn, t) and its group action ◦
is given by

(x0, y0, t0) ◦ (x, y, t) =
(
x+ x0, y + y0, t+ t0 + 2

n∑
i=1

(xiy0i − yix0i)
)
. (1.1)

A basis for the Lie algebra of left-invariant vector fields on Hn is given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xi =
∂

∂xi
+ 2yi

∂

∂t
, i = 1, · · · , n,

Xn+i =
∂

∂yi
− 2xi

∂

∂t
, i = 1, · · · , n,

T =
∂

∂t
.

(1.2)

From (1.2), it is easy to check that Xi and Xn+j satisfy

[Xi, Xn+j] = −4Tδij, [Xi, Xj ] = [Xn+i, Xn+j ] = 0, i, j = 1, · · · , n.
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Therefore, the vector fields Xi, Xn+i (i = 1, · · · , n) and their first order commutators span the
whole Lie algebra. The horizontal gradient of a function f is defined as

∇Hnf = Xf = (X1f, · · · , Xnf,Xn+1f, · · · , X2nf).

Let us denote by δλ the Heisenberg group dilation

δλ(x, y, t) = (λx, λy, λ2t), λ > 0, (1.3)

which leads to a homogeneous dimension Q = 2n+ 2.
For (z, t) ∈ Hn, we define the gauge norm from the origin

d(z, t) =
[( n∑

i=1

(x2
i + y2

i )
)2

+ t2
] 1

4 ≡ (|z|4 + t2)
1
4 , (1.4)

which satisfies d(δλ(z, t)) = λd(z, t), and means that d is homogeneous of degree one with
respect to the dilation δλ (see [4, 17, 19]).

In the sequel, we let

Br = {(z, t) ∈ Hn | d(z, t) < r}, ∂Br = {(z, t) ∈ Hn | d(z, t) = r},
and call these sets a Heisenberg-ball and a sphere centered at the origin with radius r respec-
tively. Since d ∈ C∞(Hn\{(0, 0)}), the outer unit normal on ∂Br is given by −→n = |∇d|−1∇d,
where ∇d means the ordinary Euclidean gradient of d.

Introducing the function

ψ(z, t) = |∇Hnd|2 =
|z|2

d(z, t)2
, (1.5)

we define

|Br| =
∫

Br

ψdzdt and |∂Br| =
d
dr

|Br|.

Using the polar coordinates adapted to Hn introduced by Greiner [12], it is easy to obtain
that there exists a constant ωQ > 0 depending only on Q such that

|Br| = ωQr
Q. (1.6)

The Kohn-Laplacian on Hn is

ΔHn =
2n∑
i=1

X2
i ,

which is the sum of squares of vector fields. Since Hörmander’s work [13], the study of operators
of the type sum of squares of vector fields has received a strong impetus. Among the large body
of literature dedicated to sub-elliptic operators and Carnot-Caratheodory geometry, we briefly
recall Bony [5], Folland and Stein [7], Rothschild and Stein [17], Nagel, Stein and Wainger [16],
Sanchez-Calle [18] and Jerison [14]. The sub-elliptic operators have a wide range of applications,
from several complex variables and CR geometry (see for instance [7]) to control theory and
financial mathematics (see for instance [3, 11]).

In this paper, we study the strong unique continuation property of the following sub-elliptic
equation on BR0 ⊂ Hn:

−Lu+ V (z, t)u = −
2n∑

i,j=1

Xi(aij(z, t)Xju) + V (z, t)u = 0. (1.7)



Strong Unique Continuation 463

Our main concern is whether, under suitable assumptions on the coefficients (aij) and the
potential V , the strong unique continuation property holds for the equation (1.7).

We assume that A = (aij(z, t)) is a 2n×2nmatrix-valued function onBR0 , and for simplicity,
we assume that A(0) = I (note that this assumption really involves with no loss of generality,
because we can always achieve it with a suitable linear transformation, provided that the original
equation is at least elliptic at 0). We shall denote by B the matrix

B = A− I2n×2n.

Furthermore, we assume that A is symmetric and satisfies the following hypotheses:
(i) There exist 0 < λ ≤ Λ <∞ such that for any η ∈ R2n,

λ|η|2 ≤
2n∑

i.j=1

aijηiηj ≤ Λ|η|2. (1.8)

(ii) There exist positive constants C1 and C2 such that

{|bij | ≡ |aij − δij | ≤ C1ψd, i, j = 1, · · · , 2n,
|Xkaij | ≤ C2ψ

1
2 , i, j, k = 1, · · · , 2n. (1.9)

We note that the condition (1.9) means that aij is ψ-Lipschitz.
We require that the potential V in (1.7) satisfies the following assumption: There exist a

constant M > 0 and an increasing function f : (0, R0) → R+ such that

∫ R0

0

f(r)
r

dr <∞, (1.10)

for which

|V (z, t)| ≤M
f(d(z, t))
d(z, t)2

ψ(z, t) for a.e. (z, t) ∈ BR0 . (1.11)

According to (1.10)–(1.11), the potential V is allowed to be singular (see [8]).
We need to introduce the following definitions.

