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Abstract Time-fractional diffusion equations are of great interest and importance on
describing the power law decay for diffusion in porous media. In this paper, to identify the
diffusion rate, i.e., the heterogeneity of medium, the authors consider an inverse coefficient
problem utilizing finite measurements and obtain a local Hölder type conditional stability
based upon two Carleman estimates for the corresponding differential equations of integer
orders.
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1 Introduction

Nowadays time-fractional diffusion equations are of practical interest and importance, since
they describe the power law decay for the diffusion in porous media perfectly. For instance, we
refer to Bisquert [1], Hatano [5] and Hilfer [6] where a concrete physical experiment is designed
to study the decay behavior of free-carrier density in a semiconductor with an exponential distri-
bution of traps, and the decay of ion-recombination isothermal luminescence. In mathematics,
forward problems of time-fractional diffusion equations are well studied and considerable results
have been obtained both theoretically and numerically, e.g., [2, 7, 9, 12–13] and references cited
therein. Moreover, some inverse problems which arise in fractional diffusion equations are also
of great interest and attract much attention, e.g. [4, 8, 10–11, 14, 16–17]. For example, Cheng
et al [4] established a uniqueness result in determining the fractional order and the coefficient
in the principal part simultaneously based upon the Gel’fand-Levitan theory. Xu et al [14]
derived a Carleman estimate for a fractional diffusion equation with half order and obtained
a Hölder type conditional stability for the Cauchy problem. Zhang et al [17] investigated an
inverse source problem for a fractional diffusion equation and proved the uniqueness of the in-
verse problem by analytic continuation and Laplace transform. Yamamoto et al [16] applied the
Carleman estimate in [14] to obtain conditional stability of identifying a lower order coefficient
in a fractional diffusion equation from some additional data through the study of an inverse
source problem.
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Throughout this paper, we consider the following fractional diffusion equation with half
order ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂

1
2
t u(x, t) = ∂x(p(x)∂xu(x, t)), (x, t) ∈ Q,

u(x, 0) = 0, x ∈ Ω,

u(0, t) = hu,1(t),
∂u

∂x
(0, t) = hu,2(t), t ∈ (0, T ),

(1.1)

where Ω = (0, l), Q = (0, l) × (0, T ) and ∂
1
2
t u denotes the fractional Caputo derivative in time

of order 1
2 , which is defined by

dγ

dtγ
f(t) :=

1
Γ(1 − γ)

∫ t

0

df(s)
ds

ds
(t− s)γ

, 0 < γ < 1.

Let 0 < t0 < T be fixed arbitrarily. We discuss the following inverse coefficient problem.

Problem 1.1 Can we estimate the leading order coefficient p(x), x ∈ Ω from a final obser-
vation u(x, t0) and Cauchy data hu,1(t), hu,2(t)?

The positive answer is given in Cheng et al [4] where the authors proved that Cauchy data
could uniquely determine p(x) by utilizing the Gel’fand-Levitan theory. However there is no
more stability indication which can be extracted from their proof. Therefore, this paper is
aiming at establishing a local Hölder stability for this problem. The main idea is deriving
a Carleman estimate with variable coefficients which is similar as the estimate with constant
coefficients in Xu [14] and the methodology utilized in Yamamoto [15] for typical parabolic
equations.

The outline of this paper is as follows. In Section 2, we reformulate the inverse coefficient
problem by converting the governing equation into a fourth order equation and then present
the main result. Section 3 is devoted to prove the main theorem in two steps which involves
two kinds of Carleman estimates, respectively. Some concluding remarks are given in Section
4 to close the paper.

2 Formulation and the Main Theorem

In this section, we introduce some notations and present the main result, i.e., a local Hölder
conditional stability for Problem 1.1.

Throughout this paper, we denote by u(p) the solution of the initial-boundary value problem
(1.1) and by v(q) the solution of a similar problem as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂

1
2
t v(x, t) = ∂x(q(x)∂xv(x, t)), (x, t) ∈ Q,

v(x, 0) = 0, x ∈ Ω,

v(0, t) = hv,1(t),
∂v

∂x
(0, t) = hv,2(t), t ∈ (0, T ).

(2.1)

For simplicity we restrict on some special complete function spaces. Denote by Hα(Ω) the
normal Sobolev space with order α > 0, i.e.,

Hα(Ω) :=
{
u(x) :

∑
j≤α

‖Dju‖L2(Ω) <∞
}
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and

C4,3(Q) = C2([δ0, T ];C4(Ω)) ∩ C3([δ0, T ] : C2(Ω)) for δ0 ∈ [0, T ],

C4,3
0 (Q) = {u ∈ C4,3(Q) : suppu ⊂ Q},

H4,3(Q) = H2(δ0, T ;H4(Ω) ∩H1
0 (Ω)) ∩H3(δ0, T ;H2(Ω) ∩H1

0 (Ω)),

H4,3
0 (Q) = {u ∈ H4,3(Q) : ∂kx∂

l
tu(·, δ0) = ∂kx∂

l
tu(·, T ) = 0, k, l = 0, 1, 2}.

