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1 Introduction

This paper surveys recent results on the integral geometry problem of recovering a tensor
field from its integrals along geodesics. The most basic example of the kinds of transforms
studied in this paper is the X-ray (or Radon) transform in the plane, which encodes the integrals
of a function f in R2 over straight lines:

Rf(s, ω) =
∫ ∞

−∞
f(sω + tω⊥)dt, s ∈ R, ω ∈ S1.

Here ω⊥ is the rotation of ω by 90 degrees counterclockwise. The properties of this transform
are classical and well studied (see [20]). The X-ray transform forms the basis for many imaging
methods such as CT and PET in medical imaging.

A number of imaging methods involve generalizations of this transform. In seismic and
ultrasound imaging one encounters ray transforms where the measurements are given by in-
tegrals over more general families of curves, often modeled as the geodesics of a Riemannian
metric. Moreover, integrals of vector fields or other tensor fields instead of just integrals of
functions over geodesics may arise, and these transforms are also useful in rigidity questions
in differential geometry. We will give more specific examples after having defined the relevant
transforms precisely.

The geodesic ray transform acts on tensor fields on a compact, oriented Riemannian manifold
(M, g) with boundary of dimension dim (M) = n ≥ 2. We denote by 〈 · , · 〉 the g-inner product
of tangent vectors or other tensors, and by | · | the g-norm. Let ν denote the unit outer normal
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to ∂M. We denote by SM →M the unit-sphere bundle over M :

SM =
⋃
x∈M

Sx, Sx = {v ∈ TxM : |v|g = 1}.

The set SM is a (2n− 1)-dimensional compact manifold with boundary which can be written
as the union ∂(SM) = ∂+(SM) ∪ ∂−(SM),

∂±(SM) = {(x, v) ∈ ∂(SM), ∓〈ν(x), v〉 ≥ 0}.

The standard volume forms on SM and ∂(SM) that we will use are defined by

dΣ2n−1 = dV n ∧ dSx,

dΣ2n−2 = dV n−1 ∧ dSx,

where dV n (resp. dV n−1) is the volume form of M (resp. ∂M), and dSx =
√

det g(x) dEx,
where dEx is the Euclidean volume form of Sx in TxM . For (x, v) ∈ ∂(SM), let μ(x, v) =
|〈ν(x), v〉| and let L2

μ(∂+(SM)) be the space of functions on ∂+(SM) with inner product

(u, v)L2
μ(∂+(SM)) =

∫
∂+(SM)

uvμ dΣ2n−2.

Without loss of generality, we may assume that (M, g) is embedded in (N, g), where N is
a compact n-dimensional manifold without boundary. Let ϕt be the geodesic flow on N and
X = d

dtϕt|t=0 be the geodesic vector field. If (x, v) ∈ SM , let γ(t, x, v) be the unit speed
N -geodesic starting from x in the direction of v. Then

ϕt(x, v) = (γ(t, x, v), γ̇(t, x, v)).

Define the travel time τ : SM → [0,∞] by

τ(x, v) = inf{t > 0 : γ(t, x, v) ∈ N\M}.

We say that (M, g) is non-trapping if τ(x, v) <∞ for all (x, v) ∈ SM .

Definition 1.1 The geodesic ray transform of a function f ∈ C∞(SM) is the function

If(x, v) =
∫ τ(x,v)

0

f(ϕt(x, v))dt, (x, v) ∈ ∂+(SM).

Note that if the manifold (M, g) is non-trapping and has strictly convex boundary, then
I : C∞(SM) → C(∂+(SM)), and Santaló’s formula (see [10]) implies that I is also a bounded
map L2(SM) → L2

μ(∂+(SM)). The general problem in tensor tomography is to determine
properties of a function f from its integrals over geodesics as encoded by the transform If .

Question 1.1 Given f ∈ C∞(SM), what properties of f may be determined from the
knowledge of If?

Clearly a general function f on SM is not determined by its geodesic ray transform alone,
since f depends on more variables than If . In applications one often encounters the transform
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I acting on special functions on SM that arise from symmetric tensor fields, and we will now
consider this case.

Let f = fi1···imdxi1 ⊗· · ·⊗dxim be a smooth symmetric m-tensor field on M . Such a tensor
field induces a smooth function fm(x, v) on SM by

fm(x, v) = fi1···im(x)vi1 · · · vim .

The operator Im, defined by

Imf = Ifm,

is called the geodesic ray transform of the symmetric tensor field f . If the manifold (M, g) is
non-trapping and the boundary ∂M is strictly convex, then

Im : C∞(M,Sm(M)) → C(∂+(SM)),

where Sm(M) denotes the bundle of symmetric m-tensor fields over (M, g). We will frequently
identify the tensor field f on M with the function fm on SM (see [32] for more details).

It is known that any symmetric smooth enough tensor field f may be decomposed in a
potential and solenoidal part (see [42]):

f = fs + dp, δfs = 0, p|∂M = 0,

where p is a smooth symmetric (m − 1)-tensor field on M , the inner derivative d = σ∇ is the
symmetric part of the covariant derivative ∇, and δ is the divergence (the adjoint of −d in the
natural L2 inner product). If f is a 1-tensor, identified with a vector field W , this generalizes
the usual Helmholtz decomposition of a vector field,

W = W s + grad(p), div(W s) = 0, p|∂M = 0.

It is easy to see, using the fact that p vanishes on ∂M , that the geodesic ray transform of
the potential part dp is zero. We denote by C∞

sol(M,Sm(M)) the space of smooth solenoidal
m-symmetric tensor fields. The remark above means that we can only expect to recover the
solenoidal part of a tensor field from its ray transform. This leads to the following definition of
solenoidal injectivity, or s-injectivity for short.

Definition 1.2 The ray transform on symmetric m-tensors, m ≥ 1, is said to be s-injective
if Imf = 0 implies fs = 0 for any f ∈ C∞(M,Sm(M)). In the case of functions on M (m = 0),
I0 is said to be s-injective if I0f = 0 implies f = 0 for any f ∈ C∞(M).

The transforms Im arise in several applications as well as in the boundary rigidity problem.
The latter consists in determining the Riemannian metric of a compact Riemannian manifold
with boundary, modulo isometries fixing the boundary, from the distance function dg|∂M×∂M
between boundary points (see [26]). The case of I0 when the metric is Euclidean is the standard
X-ray transform that integrates a function along lines. Radon found in 1917 an inversion formula
to determine a function knowing the X-ray transform. Inversion formulas of this type have been
implemented numerically using the filtered backprojection algorithm which is used today in CT
scans.
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Another important transform in medical imaging and other applications is the Doppler
transform which integrates a vector field along lines. This corresponds to the case of I1 for the
case of the Euclidean metric. The motivation is ultrasound Doppler tomography. It is known
that blood flow is irregular and faster around tumor tissue than in normal tissue and Doppler
tomography attempts to reconstruct the blood flow pattern. Mathematically the problem is to
what extent a vector field is determined from its integrals along lines.

The case of integration along more general geodesics arises in geophysical imaging in deter-
mining the inner structure of the Earth since the speed of elastic waves generally increases with
depth, thus curving the rays back to the Earth surface. It also arises in ultrasound imaging.
The geodesic ray transform I0, that is, the integration of a function along geodesics, arises as the
linearization of the boundary rigidity problem in a conformal class of metrics. The linearization
of the boundary rigidity problem itself leads to I2, i.e., the integration of tensors of order two
along geodesics. The case of integration of tensors of order 4 along geodesics arises in certain
inverse problems in elasticity (see [42]).

Many of the results in this survey are valid in the case when (M, g) is simple, a notion that
naturally arises in the context of the boundary rigidity problem (see [26]). We recall that a
Riemannian manifold with boundary is said to be simple if the boundary is strictly convex and
if any two points are connected by a unique geodesic depending smoothly on the endpoints. In
particular, a simple manifold is non-trapping and has no conjugate points.

One of the main results we review in this paper is the s-injectivity of Im for all m for simple
two-dimensional manifolds that was proved recently in [32].

Theorem 1.1 If (M, g) is a simple two-dimensional manifold, then Im is s-injective for
any m ≥ 0.

This result was known earlier for m = 0 (see [27]), m = 1 (see [3]) and m = 2 (see [46]). A
key point in proving the result for general m is the efficient use of surjectivity properties of I∗0 ,
the adjoint of I0. In fact, [32] gave the following more general result.

Theorem 1.2 If (M, g) is a compact non-trapping two-dimensional manifold with strictly
convex boundary, and if I0 and I1 are s-injective and I∗0 is surjective, then Im is s-injective for
any m ≥ 0.