Definition 1.1 A weak solution to (1.7) is a function u ∈ C(BR0) ∩ L2(BR0) such that
the horizontal gradient Xu ∈ L2(BR0), and (1.7) is satisfied in the distribution sense, i.e.,∫

BR0

aijXiuXjφdzdt+
∫

BR0

V uφdzdt = 0

for every φ ∈ C∞
0 (BR0).

Definition 1.2 We say that u is polyradial in Hn if for any (z, t) = (z1, · · · , zn, t) ∈ Hn

where zj = xj + iyj and |zj| = (x2
j + y2

j )
1
2 , we have u(z, t) = u∗(|z1|, · · · , |zn|, t) for some u∗.

Definition 1.3 We say that u ∈ L2(BR0) vanishes up to infinite order at the origin, if for
every k > 0 one has

lim
r→0

1
rk

∫
Br

u2ψdzdt = 0.

We are ready to state our main results.
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Theorem 1.1 Let V satisfy (1.11) for some M and f , A be a symmetric matrix satisfying
(1.8)–(1.9), and u be a polyradial solution to (1.7) in BR0 . Then there exist positive constants
Γ = Γ(u, λ,Λ) and r0 = r0(λ,Λ), such that for any 2r ≤ r0, we have∫

B2r

u2ψdzdt ≤ Γ
∫

Br

u2ψdzdt. (1.12)

Note that (1.12) is often referred to as the doubling condition and it yields quantitative
information on the vanishing order at the origin of u. As well-known (see [8–9] and etc.),
Theorem 1.1 implies the following strong unique continuation property.

Theorem 1.2 With the assumptions of the Theorem 1.1, if u vanishes up to infinite order
at the origin, then u ≡ 0 in Br0 , where r0 is as in the statement of Theorem 1.1.

We mention that when the horizontal gradient is replaced by the classical gradient on Rn,
i.e.,

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0, (1.13)

a result due to [2] states that if the matrix (aij) is Lipschitz continuous, then the equation
(1.13) possesses the strong unique continuation property. Furthermore, it was shown in [15]
that the Lipschitz continuous assumption on the coefficients is optimal. Our results can be seen
as a generalization of those in [2]. The approach, however, is different from that in [2], which
is based on Carleman inequalities that do not seem to be adaptable to our operator due to the
lack of ellipticity. Instead, we have used the ideas of Almgren’s frequency function that goes
back to Almgren [1] and has been developed in [8–10].

We note that when aij = δij , the equation (1.7) becomes the Kohn-Laplace equation with
potential V on Hn

−
2n∑
i=1

X2
i u+ V u = 0, (1.14)

which was studied by Garofalo and Lanconelli [8], under some assumptions of V and with the
weak solution u, they proved the strong unique continuation property of equation (1.14). So our
results can also be seen as a generalization of those in [8]. Because of the variable coefficients,
we should overcome more difficulties to obtain the monotonicity of the frequency function by
using the refined geometry properties of Hn.

The rest of the paper is organized as follows. In Section 2, we give some notations and
various technical estimates. In Section 3, we introduce the frequency function and prove its
monotonicity and the doubling condition, and finally we give the proofs of Theorems 1.1 and
1.2.

2 Preliminary Facts

We begin this section by giving some basic facts about the horizontal gradient ∇Hn and the
operator L on Hn.

We denote by S the 2n × (2n + 1) matrix relating the horizontal gradient ∇Hn and the
standard gradient ∇ in R2n+1, i.e., ∇Hn = S · ∇, where

S =
(
In×n 0n×n (2y)T

0n×n In×n (−2x)T

)
. (2.1)
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Hence we have

Lu =
2n∑
i=1

Xi(aijXju) = div(STA∇Hnu) = div(STAS∇u). (2.2)

Now we define a vector field

Z =
n∑

i=1

(
xi

∂

∂xi
+ yi

∂

∂yi

)
+ 2t

∂

∂t
. (2.3)

A direct calculation yields

Zu =
d

ψ

2n∑
i=1

XidXiu, if T̃ u ≡
n∑

i=1

(
yi
∂u

∂xi
− xi

∂u

∂yi

)
= 0. (2.4)

Proposition 2.1 Letting Z and T̃ be the above vector fields on Hn, we have

[Xi, Z]u = Xiu, i = 1, · · · , 2n (2.5)

and ∣∣∣[Xi, Xj]u
∣∣∣ ≤ 1

|z| |Xu|, if T̃ u = 0, i, j = 1, · · · , 2n. (2.6)

Proof By the definitions of the vector fields Xi and Z, we have

[Xi, Z]u = XiZu− ZXiu

=
( ∂

∂xi
+ 2yi

∂

∂t

)( n∑
k=1

xk
∂u

∂xk
+ yk

∂u

∂yk
+ 2t

∂u

∂t

)

−
( n∑

k=1

xk
∂

∂xk
+ yk

∂

∂yk
+ 2t

∂

∂t

)( ∂u
∂xi

+ 2yi
∂u

∂t

)

=
n∑

k=1

δki
∂u

∂xk
+ 2δkiyk

∂u

∂t
=

∂u

∂xi
+ 2yi

∂u

∂t
= Xiu

for any u ∈ C∞. Hence [Xi, Z] = Xi for i = 1, · · · , n.
Similarly, we prove [Xn+i, Z] = Xn+i for i = 1, · · · , n.
A direct calculation yields

n∑
i=1

yiXiu− xiXn+iu =
n∑

i=1

(
yi
∂u

∂xi
− xi

∂u

∂yi

)
+ 2

n∑
i=1

(x2
i + y2

i )
∂u

∂t

= 2|z|2∂u
∂t
,

where we use T̃ u ≡
n∑

i=1

(
yi

∂u
∂xi

− xi
∂u
∂yi

)
= 0 in the last equality. Thus

∣∣∣[Xi, Xj ]u
∣∣∣ ≤ 4

∣∣∣∂u
∂t

∣∣∣ ≤ 1
|z| |Xu|.