Moreover, to accurately describe a local stability, we need a sub-domain which is generally
characterized by the weight function defined in (2.2) in Carleman estimate. Let d(x) ∈ C4(Ω)
and μ(x) = ∂xd �= 0 on Ω and set

ψ(x, t) = d(x) − β(t− t0)2, ϕ(x, t) = eλψ(x,t), (2.2)

where t0 ∈ (0, T ), β > 0. Denote by Qε the local sub-domain defined as follows:

Qε = {(x, t) : ψ(x, t) > ε}, Ωε = Qε ∩ {t = t0}. (2.3)

By choosing proper β > 0 and d(x) > 0 such that

‖d(x)‖C[0,l] < l, β > max
{‖d(x)‖C[0,l]

t20
,
4‖d(x)‖C[0,l]

T 2

}
,

max
{

sup
(x,t)∈Q0

ψ(x, t), sup
x∈Ωε

ψ(x, t0)
}
≤ Φ,

where Φ > 0 is a constant, we can easily verify that Qε ⊂ Q0 ⊂ Q and Ωε ⊂ Ω0 ⊂ Ω.
Now we proceed to the main result, i.e., the local conditional Hölder stability while deter-

mining the leading order coefficient p(x).

Theorem 2.1 Suppose that u(p), v(q) ∈ H4,3(Q) are solutions to (1.1) and (2.1), re-
spectively, with positive p(x), q(x) ∈ H3(Ω) and ∂jxp(0) = ∂jxq(0) for j = 0, 1, 2. Assume
∂xv(x, t0) > 0 for x ∈ Ω, hu,1(t), hu,2(t), hv,1(t), hv,2(t) ∈ H4(0, T ) and

F =
2∑

k=1

‖hu,k(t) − hv,k(t)‖H3(0,T ), F̃ = ‖u(·, t0) − v(·, t0)‖2
H4(Ωε) + F.

Then there exists ε0 > 0, such that for any ε < ε0, we have θ ∈ (0, 1) and constant C(ε, σ0)
such that

‖p(x) − q(x)‖H3(Ω3ε) ≤ C(F̃ +M1−θF̃ θ). (2.4)

Here M = ‖u(·)‖H4,3(Q) is considered as an a priori given bound for solutions of fractional
diffusion equations with the leading order coefficients under consideration. Estimation (2.4) is,
in general, impossible without such a priori condition on solutions, and hence it is so-called a
conditional stability estimate.

Remark 2.1 To well understand the theorem, we give some following remarks.
(1) For the forward problem (1.1), the regularity of the solution u ∈ H4,3(Q) can be achieved

if the coefficient p(x) and Cauchy data hu,1(t), hu,2(t) are smooth enough, and satisfy sufficient
compatibility conditions

hu,1(0) = 0, hu,1(t0) = u(0, t0), hu,2(t0) = ∂xu(0, t0).
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(2) It should be noticed that the assumption on the final observation, i.e., ∂xv(x, t0) > 0 is
also reasonable. Denoting z = ∂v

∂x (x, t) and taking derivatives with respect to x on both sides
of (2.1), we have

∂
1
2
t z(x, t) = ∂x(q(x)∂xz(x, t)) + ∂xq(x)∂xz(x, t) + ∂2

xq(x)z(x, t).

If we add a positive boundary condition at x = l, i.e.,

z(l, t) =
∂v

∂x
(l, t) = h̃v,2(t) > 0

for 0 < t < T . Moreover, let z(0, t) = hv,2(t) > 0. Since v(x, 0) = 0 which implies

z(x, 0) =
∂v

∂x
(x, 0) = 0,

the maximum principle for fractional equations (see [9]) implies that the solution z(x, t) >
0 for t > 0, i.e., ∂xv(x, t0) > 0.

(3) The θ is complicated and the exact formulation will come out in the following section
(see (3.23)).

(4) The sub-domain Ω3ε in (2.4) can not be replaced by Ω due to the cut-off function utilized
in the Carleman estimate. Hence the estimate in (2.4) is so-called a local stability.

(5) The argument can be extended to be more general, i.e., for any sub-domain ω ⊂⊂ Ω,
there exists ε > 0, such that ω ⊂ Ω3ε and hence

‖p(x) − q(x)‖H3(ω) ≤ ‖p(x) − q(x)‖H3(Ω3ε) ≤ C(F̃ +M1−θF̃ θ).