To describe in detail the adjoint I∗0 , for any function w on ∂+(SM), we define the function

wψ(x, v) = w(ϕ−τ(x,−v)(x, v)), (x, v) ∈ SM.

Then the solution of the boundary value problem for the transport equation

Xu = 0 in SM, u|∂+(SM) = w

is equal to u = wψ .

Recall that I is a bounded map L2(SM) → L2
μ(∂+(SM)). The adjoint I∗ is bounded

L2
μ(∂+(SM)) → L2(SM), and it is easy to compute explicitly. In the case of I0, for f ∈ C∞(M)
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and w ∈ C∞(∂+(SM)), we have

(I0f, w)L2
μ(∂+(SM)) =

∫
∂+(SM)

∫ τ(x,v)

0

f(ϕt(x, v))wψ(ϕt(x, v))μdtdΣ2n−2

=
∫
SM

fwψdΣ2n−1

=
∫
M

f(x)
( ∫

Sx

wψ(x, v) dSx(v)
)
dV n(x).

The second equality used Santaló’s formula (see [10]). From this computation we conclude that

I∗0w(x) =
∫
Sx

wψ(x, v) dSx(v).

Similarly, the adjoint of Im is the operator I∗m : L2
μ(∂+(SM)) → L2(M,Sm(M)) which is given

by

(I∗mw)i1···im (x) =
∫
Sx

wψ(x, v)vi1 · · · vimdSx(v).

Definition 1.3 We say that I∗0 is surjective if for any f ∈ C∞(M), there exists a function
w ∈ C∞(∂+(SM)) with I∗0w = f in M and wψ ∈ C∞(SM).

The surjectivity of I∗0 in the above sense was proved in [39] on simple manifolds of any
dimension. We will show below how this result is used in the uniqueness proof of tensor
tomography in two dimensions.

In this paper, we also review results in higher dimensions. Here is a summary of what is
known about s-injectivity on simple manifolds of dimension n ≥ 2:

(i) I0 is injective (see [27]).
(ii) I1 is s-injective (see [3]).
(iii) Im is s-injective for all m if n = 2 (see [32]).
(iv) Im is s-injective for all m for manifolds of negative sectional curvature (see [37]), or

under certain other curvature restrictions (see [9, 36, 42]).
(v) I2 is s-injective for generic simple metrics including real-analytic ones (see [52]).
See [9, 43, 45, 53, 56] for uniqueness results on certain non-simple manifolds. We will

also review results on the stability and range for Im, and moreover we propose several open
problems.

A brief summary of the contents of this paper is as follows. Section 2 contains preliminaries
and notation used in the paper. In Section 3 we review the two proofs of Theorem 1.1 given in
[32]. In Section 4 we explain a natural approach to the proof of the so-called Pestov identities
used in Section 3. This energy estimate approach resembles Carleman estimates. In Section
5 we review a microlocal approach to the study of the geodesic ray transform that gives in
particular stability estimates which are summarized in Section 6. In Section 7 we consider the
scattering relation which is used in the characterization of the range and is of independent
interest. In Section 8 we state the result of [35] on the range of the geodesic ray transform. In
Section 9 we summarize several results for the attenuated ray transform for unitary connections
proved in [33]. In Section 10 we survey the result of [34] on s-injectivity of the ray transform
on 2-tensors on closed Anosov surfaces. Finally in Section 11 we state several open problems.
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2 Facts About the Unit Circle Bundle

This section contains some facts needed for explaining the uniqueness proof for tensor to-
mography on surfaces, and we will restrict our attention to two-dimensional manifolds. Let
(M, g) be a compact oriented two-dimensional Riemannian manifold with smooth boundary
∂M . As usual SM will denote the unit circle bundle which is a compact 3-manifold with
boundary given by ∂(SM) = {(x, v) ∈ SM : x ∈ ∂M}.

Let X denote the vector field associated with the geodesic flow ϕt. Since M is assumed
oriented, there is a circle action on the fibers of SM with infinitesimal generator V called
the vertical vector field. It is possible to complete the pair X,V to a global frame of T (SM)
by considering the vector field X⊥ defined as the commutator X⊥ := [X,V ]. There are two
additional structure equations given by X = [V,X⊥] and [X,X⊥] = −KV , where K is the
Gaussian curvature of the surface. Using this frame we can define a Riemannian metric on
SM by declaring {X,X⊥, V } to be an orthonormal basis. This metric coincides with the
Sasaki metric on SM , and the volume form of this metric will be denoted by dΣ3. The fact
that {X,X⊥, V } are orthonormal together with the commutator formulas implies that the Lie
derivative of dΣ3 along the three vector fields vanishes, in other words, the three vector fields
preserve the volume form dΣ3. See [48] for more details on these facts.

It will be useful to have explicit forms of the three vector fields in local coordinates. Since
(M, g) is two-dimensional, we can always choose isothermal coordinates (x1, x2) so that the
metric can be written as ds2 = e2λ(dx2

1 + dx2
2), where λ is a smooth real-valued function of

x = (x1, x2). This gives coordinates (x1, x2, θ) on SM , where θ is the angle between a unit
vector v and ∂

∂x1
. In these coordinates the vertical vector field is just

V =
∂

∂θ
,

and the other vector fields are given by

X = e−λ
(

cos θ
∂

∂x1
+ sin θ

∂

∂x2
+

(
− ∂λ

∂x1
sin θ +

∂λ

∂x2
cos θ

) ∂

∂θ

)
,

X⊥ = −e−λ
(
− sin θ

∂

∂x1
+ cos θ

∂

∂x2
−

( ∂λ

∂x1
cos θ +

∂λ

∂x2
sin θ

) ∂

∂θ

)
.

Given functions u, v : SM → C, we consider the L2 inner product and norm

(u, v) =
∫
SM

uv dΣ3, ‖u‖ = (u, u)
1
2 .

Since X,X⊥, V are volume preserving, we have

(V u, v) = −(u, V v) for u, v ∈ C∞(SM),

and if additionally
u|∂(SM) = 0 or v|∂(SM) = 0,

then also
(Xu, v) = −(u,Xv) and (X⊥u, v) = −(u,X⊥v).
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The space L2(SM) decomposes orthogonally as a direct sum

L2(SM) =
⊕
k∈Z

Hk,

where Hk is the eigenspace of −iV corresponding to the eigenvalue k. A function u ∈ L2(SM)
has a Fourier series expansion

u =
∞∑

k=−∞
uk,

where uk ∈ Hk. Also
‖u‖2 =

∑
‖uk‖2,

where ‖u‖2 = (u, u)
1
2 . The even and odd parts of u with respect to velocity are given by

u+ :=
∑
k even

uk, u− :=
∑
k odd

uk.

In the (x, θ)-coordinates previously introduced we may write

uk(x, θ) =
( 1

2π

∫ 2π

0

u(x, t)e−iktdt
)
eikθ = ũk(x)eikθ .

Observe that for k ≥ 0, uk may be identified with a section of the k-th tensor power of the
canonical line bundle; the identification takes uk into ũkekλ(dz)k, where z = x1 + ix2.

The next definition introduces holomorphic and antiholomorphic functions with respect to
the θ variable.

Definition 2.1 A function u : SM → C is said to be holomorphic if uk = 0 for all k < 0.
Similarly, u is said to be antiholomorphic if uk = 0 for all k > 0.

Let Ωk := Hk ∩C∞(SM). As in [19] we introduce the following first order elliptic operators

η+, η− : C∞(SM) → C∞(SM)

given by

η+ :=
X + iX⊥

2
, η− :=

X − iX⊥
2

.

ClearlyX = η++η−. From the structure equations for the frame {X,X⊥, V }, one easily derives

η+ : Ωk → Ωk+1, η− : Ωk → Ωk−1, (η+)∗ = −η−.

We will also employ the fiberwise Hilbert transform H : C∞(SM) → C∞(SM), defined in
terms of Fourier coefficients as

Huk := −i sgn(k)uk.

Here sgn(k) is the sign of k, with the convention sgn(0) = 0. Thus, u is holomorphic if and
only if (Id − iH)u = u0 and antiholomorphic if and only if (Id + iH)u = u0.

The following commutator formula for the Hilbert transform and the geodesic vector field,
proved in [39], has been a crucial component for many results reviewed in this paper.
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Proposition 2.1 Let (M, g) be a two-dimensional Riemannian manifold. For any smooth
function u on SM , we have the identity

[H,X ]u = X⊥u0 + (X⊥u)0,

where
u0(x) =

1
2π

∫
Sx

u(x, v)dSx

is the average value.

Proof It suffices to show that

[Id + iH,X ]u = iX⊥u0 + i(X⊥u)0.