Next we prove some basic estimates that will be used later.
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Proposition 2.2 (1) The horizontal derivatives of the distance function d and the angle
function ψ satisfy

|Xid| ≤ Cψ
1
2 , i = 1, · · · , 2n,

|Xiψ| ≤ C
1
d
ψ

1
2 , i = 1, · · · , 2n.

(2) The second horizontal derivatives of d satisfy

|XiXjd| ≤ C
1
d
ψ, i, j = 1, · · · , n,

|XiXn+jd| ≤ C
1
d
, i, j = 1, · · · , n,

|Xn+iXjd| ≤ C
1
d
, i, j = 1, · · · , n,

|Xn+iXn+jd| ≤ C
1
d
ψ, i, j = 1, · · · , n

and
2n∑

i,j=1

Xid(XiXjd)Xjd = 0.

Proof By the definitions of d in (1.4) and ψ in (1.5),

Xid =
( ∂

∂xi
+ 2yi

∂

∂t

)
d =

1
d3

(|z|2xi + yit), i = 1, · · · , n.

Xn+id =
( ∂

∂yi
− 2xi

∂

∂t

)
d =

1
d3

(|z|2yi − xit), i = 1, · · · , n,

Xiψ = Xi

( |z|2
d2

)
=

2xi

d2
− 2|z|2

d3
Xid, i = 1, · · · , n,

Xn+iψ = Xn+i

( |z|2
d2

)
=

2yi

d2
− 2|z|2

d3
Xn+id, i = 1, · · · , n.

This shows that

|Xid| =
∣∣∣ |z|2
d2

· xi

d
+

t

d2
· yi

d

∣∣∣ ≤ Cψ
1
2 , i = 1, · · · , n,

|Xn+id| =
∣∣∣ |z|2
d2

· yi

d
− t

d2
· xi

d

∣∣∣ ≤ Cψ
1
2 , i = 1, · · · , n

and

|Xiψ| ≤ C
1
d
ψ

1
2 , i = 1, · · · , 2n.

We continue to compute the second derivative of d and this is done easily by using the
product rule. We only write the expressions for the second derivatives

Xi(Xjd) =
2xixj + 2yiyj + |z|2δij

d3
− 3

(|z|2xi + yit)(|z|2xj + yjt)
d7

,

Xi(Xn+jd) =
2xiyj − 2yixj − δijt

d3
− 3

(|z|2xi + yit)(|z|2yj − xjt)
d7

,

Xn+i(Xjd) =
2yixj − 2xiyj + δijt

d3
− 3

(|z|2yi − xit)(|z|2xj + yjt)
d7

,

Xn+i(Xn+jd) =
2yiyj + 2xixj + |z|2δij

d3
− 3

(|z|2yi − xit)(|z|2yj − xjt)
d7

.
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Hence,

|XiXjd| ≤ C
1
d
ψ, i, j = 1, · · · , n,

|XiXn+jd| ≤ C
1
d
, i, j = 1, · · · , n,

|Xn+iXjd| ≤ C
1
d
, i, j = 1, · · · , n,

|Xn+iXn+jd| ≤ C
1
d
ψ, i, j = 1, · · · , n.

Finally, with the first and second horizontal derivatives of d in hand, we obtain

2n∑
i,j=1

Xid(XiXjd)Xjd

=
n∑

i,j=1

[Xid(XiXjd)Xjd+Xid(XiXn+jd)Xn+jd

+Xn+id(Xn+iXjd)Xjd+Xn+id(Xn+iXn+jd)Xn+jd] = 0.

At the end of this section, we give an inequality (see [8, Theorem 2.2]).

Lemma 2.1 For every u ∈ C∞
0 (Hn\{(0, 0)}) and every r > 0, we have

∫
Br

u(z, t)2

d(z, t)2
ψ(z, t)dzdt ≤

( 2
Q− 2

)2{∫
Br

|∇Hnu(z, t)|2dzdt

+
(Q− 2

2

)1
r

∫
∂Br

u(z, t)2
ψ(z, t)

|∇d(z, t)|2 dH2n
}
. (2.7)

3 The Frequency Function and Unique Continuation

The purpose of this section is to prove Theorems 1.1 and 1.2. The main step is to show a
monotonicity of the frequency function, which was first discovered by Almgren [1]. We begin
by introducing the relevant quantities that will appear in the proofs. Hereafter, the summation
convention over repeated indices will be adopted.

Definition 3.1 For a weak solution u of (1.7) in BR0 and 0 < r < R0, we define its height
in Br as follows:

H(r) =
∫

∂Br

u2 〈A∇Hnd,∇Hnd〉
|∇d| dH2n.