3 Proof of the Main Theorem

In this section, we aim at the detailed proof of Theorem 2.1. The methodology relies on
a classical Carleman estimate for the parabolic equations, where its applications on various
inverse coefficient problems are reviewed in [15, Section 6].

To start with, we denote

y := y(x, t) = u(x, t) − v(x, t), f := f(x) = p(x) − q(x)

in Q. Subtracting (2.1) from (1.1) yields the following system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂

1
2
t y = ∂x(p∂xy) + ∂x(f∂xv), (x, t) ∈ Q,

y(x, 0) = 0, x ∈ Ω,

y(0, t) = h1(t),
∂y

∂x
(0, t) = h2(t), t ∈ (0, T ),

(3.1)

where h1(t) = hu,1(t) − hv,1(t), h2(t) = hu,2(t) − hv,2(t).
Notice that y(x, 0) = u(x, 0) − v(x, 0) = 0 and v(x, 0) = 0. We obtain

∂
1
2
t y(x, 0) = ∂x(p∂xy(x, 0)) + ∂x(f∂xv(x, 0)) = 0.

It allows us to recall a technical lemma in [14].
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Lemma 3.1 (see [14]) Let AC([a, b]) be the space of absolutely continuous functions on
[a, b]. Assume that y ∈ AC([a, b]) and satisfies

y(a) = ∂γy(a) = 0,

then the following equality holds:
∂α∂γy = ∂α+γy,

where 0 < α, γ < 1 and 0 < α+ γ ≤ 1.

Direct calculation with Lemma 3.1 yields

∂ty = ∂
1
2
t (∂

1
2
t y) = ∂

1
2
t (∂x(p∂xy) + ∂x(f∂xv))

= ∂x(p∂x∂
1
2
t y) + ∂x(f∂x∂

1
2
t v)

= ∂x(p∂x(∂x(p∂xy) + ∂x(f∂xv))) + ∂x(f∂x(∂x(q∂xv)))

= p2∂4
xy + 4p∂xp∂3

xy + (3(∂2
xp)p+ 2(∂xp)2)∂2

xy + ((∂3
xp)p+ (∂2

xp)(∂xp))∂xy

+ p∂xv∂
3
xf + (3p∂2

xv + ∂xp∂xv)∂2
xf

+ ((3p+ q)∂3
xv + 2(∂xp+ ∂xq)∂2

xv + ∂2
xq∂xv)∂xf

+ ((p+ q)∂4
xv + (∂xp+ 3∂xq)∂3

xv + 3∂2
xq∂

2
xv + ∂3

xq∂xv)f (3.2)

with y(x, 0) = 0 and y(0, t) = h1(t), ∂y∂x (0, t) = h2(t).
Fix a certain time t = t0, (3.2) can be considered as a third order differential equation with

respect to f(x), for instance, let

a(x) = u(x, t0) − v(x, t0) = y(x, t0), b(x) = v(x, t0), x ∈ Ω.

The equation (3.2) can be reduced into the following one:

P0 ◦ f : � p∂xb∂
3
xf + (3p∂2

xb+ ∂xp∂xb)∂2
xf

+ ((3p+ q)∂3
xb+ 2(∂xp+ ∂xq)∂2

xb+ ∂2
xq∂xb)∂xf

+ ((p+ q)∂4
xb+ (∂xp+ 3∂xq)∂3

xb+ 3∂2
xq∂

2
xb+ ∂3

xq∂xb)f

= ∂ty(x, t0) − p2∂4
xa− 4p∂xp∂3

xa− (3p∂2
xp+ 2(∂xp)2)∂2

xa

− (p∂3
xp+ ∂2

xp∂xp)∂xa. (3.3)

For sake of simplicity, we set the following differential operators for the coefficients in (3.3) such
that ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
C3(x) = p∂x,

C2(x) = 3p∂2
x + ∂xp∂x,

C1(x) = (3p+ q)∂3
x + 2(∂xp+ ∂xq)∂2

x + ∂2
xq∂x,

C0(x) = (p+ q)∂4
x + (∂xp+ 3∂xq)∂3

x + 3∂2
xq∂

2
x + ∂3

xq∂x.

Thus we firstly establish the Carleman estimate with respect to f in some appropriate subdo-
main of Ω for the new equation (3.3).