Since X = η+ + η−, we need to compute [Id + iH, η±], so let us find [Id + iH, η+]u, where
u =

∑
k

uk. Recall that (Id + iH)u = u0 + 2
∑
k≥1

uk. We find

(Id + iH)η+u = η+u−1 + 2
∑
k≥0

η+uk,

η+(Id + iH)u = η+u0 + 2
∑
k≥1

η+uk.

Thus
[Id + iH, η+]u = η+u−1 + η+u0.

Similarly we find
[Id + iH, η−]u = −η−u0 − η−u1.

Therefore using that iX⊥ = η+ − η−, we obtain

[Id + iH,X ]u = iX⊥u0 + i(X⊥u)0

as desired.

3 Tensor Tomography on Surfaces

The paper [32] gave two proofs for uniqueness in tensor tomography on a simple surface
(M, g). In this section we will give an outline of both proofs. They are based on Pestov
identities, which are energy estimates for operators related to the ray transform, and which will
be discussed in more detail in Section 4. Below we will make use of the concepts introduced in
Sections 1 and 2.

First Proof To explain the idea behind the first proof of s-injectivity, let us first assume
that f is a 0-tensor, that is, f ∈ C∞(M). Assuming that I0f = 0, it is required to show that
f = 0. The first step is a reduction from the integral operator I0 into a PDE question involving
a transport equation. The function

u(x, v) =
∫ τ(x,v)

0

f(ϕt(x, v))dt, (x, v) ∈ SM
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solves the transport equation

Xu = −f in SM, u|∂(SM) = 0.

It is enough to show that u = 0, since then also f = 0.
Isothermal coordinates allow to identify

SM = {(x, θ) ; x ∈ D, θ ∈ [0, 2π)}.

The vertical vector field on SM is V = ∂
∂θ . We want to show that{

Xu = −f,
u|∂(SM) = 0 =⇒ u = 0.

If f is a 0-tensor, f = f(x), then V f = 0. Thus it is enough to show that{
V Xu = 0,
u|∂(SM) = 0 =⇒ u = 0.

This calls for a uniqueness result for the operator P = V X . In isothermal coordinates, this
operator has the form

P = e−λ
∂

∂θ

(
cos θ

∂

∂x1
+ sin θ

∂

∂x2
+ h(x, θ)

∂

∂θ

)
,

where h(x, θ) is a certain smooth function. It turns out that the operator P is rather exotic
and there do not seem to be general results on uniqueness properties of such operators in the
literature. Here are some facts about the operator P :

(i) It is a second-order operator on 3D manifold SM.

(ii) It has multiple characteristics.
(iii) P +W has compactly supported solutions for some first order perturbation W.
(iv) It enjoys a subelliptic type estimate ‖u‖H1(SM) ≤ C‖Pu‖L2(SM) for u ∈ C∞(SM) with

u|∂(SM) = 0.
However, we can still prove a global uniqueness result for P by using energy estimates. This

involves the Pestov identity in L2(SM) inner product, when u|∂(SM) = 0,

‖Pu‖2 = ‖Au‖2 + ‖Bu‖2 + (i[A,B]u, u),

where P = A+ iB, A∗ = A, B∗ = B.
We will compute the commutator below, and this gives (see Proposition 4.2)

‖Pu‖2 = ‖XV u‖2 − (KV u, V u) + ‖Xu‖2.

It is known (see [33]) that on simple manifolds,

‖XV u‖2 − (KV u, V u) ≥ 0, u ∈ C∞(SM), u|∂(SM) = 0.

Note that in the case of non-positive curvature, i.e., K ≤ 0, one always has ‖XV u‖2 −
(KV u, V u) ≥ 0. Thus Pu = 0 implies u = 0, showing injectivity of I0.
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We now return to tensor tomography. Let Xu = −f in SM , u|∂(SM) = 0, where f is the
function on SM corresponding to a symmetric m-tensor field. It will be convenient to switch
to a slightly different setup and think of u and f (which are functions SM → C) as sections of
the trivial bundle E = SM ×C. The transport equation then becomes an equation for sections
of E,

D0
Xu = −f,

where D0
X = d is the flat connection on the trivial bundle E.

One benefit of this (trivial) change of point of view is that from the equation on sections,
one sees that the transport equation has a natural gauge group acting via multiplication by
smooth functions c ∈ C∞(M). This action preserves m-tensors, and leads to gauge equivalent
equations

DA
X(cu) = −cf,

where DA = d + A is a gauge equivalent connection on E and A = −c−1dc is the 1-form
determining the connection.

Now we try to use an energy identity for the connections DA. This Pestov identity with a
connection is proved in the same way as the usual Pestov identity (see Proposition 4.3), and
reads in L2(SM) norms

‖V (X +A)u‖2 = ‖(X +A)V u‖2 − (KV u, V u) + ‖(X +A)u‖2 + (∗FAV u, u).

Here ∗ is Hodge star and
FA = dA+A ∧A

is the curvature of the connection DA = d+A. We observe that if the curvature ∗FA and the
expression (V u, u) have suitable signs, we gain a positive term in the energy estimate.

This observation does not immediately lead to anything new since curvature is preserved un-
der gauge transformation. Thus, if DA is gauge equivalent to D0, then FA = F0 = 0. However,
we can use a generalized gauge transformation that arranges a sign for FA. This involves gauge
transformations via functions c that may depend on the v variable. Such transformations break
the m-tensor structure of the equation, but turn out to be manageable if the gauge transforms
are holomorphic in a suitable sense.

Recall from Section 2 that a function u ∈ L2(SM) is called holomorphic if uk = 0 for k < 0.
The main point is the following theorem guaranteeing that holomorphic gauge transformations
always exist. This is related to injectivity of the attenuated ray transform on simple surfaces
(see [41]), and in the form below it is proved in [32–33]. The proof is based on the surjectivity
of I∗0 .

Theorem 3.1 (Holomorphic Gauge Transformation) If A is a 1-form on a simple surface,
there exists a holomorphic w ∈ C∞(SM) such that X +A = ew ◦X ◦ e−w.

Proof Since M is simply connected, there is a Hodge decomposition Ajdxj = da+ �db for
some a, b ∈ C∞(M) (� is the Hodge star operator). In terms of the corresponding functions on
SM , we have A = Xa+ X⊥b. Replacing w by w − a, it is enough to consider the case where
A = X⊥b.
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Let us try a solution of the form w = (Id + iH)ŵ, where ŵ ∈ C∞(SM) is even with respect
to v. By Proposition 2.1,

Xw = (Id + iH)Xŵ − i[H,X ]ŵ = (Id + iH)Xŵ − iX⊥ŵ0.

Now it is sufficient to find ŵ even with Xŵ = 0 and ŵ0 = −ib. Using the surjectivity of I∗0
(see [39]), there exists some h ∈ C∞(∂+(SM)) with I∗0h = −2πib. But if w′ ∈ C∞(SM) is the
function with Xw′ = 0 in SM and w′|∂+(SM) = h, we have (w′)0 = 1

2π I
∗
0h = −ib. It is enough

to take ŵ to be the even part of w′ with respect to v.

We can now explain the end of the proof of the uniqueness result for tensor tomography on

simple surfaces. Let f =
m∑

k=−m
fk be an m-tensor written in terms of its Fourier components,

and let
Xu = −f, u|∂(SM) = 0.

Choose a primitive ϕ of the volume form ωg of (M, g), so that dϕ = ωg. Let s > 0 be large, let
As = −isϕ, and choose a holomorphic w with X+As = esw ◦X ◦e−sw. The transport equation
becomes

(X +As)(eswu) = −eswf, eswu|∂(SM) = 0.

Here the curvature of As has a sign and one has information on Fourier coefficients of eswf .
The Pestov identity with connection allows to control Fourier coefficients of eswu, eventually
proving s-injectivity of Im.

Heuristically, the proof above involves “twisting” the trivial bundle E by a holomorphic
gauge transformation to make it positively curved, using the Pestov identity with a large pos-
itive term coming from the connection to absorb error terms, and then undoing the gauge
transformation (this is possible because of holomorphicity) to get uniqueness. This idea of
twisting to impose positivity to prove a vanishing theorem is of course well known in complex
geometry and it is the way one proves results like the Kodaira vanishing theorem (see [17]). Our
setting is more complicated since the relevant PDE is the transport equation which is harder to
handle than the Cauchy-Riemann equation. However this analogy is important and permeates
all our work; in particular the injectivity results on the attenuated ray transform for unitary
connections, to be discussed later on, are also proved in this fashion.

There is an interesting connection between the Pestov identity with connection As above
and with Carleman estimates. In fact, the Pestov identity with As implies the estimate

s
1
2 ‖u‖

L2
xḢ

1
2

θ

� ‖eswX(e−swu)‖L2
xḢ

1
θ
.