We also let

D(r) =
∫

Br

〈A∇Hnu,∇Hnu〉dzdt,

I(r) =
∫

Br

(〈A∇Hnu,∇Hnu〉 + V u2)dzdt,

and call these quantities the Dirichlet integral and the total energy of u in Br, respectively.
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Remark 3.1 In view of the elliptic assumption (1.8) and the fact |∇Hnd|2 = ψ, there exist
constants C1 and C2, such that

C1

∫
∂Br

u2 ψ

|∇d|dH
2n ≤ H(r) ≤ C2

∫
∂Br

u2 ψ

|∇d|dH
2n, (3.1)

C1

∫
Br

|∇Hnu|2dzdt ≤ D(r) ≤ C2

∫
Br

|∇Hnu|2dzdt. (3.2)

Lemma 3.1 Let u be a weak solution of (1.7) in BR0 . Then there exists an r0 > 0 depending
only on Q, M and f in (1.11), such that either u ≡ 0 in Br0 or H(r) = 0 for every r ∈ (0, r0).

Proof Suppose that for some r0 < R0, H(r0) = 0. Then u = 0 a.e. on ∂Br0 . Therefore,
from (2.2), the divergence theorem and the outer unit normal on ∂Br being −→n = |∇d|−1∇d,
we have

D(r0) = I(r0) −
∫

Br0

V (z, t)u2(z, t)dzdt

≤ 1
2

∫
Br0

L(u2)dzdt+
∫

Br0

|V (z, t)|u2(z, t)dzdt

=
1
2

∫
Br0

div(STA∇Hnu2)dzdt+
∫

Br0

|V (z, t)|u2(z, t)dzdt

=
∫

∂Br0

u
〈A∇Hnu,∇Hnd〉

|∇d| dH2n +
∫

Br0

|V (z, t)|u2(z, t)dzdt

=
∫

Br0

|V (z, t)|u2(z, t)dzdt. (3.3)

Now we use the assumption of V (1.11) and (2.7) of Lemma 2.1 to get the bound∫
Br0

|V (z, t)|u2(z, t)dzdt

≤Mf(r0)
∫

Br0

ψ

d2
u2dzdt

≤
( 2
Q− 2

)2{(Q− 2
2

) 1
r0

∫
∂Br0

u2 ψ

|∇d|2 dH2n +
∫

Br0

|∇Hnu|2dzdt
}

≤ Cf(r0)D(r0). (3.4)

Since by (1.10) lim
r→0+

f(r) = 0, we obtain a contradiction from (3.3)–(3.4) unless D(r0) = 0,

which implies that u ≡ 0 in Br0 . This completes the proof of the lemma.

Lemma 3.1 allows us to introduce the Almgren’s generalized frequency of u on Br as fol-
lowing:

N(r) =

⎧⎨
⎩
rI(r)
H(r)

, if H = 0,

0, if H = 0.

Lemma 3.1 also implies that r → N(r) is absolutely continuous on (0, r0). Therefore, if we set

Ωr0 = {r ∈ (0, r0) | N(r) > max{1, N(r0)}}, (3.5)
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then Ωr0 is an open subset of R. Hence there holds a decomposition

Ωr0 =
∞⋃

j=1

(aj , bj) with aj , bj /∈ Ωr0 . (3.6)

Obviously in Ωr0 , we have N(r) > 1, i.e.,

H(r)
r

< I(r) for every r ∈ Ωr0 . (3.7)

Lemma 3.2 There exists a constant C = C(Q,M, f) > 0, such that for every r ∈ Ωr0 , we
have

D(r) ≤ CI(r). (3.8)

Proof As in the proof of (3.4), we have

D(r) ≤ I(r) +
∫

Br

|V (z, t)|u(z, t)2dzdt

≤ I(r) +
( 2
Q− 2

)2

Mf(r)
{(Q− 2

2

)H(r)
r

+D(r)
}

≤
[
1 +

2
Q− 2

Mf(r)
]
I(r) +

( 2
Q− 2

)2

Mf(r)D(r),

where in the last inequality we have used (3.7). We can choose small r0 > 0 such that(
2

Q−2

)2
Mf(r0) < 1, and thus we prove D(r) ≤ CI(r).

Proposition 3.1 For a.e. r ∈ (0, R0), the total energy of u on Br can be expressed by the
surface integral

I(r) =
∫

∂Br

u
〈A∇Hnu,∇Hnd〉

|∇d| dH2n. (3.9)

Proof By using the divergence theorem, (2.2) and the fact Lu = V u,∫
∂Br

u
〈A∇Hnu,∇Hnd〉

|∇d| dH2n

=
∫

∂Br

u〈STA∇Hnu,−→n 〉dH2n

=
∫

Br

div(uSTA∇Hnu)dzdt

=
∫

Br

udiv(STA∇Hnu)dzdt+
∫

Br

∇uSTA∇Hnudzdt

=
∫

Br

V u2dzdt+
∫

Br

〈A∇Hnu,∇Hnu〉dzdt = I(r).

This completes the proof of the proposition.