Notice the a priori assumption on the regularity of p, q and u, v (consequently a, b). We
observe that the coefficient q∂xb near the leading term ∂3

xf in (3.3) satisfies q∂xb ∈ H3(Ω) while
the rest coefficients near lower order terms are bounded. The Carleman estimate then is carried
out for a general third order differential operator L such that

Lg = L3(x)∂3
xg + L2(x)∂2

xg + L1(x)∂xg + L0(x)g, (3.4)
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where L3(x) ∈ H3(Ω), Lj(x) ∈ L∞(Ω) with j = 0, 1, 2. In addition, recall the following notation
of weight functions:

ϕ(x, t0) = eλψ(x,t0), ψ(x, t0) = d(x), μ(x) = ∂xd(x).

We establish a technical lemma for the Carleman estimate in the form of (3.4).

Lemma 3.2 Suppose that (3.4) holds true with g(x) ∈ C∞
0 (Ω) and supp g ⊂ D ⊂ Ω.

Moreover, assume

μ(x) �= 0, L3(x) �= 0, ∀x ∈ D,

and we can choose some s1 > 0 and constant C > 0 such that∫
D

(|∂3
xg|2 + s2|∂2

xg|2 + s3|∂xg|2 + s4|g|2)e2sϕ(x,t0)dx ≤ C

∫
D

|Lg|2e2sϕ(x,t0)dx (3.5)

for all s ≥ s1.

Proof The proof contains three steps.
Step 1 We first prove the Carleman estimate for a first-order differential operator Pg = ∂xg.

Set

w = esϕg, Pw = esϕ∂xg = esϕ∂x(e−sϕw) = −sw∂xϕ+ ∂xw.

Then

‖Pw‖2
L2(D) = ‖ − sw∂xϕ‖2

L2(D) + ‖∂xw‖2
L2(D) + 2〈 − sw∂xϕ, ∂xw〉D.

Notice

〈 − sw∂xϕ, ∂xw〉D =
s

2

∫
D

|w|2∂2
xϕdx

and

∂2
xϕ = λ2eλψ(∂xψ)2 + λeλψ∂2

xψ. (3.6)

By the assumption ψ ∈ C4(Ω) and ∂xψ �= 0, one can choose λ sufficiently large such that
∂2
xϕ > 0. We then obtain∫

D

(
|∂xg|2 + s2|g|2

)
e2sϕdx ≤ C

∫
D

|∂xg|2e2sϕdx (3.7)

and ∫
D

(
|∂2
xg|2 + s2|∂xg|2

)
e2sϕdx ≤ C

∫
D

|∂2
xg|2e2sϕdx (3.8)

by applying the same claims to ∂2
xg.

Step 2 Now, we proceed to the principle term in (3.4) such that L0g = L3(x)∂3
xg with

L3(x) ∈ H3(Ω) ↪→ C2(Ω). Set g̃ = ∂2
xg, similar to previous step, we let w̃ = esϕg̃ and

P̃ w̃ = esϕL3(x)∂xg̃ = esϕL3(x)∂x(e−sϕw̃) = −sL3(x)w̃∂xϕ+ L3(x)∂xw̃.
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Standard calculation yields

‖P̃ w̃‖2
L2(D) = ‖ − sL3(x)w̃∂xϕ‖2

L2(D) + ‖L3(x)∂xw̃‖2
L2(D) + 2〈 − sL3(x)w̃∂xϕ,L3(x)∂xw̃〉D

and

〈 − sL3(x)w̃∂xϕ,L3(x)∂xw̃〉D =
s

2

( ∫
D

(L3(x))2w̃2∂2
xϕdx + 2

∫
D

L3(x)∂xL3(x)w̃2∂xϕdx
)
.

Notice ∂xϕ = λeλψ∂xψ and (3.6). We thus conclude that, for sufficiently large λ, there exists∫
D

(|∂3
xg|2 + s2|∂2

xg|2)e2sϕdx ≤ C

∫
D

|L0g|2e2sϕdx. (3.9)

Consequently, choosing sufficiently large s > 0, we calculate (3.7) ×s2+ (3.8) ×s+ (3.9) and
obtain ∫

D

(|∂3
xg|2 + s2|∂2

xg|2 + s3|∂xg|2 + s4|g|2)e2sϕdx ≤ C

∫
D

|L0g|2e2sϕdx.

Step 3 Finally, noticing the fact that

|L0g|2 ≤ 2(|Lg|2 + |L2(x)∂2
xg(x) + L1(x)∂xg(x) + L0(x)g(x)|2),

one can prove (3.5) easily. Since Li(x) ∈ L∞(Ω), L2(x)∂2
xg(x) + L1(x)∂xg(x) + L0(x)g(x) can

be absorbed by the left-hand side of (3.5) with sufficiently large parameter s.

We note that the order of the weight function with respect to s in (3.5) is different from a
classic Carleman estimate which is derived directly for L3(x)∂3

xg. However it does not make
too much difference towards the main result in Theorem 2.1.