Here we use the norms

‖u‖L2
xḢ

s
θ

=
(∑
k �=0

|k|2s‖uk‖2
L2(SM)

) 1
2
.

Formally this looks very much like a Carleman estimate with exponential weights, but it involves
some slightly exotic spaces and one can see that the positivity comes from Im(w) (not Re(w)
as is usual in Carleman estimates)! We finally remark that such an estimate is sufficient for

(i) absorbing large attenuation (even for systems, see Section 9),
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(ii) absorbing error terms coming from m-tensors.
However, it seems that the estimate may not be enough to
(i) localize in space,
(ii) absorb error terms coming from curvature of M .

Second Proof Next we explain a very short alternative proof to a key step in the injectivity
result.

Suppose that u is a smooth solution of Xu = −f in SM , where fk = 0 for k ≤ −m− 1 and
u|∂(SM) = 0. We wish to show that uk = 0 for k ≤ −m. This, together with the analogous
result for positive Fourier coefficients, implies that f = Xh, where the Fourier expansion of h
has degree m− 1 and h|∂(SM) = 0, thus proving s-injectivity.

We choose a nonvanishing function h ∈ Ωm. In fact, in isothermal coordinates, we can set

h(x, y, θ) := eimθ.

Define the 1-form
A := −h−1Xh.

Then hu solves the problem

(X +A)(hu) = −hf in SM, hu|∂(SM) = 0.

Note that hf is a holomorphic function. Next we employ a holomorphic integrating factor, as
above: By Theorem 3.1 there exists a holomorphic w ∈ C∞(SM) with Xw = A. The function
ewhu then satisfies

X(ewhu) = −ewhf in SM, ewhu|∂(SM) = 0.

The right-hand side ewhf is holomorphic. It is known that the solution ewhu, which vanishes on
∂(SM) also has to be holomorphic and further (ewhu)0 = 0. This follows from the s-injectivity
of I0 and I1 (see [32, 41]). Looking at Fourier coefficients shows that (hu)k = 0 for k ≤ 0, and
therefore uk = 0 for k ≤ −m as required.

4 Pestov Identity

In this section, we consider the Pestov identity, which is the basic energy identity that has
been used since the work of Mukhometov [27] in most injectivity proofs of ray transforms in
the absence of real-analyticity or special symmetries. Pestov type identities were also used in
[3] to prove s-injectivity for I1 on simple manifolds and in [37] to prove s-injectivity for any m
in any dimensions if the sectional curvatures are negative. See [9, 36, 42] for further results.
Pestov identities have often appeared in a somewhat ad hoc way, but here we follow [32] which
gave a new point of view making the derivation of these identities more transparent. We will
only consider two-dimensional manifolds in this section.

The easiest way to motivate the Pestov identity is to consider the injectivity of the ray
transform on functions. The first step, as discussed in Section 3, is to recast the injectivity
problem as a uniqueness question for the partial differential operator P on SM , where

P := V X.
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This involves a standard reduction to the transport equation.

Proposition 4.1 Let (M, g) be a compact oriented nontrapping surface with strictly convex
smooth boundary. The following statements are equivalent:

(a) The ray transform I : C∞(M) → C(∂+(SM)) is injective.
(b) Any smooth solution of Pu = 0 in SM with u|∂(SM) = 0 is identically zero.

Proof Assume that the ray transform is injective, and let u ∈ C∞(SM) solve Pu = 0 in
SM with u|∂(SM) = 0. This implies that Xu = −f in SM for some smooth f only depending
on x, and we have 0 = u|∂+(SM) = If . Since I is injective, one has f = 0 and thus Xu = 0,
which implies u = 0 by the boundary condition.

Conversely, assume that the only smooth solution of Pu = 0 in SM which vanishes on
∂(SM) is zero. Let f ∈ C∞(M) be a function with If = 0, and define the function

u(x, v) :=
∫ τ(x,v)

0

f(γ(t, x, v))dt, (x, v) ∈ SM.

This function satisfies the transport equation Xu = −f in SM and u|∂(SM) = 0 since If = 0,
and also u ∈ C∞(SM) (see [33]). Since f only depends on x, we have V f = 0, and consequently
Pu = 0 in SM and u|∂(SM) = 0. It follows that u = 0 and also f = −Xu = 0.

We now focus on proving a uniqueness statement for solutions of Pu = 0 in SM . For this
it is convenient to express P in terms of its self-adjoint and skew-adjoint parts in the L2(SM)
inner product as

P = A+ iB, A :=
P + P ∗

2
, B :=

P − P ∗

2i
.

Here the formal adjoint P ∗ of P is given by

P ∗ := XV.

In fact, if u ∈ C∞(SM) with u|∂(SM) = 0, then

‖Pu‖2 = ((A + iB)u, (A+ iB)u) = ‖Au‖2 + ‖Bu‖2 + i(Bu,Au) − i(Au,Bu)

= ‖Au‖2 + ‖Bu‖2 + (i[A,B]u, u). (4.1)

This computation suggests to study the commutator i[A,B]. We note that the argument just
presented is typical in the proof of L2 Carleman estimates (see [21]).

By the definition of A and B it easily follows that i[A,B] = 1
2 [P ∗, P ]. By the commutation

formulas for X , X⊥ and V , this commutator may be expressed as

[P ∗, P ] = XV V X − V XXV = V XVX +X⊥V X − V XVX − V XX⊥

= V [X⊥, X ] −X2 = −X2 + VKV.

Consequently
([P ∗, P ]u, u) = ‖Xu‖2 − (KV u, V u).

If the curvature K is nonpositive, then [P ∗, P ] is positive semidefinite. More generally, one can
try to use the other positive terms in (4.1). Note that

‖Au‖2 + ‖Bu‖2 =
1
2
(‖Pu‖2 + ‖P ∗u‖2).
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The identity (4.1) may then be expressed as

‖Pu‖2 = ‖P ∗u‖2 + ([P ∗, P ]u, u).

(Note that we could have just started from the last identity, but expressing matters via A and B
highlights the similarity to Carleman estimates.) Moving the term ‖Pu‖2 to the other side, we
have proved the version of the Pestov identity which is most suited for our purposes. The main
point in this proof was that the Pestov identity boils down to a standard L2 estimate based
on separating the self-adjoint and skew-adjoint parts of P and on computing one commutator,
[P ∗, P ].

Proposition 4.2 If (M, g) is a compact oriented surface with smooth boundary, then

‖XV u‖2 − (KV u, V u) + ‖Xu‖2 − ‖V Xu‖2 = 0

for any u ∈ C∞(SM) with u|∂(SM) = 0.

It is known (see [13, 33]) that on a simple surface, one has

‖XV u‖2 − (KV u, V u) ≥ 0, u ∈ C∞(SM), u|∂(SM) = 0.

Also, if Xu = −f , where f = f0 + f1 + f−1 is the sum of a 0-form and a 1-form, we have

‖Xu‖2 − ‖VXu‖2 = ‖f0‖2 ≥ 0.

These two facts together with the Pestov identity give the standard proof of s-injectivity of the
ray transform for 0-forms and 1-forms on simple surfaces. It is easy to see where this proof

breaks down if m ≥ 2: The Fourier expansion f =
m∑

k=−m
fk implies

‖Xu‖2 − ‖VXu‖2 = ‖f0‖2 −
∑

2≤|k|≤m
(k2 − 1)‖fk‖2.

This term may be negative, and the Pestov identity may not give useful information unless
there is some extra positivity like a curvature bound.

Finally, we consider the Pestov identity in the presence of attenuation given by A(x, v) =
Aj(x)vj , where Ajdxj is a purely imaginary 1-form on M . We write A both for the 1-form and
the function on SM . The geometric interpretation is that d+A is a unitary connection on the
trivial bundle M × C, and its curvature is the 2-form

FA := dA+A ∧A.

Then �FA is a function on M , where � is the Hodge star. We consider the operator

P := V (X +A).

Since A = −A, the formal adjoint of P in the L2(SM) inner product is

P ∗ = (X + A)V.

The same argument leading to Proposition 4.2, based on computing the commutator [P ∗, P ],
gives the following Pestov identity proved also in [33, Lemma 6.1].
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Proposition 4.3 If (M, g) is a compact oriented surface with smooth boundary and if A is
a purely imaginary 1-form on M , then

‖(X +A)V u‖2 − (KV u, V u) + ‖(X +A)u‖2 − ‖V (X +A)u‖2 + (�FAV u, u) = 0

for any u ∈ C∞(SM) with u|∂(SM) = 0.

Using the Fourier expansion of u, the last term in the identity is given by

∞∑
k=−∞

ik(�FAuk, uk).