By the definition of N(r), we get

N ′(r)
N(r)

=
1
r

+
I ′(r)
I(r)

− H ′(r)
H(r)

. (3.10)

Next, we compute H ′(r) and I ′(r) respectively by using the conditions (1.8)–(1.9) on the
coefficients (aij) and some estimates given in Section 2.
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Theorem 3.1 There exists a positive constant C1 = C1(λ,Λ), such that for a.e. r ∈ (0, R0),
one has ∣∣∣H ′(r) − Q− 1

r
H(r) − 2I(r)

∣∣∣ ≤ C1H(r). (3.11)

Proof The divergence theorem gives

H(r) =
∫

∂Br

u2 〈A∇Hnd,∇Hnd〉
|∇d| dH2n

=
∫

∂Br

u2〈STA∇Hnd,−→n 〉dH2n

=
∫

Br

div(u2STA∇Hnd)dzdt

=
∫

Br

u2div(STA∇Hnd)dzdt+
∫

Br

〈STA∇Hnd,∇u2〉dzdt

=
∫

Br

u2Lddzdt+
∫

Br

2u〈A∇Hnd,∇Hnu〉dzdt.

We now recall Federer’s co-area formula (see [6]): Let f ∈ L1(RN ) and g ∈ Lip(RN ). Then∫
RN

f(x)dx =
∫ +∞

−∞
ds

∫
{g=s}

f(x)
|∇g(x)|dH

N−1, (3.12)

provided that ∇g does not vanish on the set {g = s} for a.e. s ∈ R.
Using (3.12) and Proposition 3.1, and differentiating H(r) with respect to r, we obtain

H ′(r) =
∫

∂Br

u2Ld
|∇d| dH2n +

∫
∂Br

2u〈A∇Hnd,∇Hnu〉
|∇d| dH2n

= 2I(r) +
∫

∂Br

u2Ld
|∇d| dH2n.

This implies

H ′(r) − Q− 1
r

H(r) − 2I(r)

=
∫

∂Br

u2Ld
|∇d| dH2n − Q− 1

r

∫
∂Br

u2 〈A∇Hnd,∇Hnd〉
|∇d| dH2n

=
∫

∂Br

u2 div(STB∇Hnd)
|∇d| dH2n +

∫
∂Br

u2 ΔHnd

|∇d| dH2n

− Q− 1
r

∫
∂Br

u2 〈B∇Hnd,∇Hnd〉
|∇d| dH2n − Q− 1

r

∫
∂Br

u2 |∇Hnd|2
|∇d| dH2n.

Using the formula

ΔHnd =
Q− 1
d

|∇Hnd|2,
we get

H ′(r) − Q− 1
r

H(r) − 2I(r)

=
∫

∂Br

u2 div(STB∇Hnd)
|∇d| dH2n − Q− 1

r

∫
∂Br

u2 〈B∇Hnd,∇Hnd〉
|∇d| dH2n.
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We estimate the two terms on the right-hand side, which thanks to (1.8)–(1.9), yields

〈B∇Hnd,∇Hnd〉
|∇d| ≤ Cd

〈∇Hnd,∇Hnd〉
|∇d| ≤ Cd

〈A∇Hnd,∇Hnd〉
|∇d| ,

and thus

∣∣∣Q− 1
r

∫
∂Br

u2 〈B∇Hnd,∇Hnd〉
|∇d| dH2n

∣∣∣ ≤ CH(r).

Finally, we estimate the first term on the right-hand side. Writing the divergence term as

div(STB∇Hnd) = Xi(bijXjd) = (Xibij) ·Xjd+ bij · (XiXjd)

and taking into account the assumption (1.9) and Proposition 2.1, we get the following inequal-
ities:

|(Xibij)Xjd| ≤ |Xibij | · |Xjd| ≤ Cψ
1
2 · ψ 1

2 ≤ Cψ

and

|bij(XiXjd)| ≤ |bij | · |XiXjd| ≤ Cψd · 1
d
≤ Cψ.

Hence,

∫
∂Br

u2 div(STB∇Hnd)
|∇d| dH2n ≤ C

∫
∂Br

u2 ψ

|∇d|dH
2n ≤ CH(r).

Therefore,

∣∣∣H ′(r) − Q− 1
r

H(r) − 2I(r)
∣∣∣ ≤ C1H(r).

Next, we need to estimate I ′(r), letting

μ = 〈A∇Hnd,∇Hnd〉, ν = 〈B∇Hnd,∇Hnd〉, (3.13)

and note that λψ ≤ μ ≤ Λψ, and moreover ψ = μ− ν.

Consider the vector field F defined as follows:

F =
d

μ

2n∑
i,j=1

aijXjdXi, (3.14)

i.e.,

Fu =
d

μ
〈A∇Hnd,∇Hnu〉. (3.15)

Hence

Fd = 〈F,∇d〉 = d. (3.16)
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Lemma 3.3 (Rellich-Type Identity) Let F be the above considered vector field in Hn.
Then we have the following identity:∫

∂Br

〈A∇Hnu,∇Hnu〉〈F,−→n 〉dH2n

= 2
∫

∂Br

ajkXju〈Xk,
−→n 〉FudH2n

− 2
∫

Br

ajkXju[Xk, F ]udzdt+
∫

Br

div(F )〈A∇Hnu,∇Hnu〉dzdt

+
∫

Br

〈(FA)∇Hnu,∇Hnu〉dzdt− 2
∫

Br

FuLudzdt.