Now we proceed to estimate f(x) in (3.3). Since a compact support is necessary to apply the
Carleman estimate in Lemma 3.2, we introduce a cut-off function. Without loss of generality,
let χ(x, t) be a C∞

0 (Q) function satisfying 0 ≤ χ ≤ 1, and

χ(x) =
{

1, x ∈ Q2ε,
0, x ∈ Q\Qε,

(3.10)

where Qε and Q2ε are defined, respectively, as in (2.3). Noticing

Ωε = Qε ∩ {t = t0}

and substituting χf into the left-hand side of (3.3), we derive

P0 ◦ (χf)

= χP0 ◦ f + 3C3b∂xχ∂
2
xf + (3C3b∂

2
xχ+ 2C2b∂xχ)∂xf + (C3b∂

3
xχ+ C2b∂

2
xχ+ C1b∂xχ)f︸ ︷︷ ︸

g3(∂3
xχ,∂

2
xχ,∂xχ,∂2

xf,∂xf,f,∂xp,p,∂2
xq,∂xq,q,∂3

xb,∂
2
xb,∂xb)

. (3.11)

In light of the definition on χ, we observe that g3 vanishes in Ω2ε and only survives in Ωε \Ω2ε.
Moreover, the regularity of p, q, b in Theorem 2.1 and the Sobolev embedding theorem yield

|g3(∂3
xχ, ∂

2
xχ, ∂xχ, ∂

2
xf, ∂xf, f, ∂xp, p, ∂

2
xq, ∂xq, q, ∂

3
xb, ∂

2
xb, ∂xb)| ≤ CM
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with x ∈ Ωε \ Ω2ε and the constant M in Theorem 2.1. We thus apply the Carleman estimate
in Lemma 3.2 to P0 ◦ (χf) in (3.11) and obtain∫

Ωε

(|∂3
x(χf)| + s2|∂2

x(χf)| + s3|∂x(χf)| + s4|(χf)|2)e2sϕ(x,t0)dx

≤ C

∫
Ωε

(χP0 ◦ f)2e2sϕ(x,t0)dx+ Ce2s exp(2λε)

∫
Ωε\Ω2ε

|g3|2dx

≤ C

∫
Ωε

χ2|∂ty(x, t0) − p2∂4
xa− 4p · ∂xp∂3

xa− 3(∂2
xp · p+ 2(∂xp)2)∂2

xa

− (∂3
xp · p+ ∂2

xp · ∂xp)∂xa|2e2sϕ(x,t0)dx+ Ce2s exp(2λε)

∫
Ωε\Ω2ε

|g3|2dx

≤ C

∫
Ωε

|∂ty(x, t0)|2e2sϕ(x,t0)dx+ Ce2s exp(λΦ)‖a‖2
H4(Ωε) + Ce2s exp(2λε)M2 (3.12)

for all s ≥ s1.
Now, a further estimate upon

∫
Ωε

|∂ty(x, t0)|2e2sϕ(x,t0)dx in the equation (3.12) is necessary
to complete the full estimate on χf . To this end, we turn to the Carleman estimate which
is derived in [14]. However, the local Carleman estimate there is established only with a first
order time derivative term, whereas in our situation, the Carleman estimate on a trace t = t0
is required which means that a high order term ∂2

t y(x, t) (see (3.13) for details) is necessarily
included in the Carleman estimate. Therefore, to fit the current situation, we established
another differential equation for the 2nd order time derivative ∂2

t y(x, t).
Before embarking on the estimate on

∫
Ωε

|∂ty(x, t0)|2e2sϕ(x,t0)dx, we present the second
Carleman estimate for (1.1) in Lemma 3.3. The derivation is lengthy and different from Xu
et al [14], for the sake of compactness of the proof structure, we give the detailed proof in
Appendix A.

Denote by T the transformed operator of (1.1) with integer order, i.e.,

T = ∂t − p2∂4
x − 4p∂xp∂3

x − (3(∂2
xp)p+ 2(∂xp)2)∂2

x − ((∂3
xp)p+ (∂2

xp)(∂xp))∂x.

Lemma 3.3 (Carleman Estimate for T u) There exists λ0, such that for any λ ≥ λ0, we
can choose s0 and C such that∫

Q

(1
s
|∂tu|2 + sλ2ϕ|∂3

xu|2 + s3λ4ϕ3|∂2
xu|2 + s5λ6ϕ5u6|∂xy|2 + s7λ8ϕ7|u|2

)
e2sϕdxdt

≤ C

∫
Q

|T u|2e2sϕdxdt

for all s ≥ s0 and u ∈ C4,2
0 (Q).