This shows that if u is holomorphic and i�FA > 0, or if u is antiholomorphic and i�FA < 0, one
gains an additional positive term in the Pestov identity. This is crucial in absorbing negative
contributions from the term ‖(X+A)u‖2−‖V (X+A)u‖2 when proving s-injectivity on tensor
fields.

5 Microlocal Approach

A different approach that is useful to prove s-injectivity of Im in some cases and gives
stability estimates as well as reconstruction formulas in some cases was started in [50] and
developed further in [51–54]. We describe the method in more detail for I0. Let (M, g) be a
simple manifold embedded in a closed manifold (N, g) and let U be a simple neighborhood of
M in N .

Theorem 5.1 I∗0 I0 is an elliptic pseudodifferential operator on U of order −1.

Proof It is easy to see that

(I∗0 I0f)(x) =
∫
Sx

dSx
∫ τ(x,v)

−τ(x,−v)
f(γ(t, x, v))dt = 2

∫
Sx

dSx
∫ τ(x,v)

0

f(γ(t, x, v))dt. (5.1)

Before we continue we make a remark concerning notation. We have used up to now the
notation γ(t, x, v) for a geodesic. But it is known, that a geodesic depends smoothly on the
point x and the vector ξt ∈ Tx(M). Therefore in what follows we will also use sometimes the
notation γ(x, vt) for a geodesic. Since the manifoldM is simple, any small enough neighborhood
U (in (N, g)) is also simple (an open domain is simple if its closure is simple). For any point
x ∈ U , there exists an open domain DU

x ⊂ Tx(U) such that exponential map expx : DU
x →

U, expx η = γ(x, η) is a diffeomorphism onto U. Let Dx, x ∈ M be the inverse image of M .
Then expx(Dx) = M and expx|Dx : Dx →M is a diffeomorphism.

Now we change variables in (5.1), y = γ(x, vt). Then t = dg(x, y) and

(I∗If)(x) =
∫
M

K(x, y) f(y)dy,

where

K(x, y) = 2
det(exp−1

x )′(x, y)
√

det g(x)
dn−1
g (x, y)

.
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Notice that since

γ(x, η) = x+ η +O(|η|2), (5.2)

it follows that the Jacobian of the exponential map is 1 at 0, and then det(exp−1
x )′(x, x) =

[det(expx)′(x, 0)]−1 = 1. From (5.2) we also conclude that

d2(x, y) = Gij(x, y)(x − y)i(x− y)j , Gij(x, x) = gij(x), Gij ∈ C∞(M ×M).

Therefore the kernel of I∗0 I0 can be written in the form

K(x, y) =
2 det(exp−1

x )′(x, y)
√

det g(x)

(Gij(x, y)(x − y)i(x − y)j)
n−1

2

.

Thus the kernel K has at the diagonal x = y a singularity of type |x− y|−n+1. The kernel

K0(x, y) =
2
√

det g(x)

(gij(x)(x − y)i(x − y)j)
n−1

2

has the same singularity. Clearly, the difference K −K0 has a singularity of type |x− y|−n+2.

Therefore the principal symbols of both operators coincide. The principal symbol of the integral
operator, corresponding to the kernel K0, coincides with its full symbol and is easily calculated.
As a result,

σ(I∗0 I0)(x, ξ) = 2
√

det g(x)
∫

e−i(y,ξ)

(gij(x)yiyj)
n−1

2

dy = cn|ξ|−1.

Let g be a simple metric in M . Extend g near M and let M1 be a simple manifold with
boundary so that M is a compact subset of M1. We will work with f supported in M . We
assume that f is extended as 0 outside M . Choose a smooth function χ supported in M1 such
that χ = 1 near M .

It was shown in [51] that the normal operator Ng = I∗mIm is a pseudodifferential operator
of order −1, for m = 0, 1, 2 which is elliptic acting on solenoidal tensor fields. We have the
following theorem.

Theorem 5.2 Let g be a simple metric in M and let χ be as before. Then one can construct
a pseudodifferential operator aijkl(x,D) of order 1 so that for any symmetric 2-tensor f ∈
L2(M), we have

χaijkl(x,D)χ(Ngf)kl = fsM1
+Kf, (5.3)

where K : L2(M) → H1(M1) is bounded. Here fsM1
denotes the solenoidal part of f on M1.

This result was extended to tensor fields of any order in [47].
When g is a real-analytic simple metric it was shown in [52] that I2 is s-injective. The proof

constructs a parametrix as in the previous result with K analytic regularizing, that is, Kf is
real-analytic on M1 for f ∈ L2(M). The idea of the proof for I0 is that if I0f = 0, f ∈ L2(M),
then f = −Kf . Since Kf is real-analytic on M1 and supported on M , it must be zero. For
the details of the proof for I2 see [52].



Tensor Tomography: Progress and Challenges 415

6 Stability Estimates

It was shown in [51] and [47] that for a simple manifold s-injectivity of Im implies stability
estimates. This is based on the fact that Ng = I∗mIm is an elliptic pseudodifferential operator
acting on solenoidal tensor fields. We have the following stability estimate for I0 (see [51]).

Theorem 6.1 Let g be a simple metric in M and assume that g is extended smoothly as a
simple metric near the simple manifold M1 ⊃⊃M . Then for any function f ∈ L2(M),

1
C
‖f‖L2(M) ≤ ‖Ngf‖H1(M1) ≤ C‖f‖L2(M).

Similarly s-injectivity of I1 implies the stability estimate.

Theorem 6.2 Assume that g is simple metric in M and extend g as a simple metric in
M1 ⊃⊃M . Then for any 1-form f = fidxi in L2(M), we have

1
C
‖fs‖L2(M) ≤ ‖Ngf‖H1(M1) ≤ C‖fs‖L2(M).

A sharp stability estimate for I2, assuming that I2 is known to be s-injective, was proved
in [49].

Theorem 6.3 Let g be a simple metric in M and assume that g is extended smoothly as a
simple metric near the simple manifold M1 ⊃⊃ M . Also assume that I2 is s-injective. Then
for any symmetric 2-tensor field f in L2(M),

1
C
‖fs‖L2(M) ≤ ‖Ngf‖H1(M1) ≤ C‖fs‖L2(M).

In order to describe possible stability estimates for Im, we describe an earlier result for I2.
In order to state the result, we first take boundary normal coordinates x1, · · · , xn with xn = 0
the defining function of ∂M . Introduce the space H̃1(M1) with norm equal to the L2 norm
outside a neighborhood of ∂M and near ∂M (but outside M) having the following form in
normal local coordinates:

|f |2
H̃1(M1)

=
∫
M1

( n−1∑
i=1

|∂if |2 + |xn∂nf |2 + |f |2
)
dx, supp f ⊂ U. (6.1)

Here U is a small neighborhood of a point on ∂M and the norm in H̃1(M1) is defined by using
a partition of unity.

Next we define the norm

‖Ngf‖H̃2(M1) =
n∑
i=1

‖∂iNgf‖H̃1(M1) + ‖Ngf‖H1(M1).

The earlier stability result for I2 is the following theorem.

Theorem 6.4 Assume that g is simple metric in M and extend g as a simple metric in
M1 ⊃⊃M .

(a) The following estimate holds for each symmetric 2-tensor f in H1(M) :

‖fs‖L2(M) ≤ C‖Ngf‖H̃2(M1)
+ Cs‖f‖H−s(M1), ∀s > 0.
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(b) Ker I2 ∩ SL2(M) is finite dimensional and included in C∞(M). Here S stands for
solenoidal.

(c) Assume that I2 is s-injective in M , i.e., that Ker Ig ∩ SL2(M) = {0}. Then for any
symmetric 2-tensor f in H1(M), we have

‖fs‖L2(M) ≤ C‖Ngf‖H̃2(M1).

This result was proved in [51] for the casem = 2. Using the results of [47], stability estimates
of this type can be shown to be valid for any m.

7 The Scattering Relation

To state the results for the range of Im for simple surfaces, we need to recall the definition
of the scattering relation which is a subject of interest in its own right.

Suppose that we have a Riemannian metric in Euclidean space which is the Euclidean
metric outside a compact set. The inverse scattering problem for metrics is to determine the
Riemannian metric by measuring the scattering operator (see [18]). A similar obstruction to
the boundary rigidity problem occurs in this case with the diffeomorphism ψ equal to the
identity outside a compact set. It was proved in [18] that from the wave front set of the
scattering operator, one can determine, under some non-trapping assumptions on the metric,
the scattering relation on the boundary of a large ball. This uses high frequency information
of the scattering operator. In the semiclassical setting Alexandrova has shown for a large class
of operators that the scattering operator associated to potential and metric perturbations of
the Euclidean Laplacian is a semiclassical Fourier integral operator quantized by the scattering
relation (see [2]). The scattering relation maps the point and direction of a geodesic entering
the manifold to the point and direction of exit of the geodesic.