Proof The divergence theorem yields∫
∂Br

〈A∇Hnu,∇Hnu〉〈F,−→n 〉dH2n

=
∫

Br

div(F 〈A∇Hnu,∇Hnu〉)dzdt

=
∫

Br

(divF )〈A∇Hnu,∇Hnu〉dzdt+
∫

Br

〈(FA)∇Hnu,∇Hnu〉dzdt

+ 2
∫

Br

〈A∇Hnu, F∇Hnu〉dzdt.

On the other hand,

2
∫

∂Br

ajkXju〈Xk,
−→n 〉FudH2n

= 2
∫

Br

div(ajkXjuFuXk)dzdt

= 2
∫

Br

div(Xk)ajkXjuFudzdt+ 2
∫

Br

Xk(ajkXju)Fudzdt+ 2
∫

Br

ajkXju(XkFu)dzdt.

In view of the fact div(Xk) = 0, and the identities

XkFu− FXku = [Xk, F ]u for any k,

we obtain ∫
∂Br

〈A∇Hnu,∇Hnu〉〈F,−→n 〉dH2n

= 2
∫

∂Br

ajkXju〈Xk,
−→n 〉FudH2n − 2

∫
Br

ajkXju[Xk, F ]udzdt

+
∫

Br

div(F )〈A∇Hnu,∇Hnu〉dzdt+
∫

Br

〈(FA)∇Hnu,∇Hnu〉dzdt

− 2
∫

Br

FuLudzdt.

This completes the proof of Lemma 3.3.
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Theorem 3.2 Let u be a polyradial solution to (1.7), then there exist positive constants
C2 = C2(λ,Λ) and C3 = C3(λ,Λ), such that for a.e. r ∈ Ωr0 , we have

I ′(r) ≥ 2
∫

∂Br

1
μ

〈A∇Hnu,∇Hnd〉2
|∇d| dH2 − C2

f(r)
r
I(r) − C3I(r), (3.17)

where μ is defined in (3.13).

Remark 3.2 On H1, a polyradial function u is equivalent to T̃ u =
(
yi

∂u
∂xi

− xi
∂u
∂yi

)
= 0.

On Hn (n > 1), a polyradial function u implies that T̃ u = 0, however, the converse is false.
For example, for (x1, x2, y1, y2, t) ∈ H2, take u = x1x2 + y1y2 + t. A direct calculation yields
T̃ u = 0, but u is not a polyradial function. However, over the course of our proof of Theorem
3.2, we only need the condition T̃ u = 0. Thus we have the following more general result.

Corollary 3.1 Let u be a solution to (1.7) satisfying T̃ u = 0. Then Theorem 3.2 also holds.

Proof of Theorem 3.2 By using the co-area formula (3.12),

I(r) =
∫ r

0

∫
∂Bρ

〈A∇Hnu,∇Hnu〉
|∇d| dH2ndρ+

∫ r

0

∫
∂Bρ

V u2

|∇d|dH
2ndρ.

Differentiating I(r) with respect to r, we get

I ′(r) =
∫

∂Br

〈A∇Hnu,∇Hnu〉
|∇d| dH2n +

∫
∂Br

V u2

|∇d|dH
2n.

From (3.16), Lu = V u and Rellich-type identity Lemma 3.3, we obtain

I ′(r) =
1
r

∫
∂Br

〈A∇Hnu,∇Hnu〉
〈
F,

∇d
|∇d|

〉
dH2n +

∫
∂Br

V u2

|∇d|dH
2n

=
2
r

∫
∂Br

ajkXju〈Xk,
−→n 〉FudH2n − 2

r

∫
Br

ajkXju[Xk, F ]udzdt

+
1
r

∫
Br

div(F )〈A∇Hnu,∇Hnu〉dzdt+
1
r

∫
Br

〈(FA)∇Hnu,∇Hnu〉dzdt

− 2
r

∫
Br

FuV udzdt+
∫

∂Br

V u2

|∇d|dH
2n

= I1 + I2 + I3 + I4 + I5 + I6. (3.18)

First, by using the definition of F , we deal with I1 as follows:

I1 =
2
r

∫
∂Br

ajkXju〈Xk,
−→n 〉FudH2n

=
2
r

∫
∂Br

ajkXju
Xkd

|∇d| ·
d

μ
〈A∇Hnd,∇Hnu〉dH2n

= 2
∫

∂Br

1
μ
· 〈A∇Hnd,∇Hnu〉2

|∇d| dH2n. (3.19)

Now we use (1.11), (3.1) and (3.7) to get the bound of I6 as follows:

|I6| ≤
∫

∂Br

|V |u2

|∇d| dH2n

≤ C
f(r)
r2

∫
∂Br

u2 ψ

|∇d|dH
2n ≤ C

f(r)
r

H(r)
r

≤ f(r)
r
I(r). (3.20)
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By using conditions (1.9) and (3.13), we estimate |Fu| as follows:

|Fu| =
d

μ
aijXidXju =

d

μ
bijXidXju+

d

μ
XidXiu

≤ d

μ
|bij ||Xid||Xju| + d

μ
|Xid||Xiu|

≤ Cdψ− 1
2 |Xu|.