Similarly, in order to use the local Carleman estimate in Lemma 3.3 without involving
boundary integrals, we again imply the cut-off function χ(x, t) ∈ C∞

0 (Q), 0 ≤ χ ≤ 1 defined in
(3.10). Since Q0 ⊂⊂ Q based upon the definition of Qε with ε = 0, we verify χ(x, 0) = 0, and
hence ∫

Ωε

|∂ty(x, t0)|2e2sϕ(x,t0)dx =
∫

Ωε

χ2(x, t0)|∂ty(x, t0)|2e2sϕ(x,t0)dx

=
∫ t0

0

∂

∂t

( ∫
Ωε

χ2(x, t)|∂ty(x, t)|2e2sϕ(x,t)dx
)
dt

≤ C

∫
Qε

(2χ∂tχ|∂ty(x, t)|2 + 2χ2∂ty(x, t) · ∂2
t y(x, t)
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− 4sλβ(t− t0)ϕχ2|∂ty(x, t)|2)e2sϕdxdt

≤ C

∫
Qε

(s|m1|2 + |m2|2)e2sϕdxdt,

≤ C

∫
Qε

(s|m1|2 + s|m2|2)e2sϕdxdt (3.13)

with m1 = ∂ty(x, t), m2 = ∂2
t y(x, t), s ≥ 1 and a fixed constant λ. The additional large

parameter s near the |m2|2 term makes the rest proof more consistent though one can prove
the same result without it. Substituting (3.13) into (3.12) yields∫

Ωε

(|∂3
x(χf)|2 + s2|∂2

x(χf)| + s3|∂x(χf)|2 + s4|(χf)|2)e2sϕ(x,t0)dx

≤ C

∫
Qε

(s|m1|2 + s|m2|2)e2sϕdxdt+ Ce2s exp(2λε)M2 + Ce2s exp(λΦ)‖a‖2
H4(Ωε). (3.14)

In order to estimate the term
∫
Qε

(s|m1|2 + s|m2|2)e2sϕdxdt, we consider the following two
equations of m1 and m2 which can be obtained by taking time derivative on both side of (3.2):

∂tmi − p2∂4
xmi − 4p∂xp∂3

xmi − (3(∂2
xp)p+ 2(∂xp)2)∂2

xmi − ((∂3
xp)p+ (∂2

xp)(∂xp))∂xmi

= C3∂
i
tv∂

3
xf + C2∂

i
tv∂

2
xf + C1∂

i
tv∂xf + C0∂

i
tvf

= Pi ◦ f, i = 1, 2. (3.15)

The equation (3.15) is a similar fourth order differential equation as [14] with respect to mi. In
order to establish Carleman estimate for mi, we need a further transformation as follows:

n1(x, t) = χ(x, t)(m1(x, t) −m1,0(x, t)), n2(x, t) = χ(x, t)(m2(x, t) −m2,0(x, t)),

where {mi,0(x, t)}2
i=1 are chosen such that ∂jx(mi −mi,0)|x=0 = 0 for i = 1, 2 and j = 0, 1, 2, 3.

Thus χ(mi −mi,0) ∈ C4,2
0 (Q) and the boundary integral will vanish automatically during the

integration by part while deriving the Carleman estimate in Lemma 3.3. Simple calculation
gives

mi,0(x, t) = mi(0, t) + ∂xmi(0, t)x+ ∂2
xmi(0, t)

x2

2
+ ∂3

xmi(0, t)
x3

6
, i = 1, 2.

More precisely, based on the governing equation for y, i.e., equation (3.1), and the assumption
that ∂jxp(0) = ∂jxq(0) for j = 0, 1, 2, 3, further calculation gives the coefficients as follows:⎧⎪⎪⎨

⎪⎪⎩
m1(0, t) = h′1(t), ∂2

xm1(0, t) =
1
p(0)

∂
1
2
t h

′
1(t) +

∂xp(0)
p(0)

h′2(t), ∂xm1(0, t) = h′2(t),

∂3
xm1(0, t) = −2∂xp(0)

(p(0))2
∂

1
2
t h

′
1(t) −

(∂2
xp(0)
p(0)

+
2(∂xp(0))2

(p(0))2
)
h′2(t) +

1
p(0)

∂
1
2
t h

′
2(t),⎧⎪⎪⎨

⎪⎪⎩
m2(0, t) = h′′1(t), ∂2

xm2(0, t) =
1
p(0)

∂
1
2
t h

′′
1(t) +

∂xp(0)
p(0)

h′′2(t), ∂xm2(0, t) = h′′2(t),

∂3
xm2(0, t) = −2∂xp(0)

(p(0))2
∂

1
2
t h

′′
1(t) −

(∂2
xp(0)
p(0)

+
2(∂xp(0))2

(p(0))2
)
h′′2 (t) +

1
p(0)

∂
1
2
t h

′′
2 (t).