We proceed to define in more detail the scattering relation. To do this, let τ0 = τ |∂(SM)

and note that this function is equal to zero on ∂−(SM) and is smooth on ∂+(SM). Its odd
part with respect to v,

τ0
−(x, v) =

1
2
(τ0(x, v) − τ0(x,−v)),

is a smooth function on ∂(SM) (see for instance [10]).

Definition 7.1 Let (M, g) be non-trapping with strictly convex boundary. The scattering
relation α : ∂(SM) → ∂(SM) is defined by

α(x, v) = (γ(x, v, 2τ0
−(x, v)), γ̇(x, v, 2τ0

−(x, v))).

The scattering relation is a diffeomorphism ∂(SM) → ∂(SM). Notice that α|∂+(SM) :
∂+(SM) → ∂−(SM), α|∂−SM : ∂−(SM) → ∂+(SM) are diffeomorphisms as well. The mani-
folds of inner vectors ∂+(SM) and outer vectors ∂−(SM) intersect at the set of tangent vectors

∂0(SM) = {(x, v) ∈ ∂(SM), 〈ν(x), v〉 = 0}.

Obviously, α is an involution, α2 = id and ∂0(SM) is the hypersurface of its fixed points,
α(x, v) = (x, v), (x, v) ∈ ∂0(SM).
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A natural inverse problem is whether the scattering relation determines the metric g up to
an isometry which is the identity on the boundary. This information takes into account all the
travel times, not just the first arrivals like the boundary distance function.

We remark that in the case that (M, g) is a simple manifold, and we know the metric at the
boundary (and this is determined if dg is known), knowing the scattering relation is equivalent
to knowing the boundary distance function (see [26]).

We introduce the operators of even and odd continuation with respect to α:

A±w(x, v) = w(x, v), (x, v) ∈ ∂+SM,

A±w(x, v) = ±(α∗w)(x, v), (x, v) ∈ ∂−(SM).

We will examine next the boundedness properties of A−, A+.

Lemma 7.1 A± : L2
μ(∂+(SM)) → L2

|μ|(∂(SM)) are bounded.

Proof

‖A±w‖2
L2

|μ|(∂(SM)) =
∫
∂+(SM)

w2μ dΣ2n−2 +
∫
∂−(SM)

(α∗w)2(−μ dΣ2n−2)

=
∫
∂+(SM)

w2μ dΣ2n−2 +
∫
∂+(SM)

w2α∗(−μ dΣ2n−2),

where α : ∂+(SM) → ∂−(SM) is a diffeomorphism. Thus it is enough to show that

α∗(−μdΣ2n−2) = μdΣ2n−2.

Let w ∈ C∞(∂+(SM)). Then∫
∂+(SM)

wτμ dΣ2n−2 =
∫
∂+(SM)

∫ τ(x,v)

0

wψ(ϕt(x, v))μdtdΣ2n−2 =
∫
SM

wψ dΣ2n−1.

Set ũ(x, v) = u(x,−v) for u ∈ C∞(SM). One has∫
SM

wψ dΣ2n−1 =
∫
SM

w̃ψ dΣ2n−1

=
∫
∂−(SM)

∫ τ(y,−η)

0

w̃ψ(ϕt(y,−η))(−μ)dtdΣ2n−2

=
∫
∂−(SM)

∫ τ(y,−η)

0

w(α(y, η))(−μ)dtdΣ2n−2

=
∫
∂+(SM)

wτα∗(−μdΣ2n−2).

Varying w shows that α∗(−μdΣ2n−2) = μdΣ2n−2 on ∂+(SM)\∂0SM .
The adjoint A∗

± : L2
|μ|(∂(SM)) → L2

μ(∂+(SM)) satisfies

(A±w, u)L2
|μ|(∂(SM)) =

∫
∂+(SM)

wuμ dΣ2n−2 ±
∫
∂−(SM)

(w ◦ α)u(−μ dΣ2n−2)

=
∫
∂+(SM)

w(u ± u ◦ α)μ dΣ2n−2,
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so A∗±u = (u ± u ◦ α)|∂+(SM).
In [39] the following characterization of the space of smooth solutions of the transport

equation was given. Here we define

C∞
α (∂+(SM)) = {w ∈ C∞(∂+(SM)) : wψ ∈ C∞(SM)}.

Lemma 7.2

C∞
α (∂+(SM)) = {w ∈ C∞(∂+(SM)) : A+w ∈ C∞(∂(SM))}.

Then I∗0w ∈ C∞(M) whenever w ∈ C∞
α (∂+(SM)).

We conclude this section by defining certain operators which combine the operators A±
introduced above with the fibrewise Hilbert transform H . These operators will be essential to
determine the range of the ray transform in the next section. Set H±u = Hu±, where u+ (resp.
u−) denotes the even (resp. odd) part of u ∈ C∞(SM).

We define

P− = A∗
−H−A+, P+ = A∗

−H+A+. (7.1)

8 Range of the Geodesic Ray Transform

We now give the characterization of the range of I0 and I1 in terms of the scattering relation
only. We have that these are the projections of the operators P−, P+, respectively (defined in
(7.1)). For the details see [38].

Theorem 8.1 Let (M, g) be simple two-dimensional compact Riemannian manifold with
boundary. Then

(1) A function u ∈ C∞(∂+(SM)) belongs to the range of I0 if and only if u = P−w, where
w ∈ C∞

α (∂+(SM)).
(2) A function u ∈ C∞(∂+(SM)) belongs to the range of I1 if and only if u = P+w, where

w ∈ C∞
α (∂+(SM)).

We now move on to describe the range of the geodesic ray transform for tensors of order
≥ 2. For this we apply the ideas of the second proof of Theorem 1.1 described in Section 3. For
the details see [35].

Let (M, g) be a simple surface. The metric g induces a complex structure on M and let κ be
the canonical line bundle (which we may identify with T ∗M). Recall that Hm (m ∈ Z) is the set
of functions in f ∈ L2(SM,C) such that V f = im f . The set Ωm = Hm ∩ C∞(SM,C) can be
identified with the set Γ(M,κ⊗m) of smooth sections of m-th tensor power of the canonical line
bundle κ. This identification depends on the metric and is explained in detail in [34, Section 2],
but let us give a brief description of it. Given a section ξ ∈ Γ(M,κ⊗m) we can obtain a function
on Ωm simply by restriction to SM : ξ determines the function SM � (x, v) �→ ξx(v⊗m) and
this gives a 1-1 correspondence.

Since M is a disk, there exists ξ ∈ Γ(M,κ) which is nowhere vanishing. Having picked this
section we may define a function h : SM → S1 by setting h(x, v) = ξx(v)

|ξx(v)| . By construction,
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h ∈ Ω1. Our description of the range will be based on this choice of h. Define

Aξ,g = A := −h−1Xh.

Observe that since h ∈ Ω1, h−1 = h ∈ Ω−1. Also Xh = η+h + η−h ∈ Ω2 ⊕ Ω0 which implies
that A ∈ Ω1 ⊕Ω−1. It follows that A is the restriction to SM of a purely imaginary 1-form on
M , hence we have a unitary connection (see Section 9).

First we describe the range of the geodesic ray transform I restricted to Ωm:

Im := I|Ωm : Ωm → C∞(∂+(SM),C).

Observe that if u solves the transport equation Xu = −f with u|∂−(SM) = 0, then h−mu solves
(X −mA)(h−mu) = −h−mf and h−mu|∂−(SM) = 0. Also note that h−mf ∈ Ω0. Thus

I0
−mA(h−mf) = (h−m|∂+(SM))Im(f),

where the left-hand side is the attenuated ray transform of the unitary connection −mA. At-
tenuated transforms will be described in more detail in the next section, but the upshot is that
we can prove a theorem similar to Theorem 8.1 but introducing this time a unitary connection
as attenuation. Putting everything together one obtains a description of the range for Im as
follows. Let

Qmw(x, v) :=
{
w(x, v), if (x, v) ∈ ∂+(SM),
(e−m

∫ τ(x,v)
0 A(φt(x,v))dtw) ◦ α(x, v), if (x, v) ∈ ∂−(SM),

Bmg := [em
∫ τ(x,v)
0 A(φt(x,v))dt(g ◦ α) − g]|∂+(SM).

In other words,

Qmw(x, v) =
{
w(x, v), if (x, v) ∈ ∂+(SM),
(e−mI1(A)w) ◦ α(x, v), if (x, v) ∈ ∂−(SM),

Bmg = [emI1(A)(g ◦ α) − g]|∂+(SM).