With the help of (1.11) and (2.7), we can estimate I5 as follows:

|I5| ≤ 2
r

∫
Br

|Fu||V (z, t)||u(z, t)|dzdt

≤ C
f(r)
r

∫
Br

ψ
1
2 |u|
d

|Xu|dzdt

≤ C
f(r)
r

∫
Br

u2ψ

d2
dzdt+ C

f(r)
r

∫
Br

|∇Hnu|2dzdt

≤ Cf(r)
H(r)
r

+ C
f(r)
r
D(r) ≤ C

f(r)
r
I(r). (3.21)

Next we get a bound for I4: For every r, s = 1, · · · , 2n, we have

|Fars| =
∣∣∣ d
μ
aijXidXj(ars)

∣∣∣
≤

∣∣∣ d
μ
bijXidXj(ars)

∣∣∣ +
∣∣∣ d
μ
XidXibrs

∣∣∣
≤ d

μ
|bij ||Xid||Xj(ars)| + d

μ
|Xid||Xibrs|

≤ d

μ
dψψ

1
2ψ

1
2 +

d

μ
ψ

1
2ψ

1
2 ≤ Cd.

Hence

|I4| ≤ 1
r

∫
Br

|〈(FA)∇Hnu,∇Hnu〉|dzdt

≤ C
1
r

∫
Br

d〈∇Hnu,∇Hnu〉dzdt

≤ CD(r) ≤ CI(r). (3.22)

We now would like to get a bound for I3: Because of div(Xi) = 0 for every i = 1, · · · , 2n, we
get

divF = div
( d
μ
aijXjdXi

)
=
d

μ
aijXjd(divXi) +Xi

( d
μ
aijXjd

)
= Xi

( d
μ

(aij)Xjd
)

=
1
μ
Xid(aij)Xjd− d

μ2
XiμaijXjd+

d

μ
(Xiaij)Xjd+

d

μ
aij(XiXjd)

=
1
μ
Xid(bij)Xjd+

1
μ
XidXid− d

μ2
Xiμ(bij)Xjd− d

μ2
XiμXid

+
d

μ
(Xiaij)Xjd+

d

μ
bij(XiXjd) +

d

μ
(XiXid).
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Here

Xiμ = Xi〈A∇Hnd,∇Hnd〉
= Xi(aklXkdXld)
= Xi(akl)XkdXld+ 2akl(XiXkd)Xld

= Xi(akl)XkdXld+ 2bkl(XiXkd)Xld+ 2(XiXkd)Xkd,

and then

|Xiμ| ≤ C
1
d
ψ

1
2 . (3.23)

According to Xid(XiXkd)Xkd = 0, we have

∣∣∣ d
μ2
Xiμ(aij)Xjd+

d

μ2
XiμXid

∣∣∣
=

d

μ2
{Xi(akl)XkdXld(bij)Xjd+ 2bkl(XiXkd)Xld(bij)Xjd+ 2(XiXkd)Xkd(bij)Xjd

+ (Xiakl)XkdXldXid+ 2bkl(XiXkd)XldXid+ 2(XiXkd)XkdXid}

≤ C
d

μ2
ψ2 ≤ Cd.

Therefore,

|divF | ≤ 1
μ

(bijXjdXid+ (Xid)2) +
d

μ
(XibijXjd+ bijXiXjd+XiXid) + Cd

≤ C,

and thus

|I3| ≤ C
1
r

∫
Br

〈A∇Hnu,∇Hnu〉dzdt

≤ C
1
r
D(r) ≤ C

1
r
I(r). (3.24)

Finally, under the assumption T̃ u = 0, we get (2.4). Let us estimate I2 as follows:

Fu =
d

μ
aijXidXju =

d

μ
bijXidXju+

d

μ
XidXiu

=
d

μ
bijXidXju+

d

μ

(1
d
ψZu

)
=
d

μ
bijXidXju+

ψ

μ
Zu

=
d

μ
bijXidXju+ Zu− ν

μ
Zu.

Hence

[Xk, F ]u =
[
Xk,

d

μ
bijXidXj

]
u+ [Xk, Z]u−

[
Xk,

ν

μ
Z

]
u. (3.25)
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We estimate the first term of (3.25) as follows:∣∣∣[Xk,
d

μ
bijXidXj

]
u
∣∣∣

≤
∣∣∣Xk

( d
μ
bijXid

)
Xju

∣∣∣ +
∣∣∣ d
μ
bijXid[Xk, Xj]u

∣∣∣
≤

∣∣∣ 1
μ
XkdbijXidXju

∣∣∣ +
∣∣∣ d
μ2
XkμbijXidXju

∣∣∣ +
∣∣∣ d
μ
XkbijXidXju

∣∣∣
+

∣∣∣ d
μ
bij(XkXId)Xju

∣∣∣ +
∣∣∣ d
μ
bijXid[Xk, Xj ]u

∣∣∣
≤ Cd|Xu| +

∣∣∣ d
μ
bijXid[Xk, Xj ]u

∣∣∣
≤ Cd|Xu| + d

μ
|bij ||Xid| 1

|z| |Xu|
≤ Cd|Xu|.