Based on a priori bound assumption for hu,i(t), hv,i(t) and ∂ixp(0), i = 0, 1, 2, we have

2∑
i=1

‖mi,0(x, t)‖H1(0,T ;H3(Ω)) ≤ C

2∑
i=1

4∑
j=1

‖∂jthi(t)‖L2(0,T ) ≤ C

2∑
i=1

‖hi(t)‖H4(0,T ).



438 C. X. Ren and X. Xu

Replacing mi by ni in equation (3.15) gives

∂tni − p2∂4
xni − 4p∂xp∂3

xni − 3((∂2
xp)p+ 2(∂xp)2)∂2

xni − ((∂3
xp)p+ (∂2

xp)(∂xp))∂xni
= χ(Pi ◦ f) + (mi −mi,0)∂tχ− χ∂tmi,0

− p2((mi −mi,0)∂4
xχ+ 4∂3

xχ(∂xmi − ∂xmi,0) + 6∂2
xχ(∂2

xmi − ∂2
xmi,0)

+ 4∂xχ(∂3
xmi − ∂3

xmi,0))

− 4p∂xp((mi −mi,0)∂3
xχ+ 3∂2

xχ(∂xmi − ∂xmi,0) + 3∂xχ(∂2
xmi − ∂2

xmi,0) − χ∂3
xmi,0)

− 3((∂2
xp)p+ 2(∂xp)2)((mi −mi,0)∂2

xχ+ 2∂xχ(∂xmi − ∂xmi,0) − χ∂2
xmi,0)

− ((∂3
xp)p+ (∂2

xp)∂xp)((mi −mi,0)∂xχ− χ∂xmi,0) (3.16)

and

χ(Pi ◦ f) = Pi ◦ (χf) − 3C3∂
i
tv∂xχ∂

2
xf − (3C3∂

i
tv∂

2
xχ+ 2C2∂

i
tv∂xχ)∂xf

− (C3∂
i
tv∂

3
xχ+ C2∂

i
tv∂

2
xχ+ C1∂

i
tv∂xχ)f (3.17)

for i = 1, 2 and (x, t) ∈ Q. For simplicity, we define, for i = 1, 2,

gi(x, t) = 3C3∂
i
tv∂xχ∂

2
xf + (3C3∂

i
tv∂

2
xχ+ 2C2∂

i
tv∂xχ)∂xf

+ (C3∂
i
tv∂

3
xχ+ C2∂

i
tv∂

2
xχ+ C1∂

i
tv∂xχ)f.

Noting that ∂ixχ, ∂tχ, i = 1, · · · , 4 only survives while ε < ψ(x, t) ≤ 2ε, by (2.3), for some
fixed sufficiently large λ > 0 applying Lemma 3.3 to {ni}2

i=1 on Qε implies∫
Qε

s7(|n1|2 + |n2|2)e2sϕdxdt

≤ C‖esϕ(P1 ◦ (χf) + P2 ◦ (χf))‖2
L2(Qε) + C

2∑
i=1

‖esϕ∂tχmi(x, t)‖2
L2(Qε)

+ C
2∑
i=1

4∑
j=1

j∑
k=1

‖esϕ∂kxχ∂j−kx mi(x, t)‖2
L2(Qε) + C

2∑
i=1

‖esϕgi(x, t)‖2
L2(Qε)

+ Ce2s exp(λΦ)
2∑
i=1

‖hi‖2
H4(0,T )

≤ C

∫
Qε

e2sϕ
3∑
j=0

|∂jx(χf)|2dxdt+ Ce2s exp(2λε)M2 + Ce2s exp(λΦ)F 2, (3.18)

where M, F are defined in Theorem 2.1.
Since ni = mi −mi,0 on Qε as the definition of χ(x, t), we have

∫
Qε

s7(|m1|2 + |m2|2)e2sϕdxdt ≤ C

∫
Qε

s7
( 2∑
i=1

(|ni|2 + |mi,0|2)
)
e2sϕdxdt

≤ C

∫
Qε

s7(|n1|2 + |n2|2)e2sϕdxdt+ Ce2s exp(λΦ)
2∑

k=1

‖hi(t)‖2
H4(0,T )

≤ C

∫
Qε

e2sϕ
3∑
j=0

|∂jx(χf)|2dxdt + Ce2s exp(2λε)M2 + Ce2s exp(λΦ)F 2 (3.19)
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for all s > s0.
Substituting (3.19) into (3.14), we have∫