We define
Pm,− := BmH−Qm.

Theorem 8.2 (see [35]) Let (M, g) be a simple surface. Then a function u ∈ C∞(∂+(SM),
C) belongs to the range of Im if and only if u =

(
hm|∂+(SM)

)
Pm,−w for w ∈ S∞

m (∂+(SM),C),
where this last space denotes the set of all smooth w such that Qmw is smooth.

Suppose that now F is a complex-valued symmetric tensor of order m and we denote its
restriction to SM by f . Recall from [32, Section 2] that there is a 1-1 correspondence between

complex-valued symmetric tensors of order m and functions in SM of the form f =
m∑

k=−m
fk,

where fk ∈ Ωk and fk = 0 for all k odd (resp. even) if m is even (resp. odd).
Since

I(f) =
m∑

k=−m
Ik(fk),

we deduce directly from Theorem 8.2 the following.
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Theorem 8.3 Let (M, g) be a simple surface. If m = 2l is even, a function u ∈
C∞(∂+(SM),C) belongs to the range of the ray transform acting on complex-valued symmetric
m-tensors if and only if there exist w2k ∈ S∞

2k(∂+(SM),C) such that

u =
l∑

k=−l
(h2k|∂+(SM))P2k,−w2k.

Similarly, if m = 2l + 1 is odd, a function u ∈ C∞(∂+(SM),C) belongs to the range of the
ray transform acting on complex-valued symmetric m-tensors if and only if there exist w2k+1 ∈
S∞

2k+1(∂+(SM),C) such that

u =
l∑

k=−l−1

(h2k+1|∂+(SM))P2k+1,−w2k+1.

9 Attenuated Ray Transform for Unitary Connections

In this section we describe in detail certain injectivity results for the attenuated ray trans-
form of a unitary connection (see [33]). We saw the appearance of the attenuated ray transform
in the last section when we discussed the range of the (unattenuated) ray transform on tensors
of any order. We also saw how useful it was for the tensor tomography problem to introduce a
connection to gain positivity in the Pestov identity. Here we take a closer and more systematic
look. We motivate this section by discussing first another natural inverse problem: Determine
a unitary connection from its scattering relation, that is, parallel transport along geodesics
between boundary points. Our results are for simple surfaces, but the definitions can be given
in the context of non-trapping manifolds (M, g) with strictly convex boundary.

Suppose that E → M is a Hermitian vector bundle of rank n over M and ∇ is a unitary
connection on E. Associated with ∇ there is the following additional piece of scattering data:
Given (x, v) ∈ ∂+(SM), let P (x, v) = P∇(x, v) : E(x) → E(π ◦ α(x, v)) denote the parallel
transport along the geodesic γ(t, x, v). This map is a linear isometry and the main inverse
problem we wish to discuss here is the following question.

Question Does P determine ∇?

The first observation is that the problem has a natural gauge equivalence. Let ψ be a gauge
transformation, that is, a smooth section of the bundle of automorphisms AutE. The set of all
these sections naturally forms a group (known as the gauge group) which acts on the space of
unitary connections by the rule

(ψ∗∇)s := ψ∇(ψ−1s),

where s is any smooth section of E. If in addition ψ|∂M = Id, then it is a simple exercise to
check that

P∇ = Pψ∗∇.

Thus we can rephrase the question above more precisely as follows.

Question I Let ∇1 and ∇2 be two unitary connections with P∇1 = P∇2 . Does there exist
a gauge transformation ψ with ψ|∂M = Id and ψ∗∇1 = ∇2?
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It is easy to see from the definition that a simple manifold must be diffeomorphic to a ball in
Rn. Therefore any bundle over such M is necessarily trivial and from now on we shall assume
that E = M × Cn.

Question I arises naturally when considering the hyperbolic Dirichlet-to-Neumann map as-
sociated to the Schrödinger equation with a connection. It was shown in [16] that when the
metric is Euclidean, the scattering data for a connection can be determined from the hyper-
bolic Dirichlet-to-Neumann map. A similar result holds true on simple Riemannian manifolds:
a combination of the methods in [16] and [55] shows that the hyperbolic Dirichlet-to-Neumann
map for a connection determines the scattering data P∇.

Elementary background on connections Consider the trivial bundle M ×Cn. For us a
connection A will be a complex n×n matrix whose entries are smooth 1-forms on M . Another
way to think of A is to regard it as a smooth map A : TM → Cn×n which is linear in v ∈ TxM

for each x ∈M .
Very often in physics and geometry one considers unitary or Hermitian connections. This

means that the range of A is restricted to skew-Hermitian matrices. In other words, if we denote
by u(n) the Lie algebra of the unitary group U(n), we have a smooth map A : TM → u(n) which
is linear in the velocities. There is yet another equivalent way to phrase this. The connection
A induces a covariant derivative dA on sections s ∈ C∞(M,Cn) by setting dAs = ds + As.
Then A being Hermitian or unitary is equivalent to requiring compatibility with the standard
Hermitian inner product of Cn in the sense that

d〈s1, s2〉 = 〈dAs1, s2〉 + 〈s1, dAs2〉

for any pair of functions s1, s2.
Given two unitary connections A and B, we say that A and B are gauge equivalent if there

exists a smooth map u : M → U(n) such that

B = u−1du+ u−1Au. (9.1)

It is easy to check that this definition coincides with the one given in the previous section if we
set ψ = u−1.

The curvature of the connection is the 2-form FA with values in u(n) given by

FA := dA+A ∧A.

If A and B are related by (9.1), then

FB = u−1 FA u.

Given a smooth curve γ : [a, b] → M , the parallel transport along γ is obtained by solving the
linear differential equation in Cn: {

ṡ+A(γ(t), γ̇(t))s = 0,
s(a) = w ∈ Cn.

(9.2)
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The isometry PA(γ) : Cn → Cn is defined as PA(γ)(w) := s(b). We may also consider the
fundamental unitary matrix solution U : [a, b] → U(n) of (9.2). It solves{

U̇ +A(γ(t), γ̇(t))U = 0,
U(a) = Id.

(9.3)

Clearly PA(γ)(w) = U(b)w.

The transport equation and the attenuated ray transform Consider now the case
of a compact simple Riemannian manifold. We would like to pack the information provided
by (9.3) along every geodesic into one PDE in SM . For this we consider the vector field X

associated with the geodesic flow φt and we look at the unique solution UA : SM → U(n) of{
X(UA) +A(x, v)UA = 0, (x, v) ∈ SM,
UA|∂+(SM) = Id. (9.4)

The scattering data of the connection A is now the map CA : ∂−(SM) → U(n) defined as
CA := UA|∂−(SM).

We can now rephrase Question I as follows.

Question I Let A and B be two unitary connections with CA = CB. Does there exist a
smooth map U : M → U(n) with U |∂M = Id and B = U−1dU + U−1AU?

Suppose CA = CB and define U := UA(UB)−1 : SM → U(n). One easily checks that U
satisfies {

XU +AU − UB = 0,
U |∂(SM) = Id.

If we show that U is in fact smooth and it only depends on the base point x ∈ M , we would
have an answer to Question I, since the equation above reduces to dU + AU − UB = 0 and
U |∂M = Id which is exactly gauge equivalence. Showing that U only depends on x is not an
easy task and it often is the crux of the matter in these types of problems. To tackle this issue
we rephrase the problem in terms of an attenuated ray transform.

Consider W := U − Id : SM → Cn×n, where as before Cn×n stands for the set of all n× n

complex matrices. Clearly W satisfies

XW +AW −WB = B −A, (9.5)

W |∂(SM) = 0. (9.6)

We introduce a new connection Â on the trivial bundle M×Cn×n as follows: Given a matrix
R ∈ Cn×n, we define Â(R) := AR − RB. One easily checks that Â is Hermitian if A and B

are. Then equations (9.5) and (9.6) are of the form{
Xu+Au = −f,
u|∂(SM) = 0,

where A is a unitary connection, f : SM → C
N is a smooth function linear in the velocities,

u : SM → CN is a function that we would like to prove smooth and only dependent on x ∈M

and N = n× n. As we will see shortly this amounts to understanding which functions f linear
in the velocities are in the kernel of the attenuated ray transform of the connection A.
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First recall that in the scalar case, the attenuated ray transform Iaf of a function f ∈
C∞(SM,C) with attenuation coefficient a ∈ C∞(SM,C) can be defined as the integral

Iaf(x, v) :=
∫ τ(x,v)

0

f(φt(x, v))exp
[ ∫ t

0

a(φs(x, v))ds
]
dt, (x, v) ∈ ∂+(SM).