Because of (2.4) and |Xkν| = Xk(brsXrdXsd) ≤ Cψ
3
2 , the last term of (3.25) is∣∣∣[Xk,

ν

μ
Z

]
u
∣∣∣ =

∣∣∣[Xk,
ν

μ
· d
ψ
XidXi

]
u
∣∣∣

≤
∣∣∣Xk

(ν
μ
· d
ψ
Xid

)∣∣∣|Xiu| +
∣∣∣ν
μ
· d
ψ
Xid[Xk, Xi]u

∣∣∣
≤ C|Xu|.

Therefore,

I2 ≤ C
1
r

∫
Br

|∇Hnu|2dzdt ≤ C
1
r
I(r). (3.26)

Substituting (3.19)–(3.22), (3.24) and (3.26) in (3.18), we obtain

I ′(r) ≥ 2
∫

∂Br

1
μ
· 〈A∇Hnd,∇Hnu〉2

|∇d| dH2n − C2
f(r)
r
I(r) − C3

1
r
I(r).

With the help of (3.10), Theorems 3.1 and 3.2, we get the monotonicity of the frequency
function.

Theorem 3.3 Let u be a polyradial solution to (1.7). Then there exist positive constants
r0 = r0(λ,Λ) and C = C(λ,Λ), such that for a.e. r ∈ Ωr0 we have

N ′(r)
N(r)

≥ −C4
f(r)
r

− C5
1
r
. (3.27)

Proof Applying (3.11) and (3.17) in (3.10), we obtain

N ′(r)
N(r)

≥ 1
r

+
2

∫
∂Br

1
μ · 〈A∇Hn d,∇Hn u〉2

|∇d| dH2n

I(r)
− C2

f(r)
r

− C3
1
r

− Q− 1
r

− C1 − 2
I(r)
H(r)

≥ −C4
f(r)
r

− C5
1
r
,
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where we have applied Proposition 3.1 and the Cauchy-Schwarz inequality.

By using the monotonicity of N(r), it is easy to prove Theorems 1.1–1.2, and we give the
proof in the current setting for completeness.

Proof of Theorem 1.1 We rewrite inequality (3.11) as

d
dt

(
ln

(H(t)
tQ−1

))
≤ C1 + 2

N(t)
t

, t ∈ (0, r0). (3.28)

Integrating (3.28) between r and 2r, with 2r < r0, we have

ln
(H(2r)
H(r)

21−Q
)
≤ C1r + 2

∫ 2r

r

N(t)
1
t
dt

≤ C1r + 2
∫

(r,2r)∩Ωr0

N(t)
1
t
dt+ 2

∫
Jr

N(t)
1
t
dt, (3.29)

where Jr = {t ∈ (r, 2r) | t /∈ Ωr0 , N(t) ≥ 0}. Due to (3.5), on Jr we have 0 ≤ N(t) ≤
max(1, N(r0)), ∫

Jr

N(t)
1
t
dt ≤ max(1, N(r0))

∫ 2r

r

1
t
dt = max(1, N(r0)) ln 2. (3.30)

On the other hand, by using the monotonicity of N(r), i.e., (3.27), we have

ln
N(bj)
N(r)

=
∫ bj

r

N ′(t)
N(t)

dt ≥ −C4

∫ r0

0

f(t)
t

dt− C5

∫ r0

r

1
t
dt.

From the above inequality, recalling that bj /∈ Ωr0 , we have

N(r) ≤ exp
(
C4

∫ R0

0

f(t)
t

dt+ C5 ln
r0
r

)
max(1, N(r0)) for every r ∈ Ωr0 .

Hence ∫
(r,2r)∩Ωr0

N(t)
1
t
dt ≤ exp

(
C4

∫ R0

0

f(t)
t

dt+ C5 ln
r0
r

)
max(1, N(r0)) ln 2. (3.31)

Applying (3.30)–(3.31) in (3.29), we finally obtain

H(2r) ≤ ΓH(r).

Integrating with respect to r and using the co-area formula we finally prove (1.12).

Proof of Theorem 1.2 Letting r0 be as in Theorem 1.1, we obtain after k interactions of
(1.12) ∫

Br0

u2ψ(z, t)dzdt ≤ · · · ≤ Γk

∫
B2−kr0

u2ψ(z, t)dzdt (3.32)

= Γk|B2−kr0 |β
1

|B2−kr0 |β
∫

B2−kr0

u2ψ(z, t)dzdt, (3.33)

where β > 0 is a number to be suitably chosen later. By (1.6), we have

Γk|B2−kr0 |β = ωβ
Qr

βQ
0

( Γ
2βQ

)k

= |Br0 |β
( Γ

2βQ

)k

.
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We now choose β such that Γ
2βQ = 1. Then, (3.32) becomes∫

Br0

u2ψ(z, t)dzdt ≤ |Br0 |β
1

|B2−kr0 |β
∫

B2−kr0

u2ψ(z, t)dzdt. (3.34)

Let k → ∞. Then the right-hand side of (3.34) goes to zero, because of the assumption that u
vanishes to infinite order at the origin. We conclude that it must be u ≡ 0 in Br0 .
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