Ωε

(|∂3
x(χf)|2 + s2|∂2

x(χf)|2 + s3|∂x(χf)|2 + s4|(χf)|2)e2sϕ(x,t0)dx

≤ C

s6

∫
Qε

e2sϕ
3∑
j=0

|∂jx(χf)|2dxdt+
C

s6
e2s exp(2λε)M2 + Ce2s exp(2λε)M2

+
C

s6
e2s exp(λΦ)F 2 + Ce2s exp(λΦ)‖a‖2

H4(Ωε)

≤ CT

s6

∫
Ωε

e2sϕ(x,t0)
3∑
j=0

|∂jx(χf)|2dx+
C

s6
e2s exp(2λε)M2 + Ce2s exp(2λε)M2

+
C

s6
e2s exp(λΦ)F 2 + Ce2s exp(λΦ)‖a‖2

H4(Ωε) (3.20)

for all s > s � max{s0, s1}, where the first terms on the right-hand side can be absorbed by
the left-hand side.

Moreover, since Ω3ε ⊂ Ωε and ψ(x, t0) > 3ε on Ω3ε, we can estimate the left-hand side of
(3.20) by ∫

Ωε

(|∂3
x(χf)|2 + s2|∂2

x(χf)|2 + s3|∂x(χf)|2 + s4|(χf)|2)e2sϕdx

≥ e2s exp(3λε)

∫
Ω3ε

(|∂3
x(χf)|2 + s2|∂2

x(χf)|2 + s3|∂x(χf)|2 + s4|(χf)|2)dx. (3.21)

Combining (3.20) and (3.21) and dividing e2s exp(3λε) on both sides, we can obtain that for all
s > s with s > 0 sufficiently large,

‖f(x)‖2
H3(Ω3ε) ≤

CM2

s6e2s exp(λε)
+

CM2

e2s exp(λε)
+
CF 2

s6
e2s exp(λ(Φ−3ε))

+ C‖a‖2
H4(Ωε)e

2s exp(λ(Φ−3ε))

≤ CM2

e2s exp(λε)
+ CF̃ 2e2s exp(λ(Φ−3ε))

� Ce−2sνM2 + CeC0sF̃ 2, (3.22)

where F̃ = ‖a‖2
H4(Ωε) + F , ν = exp(λε) and C0 = 2 exp(λ(Φ − 3ε)). One can choose ε small

enough such that Φ − 3ε > 0.
Assuming F̃ = 0, by letting s → ∞ in (3.22), we can derive p(x) = q(x) on Ω3ε which

verifies the local uniqueness of the inverse coefficient problem. If there exists F̃ ≥ M , (3.22)
immediately implies

‖f(x)‖H3(Ω3ε) ≤ CF̃

by fixing a certain s > 0. At the same time, if F̃ < M , we can choose s appropriately to balance
the right-hand side of (3.22) to derive that

‖f(x)‖H3(Ω3ε) ≤
√

2M
C0

2ν+C0 F̃
2ν

2μ+C0 (3.23)

with the choice
s =

2
2ν + C0

log
M

F̃
> 0.

Thus, the proof of Theorem 2.1 is completed.
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4 Conclusion

Fractional diffusion equations as well as the inverse nature of these equations have attracted
considerable interests in view of their potential use in physical and chemical processes and in
engineering during last decades. In this paper, we investigated an inverse coefficient problem
with respect to a half-order time-fractional diffusion equation. After generalizing the Carleman
estimate to fractional diffusion equations with spatially varying conductivity, we implement
the methodology developed in [3] (see also the review paper [15]) to establish a Hölder type
conditional stability estimation for an inverse problem identifying the coefficient in the principal
part. As for the results identifying the coefficient near the lower order term, we refer to a very
recent work [16]. Future works will be emphasized on deriving global Carleman estimates and
Lipschitz stabilities on these inverse problems.
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Appendix A

Proof of Lemma 3.3 Consider a following general fourth order differential equation with
variable coefficients T u where

T u = ∂tu− a4(x)∂4
xu− a3(x)∂3

xu− a2(x)∂2
xu− a1(x)∂xu− a0(x)u

a4(x) ∈ C3[0, 1] and inf a4(x) > 0, a3(x), a2(x), a1(x), a0(x) ∈ L∞(0, 1).

Obviously, for Lemma 3.3, we can take a4(x) = p2, a3(x) = 4p∂xp, a2(x) = 3p∂2
xp + 2(∂xp)2,

a1(x) = p∂3
xp+ ∂xp∂

2
xp and a0(x) = 0. Denote the principal part of T by

T0u = ∂tu− a4(x)∂4
xu.

Note that to prove Lemma 3.3, it is sufficient to obtain a similar estimate for the principal part,
i.e., T0, which takes the form as follows:