Alternatively, we may set Iaf := u|∂+(SM), where u is the unique solution of the transport
equation

Xu+ au = −f in SM, u|∂−(SM) = 0.

The last definition generalizes without difficulty to the case of connections. Assume that
A is a unitary connection and let f ∈ C∞(SM,Cn) be a vector valued function. Consider the
following transport equation for u : SM → Cn,

Xu+Au = −f in SM, u|∂−(SM) = 0.

On a fixed geodesic the transport equation becomes a linear ODE with zero initial condition,
and therefore this equation has a unique solution denoted by uf .

Definition 9.1 The attenuated ray transform of f ∈ C∞(SM,Cn) is given by

IAf := uf |∂+(SM).

We note that IA acting on sums of 0-forms and 1-forms always has a nontrivial kernel, since

IA(dp+Ap) = 0 for any p ∈ C∞(M,Cn) with p|∂M = 0.

Thus from the ray transform IAf one only expects to recover f up to an element having this
form.

The transform IA also has an integral representation. Consider the unique matrix solution
UA : SM → U(n) from above. Then it is easy to check that

IAf(x, v) =
∫ τ(x,v)

0

U−1
A (φt(x, v))f(φt(x, v))dt.

We are now in a position to state the next main question.

Question II (Kernel of IA) Let (M, g) be a compact simple Riemannian manifold and
let A be a unitary connection. Assume that f : SM → Cn is a smooth function of the form
F (x) + αj(x)vj , where F : M → Cn is a smooth function and α is a Cn-valued 1-form. If
IA(f) = 0, is it true that F = 0 and α = dAp = dp + Ap, where p : M → Cn is a smooth
function with p|∂M = 0?

As explained above a positive answer to Question II gives a positive answer to Question I.
The next recent result provides a full answer to Question II in the two-dimensional case.

Theorem 9.1 (see [33]) Let M be a compact simple surface. Assume that f : SM → C
n

is a smooth function of the form F (x) + αj(x)vj , where F : M → Cn is a smooth function and
α is a Cn-valued 1-form. Let also A : TM → u(n) be a unitary connection. If IA(f) = 0, then
F = 0 and α = dAp, where p : M → Cn is a smooth function with p|∂M = 0.
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Let us explicitly state the positive answer to Question I in the case of surfaces.

Theorem 9.2 (see [33]) Assume that M is a compact simple surface and let A and B

be two unitary connections. Then CA = CB implies that there exists a smooth U : M → U(n)
such that U |∂M = Id and B = U−1dU + U−1AU .

The proof of Theorem 9.1 is based on the ideas explained in Section 3. One introduces a
suitable additional attenuation (twists with a positive line bundle) which adds positivity to the
Pestov identity with a connection and then gauges the twist away via the key Theorem 3.1.

In the case of Euclidean space with the Euclidean metric, the attenuated ray transform is the
basis of the medical imaging technology of SPECT and has been extensively studied, see [15] for
a review. We remark that in connection with injectivity results for ray transforms, there is great
interest in reconstruction procedures and inversion formulas. For the attenuated ray transform
in R2 with Euclidean metric and scalar attenuation function, an explicit inversion formula was
proved by Novikov [28]. A related formula also including 1-form attenuations appears in [6],
inversion formulas for matrix attenuations in Euclidean space are given in [14, 29], and the case
of hyperbolic space H2 is considered in [5].

Various versions of Theorem 9.2 have been proved in the literature. Sharafutdinov [44]
proved the theorem assuming that the connections are C1 close to another connection with
small curvature (but in any dimension). In the case of domains in the Euclidean plane the
theorem was proved by Finch and Uhlmann [16] assuming that the connections have small
curvature and by Eskin [14] in general. Novikov [29] considerd the case of connections which
are not compactly supported (but with suitable decay conditions at infinity) and established
local uniqueness of the trivial connection and gave examples in which global uniqueness fails
(existence of “ghosts”).

For more on inverse problems for connections we refer to [30].

10 Anosov Manifolds

There are versions of the ideas in the previous sections in the context of closed manifolds.
The first requirement is to have a notion that replaces the concept of simple manifold. It is easy
to motivate this as follows. Simple manifolds have two characteristic properties: They have no
conjugate points and they are open in the C2-topology of metrics. Recall that a Riemannian
manifold is said to have no conjugate points if any two points in the universal covering are
joined by a unique geodesic. Hence it seems natural to seek an analogue by requiring that the
metric is a C2-interior point among the set of all metric without conjugate points.

Definition 10.1 A closed Riemannian manifold (M, g) is said to be Anosov if g belongs to
the C2-interior of the set of metrics without conjugate points.

It turns out that the name “Anosov” is completely justified: (M, g) is Anosov if and only if
the geodesic flow of g is Anosov in the sense of dynamical systems (see [40]). We will not give
here the definition of an Anosov flow since it will not be explicitly needed and instead we refer
the reader to [22].

From our definition it is clear that negatively curved manifolds are Anosov and that there
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are no Anosov metrics on tori since the only metrics without conjugate points on tori must be
flat (see [7]).

The notion of “Im is s-injective” makes sense for closed manifolds as follows.

Definition 10.2 We say that Im is s-injective if given any symmetric m-tensor f such that

∫ T

0

fm(γ(t), γ̇(t))dt = 0

for every unit speed closed geodesic γ : [0, T ] → M , then f is potential, i.e., there exists an
(m− 1)-symmetric tensor h such that f = dh.

The tensor tomography problem for an Anosov manifold consists in proving that Im is s-
injective for any m. There are numerous motivations for this, but perhaps the most notorious
one is that of spectral rigidity which involves I2. In [19], Guillemin and Kazhdan proved that
if (M, g) is an Anosov manifold such that I2 is s-injective, then (M, g) is spectrally rigid. This
means that if (gs) is a smooth family of Riemannian metrics on M for s ∈ (−ε, ε) such that
g0 = g and the spectra of −Δgs coincide up to multiplicity,

Spec(−Δgs) = Spec(−Δg0), s ∈ (−ε, ε),

then there exists a family of diffeomorphisms ψs : M →M with ψ0 = Id and

gs = ψ∗
sg0.

Let us summarize what is known about the tensor tomography problem on an Anosov
manifold:

(i) I0 and I1 are s-injective (see [11]);
(ii) I2 is s-injective for surfaces (see [34]);
(iii) Im is s-injective for all m for non-positively curved manifolds (see [8]).

11 Open Problems

In this section we mention some open problems related to tensor tomography.
(1) In the two-dimensional case there is by now, as surveyed in this paper, a rather good

understanding of the injectivity and range of the geodesic ray transform on tensor fields for
simple manifolds. Important questions remaining are inversion formulas or reconstruction pro-
cedures of the solenoidal part of the tensor field from its geodesic ray transform. Certain
inversion formulas were given in [24, 38] for the case of constant curvature and close to constant
curvature.

(2) In the case where dim (M) ≥ 3, it is not known whether Im is s-injective for a general
simple manifold. This is known for I0 and I1, but even the case of I2 is unknown at present.

(3) Support type theorems for the geodesic ray transform, where a tensor field is determined
locally from its line integrals in a certain neighborhood, are known for the case of real analytic
simple manifolds for Im, m = 0, 1, 2 (see [23, 25]). Is it possible to extend these results to all
simple manifolds? This has been done for I0 in three dimensions or higher (see [56]).
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(4) The study of s-injectivity of the geodesic ray transform for non-simple manifolds is an
important problem for which not much is known. Certain results are given in [9, 43, 45]. A
microlocal analysis of I0 when the exponential map has fold type singularities was done in
[54]. Injectivity, stability and reconstruction were proved for I0 in the case of three dimensions
or higher when the manifold can be foliated by strictly convex hypersurfaces (see [56]). This
allows for conjugate points. The s-injectivity of I2 was analyzed in [53] for a class of non-simple
manifolds. However, the question if I0 is injective on a compact non-trapping manifold with
strictly convex boundary is open.

(5) The attenuated ray transform for a unitary connection on simple surfaces and Anosov
surfaces has been extensively studied in [31, 33, 41]. It would be interesting to extend the
results to the case of a non-unitary connection.

(6) For closed Anosov surfaces it is known that Im is s-injective for m = 0, 1, 2. Is it true
for all m? Also, is I2 s-injective for Anosov manifolds of dimension ≥ 3?

(7) Finally, it would be natural to extend all this theory to more general classes of curves.
By this we mean replacing geodesics by other natural set of curves like magnetic geodesics or
geodesics of affine connections with torsion (thermostats). Concerning magnetic geodesics, the
tensor tomography problem in 2D is solved in [1] using the ideas presented here and the results
in [10], see also [4].
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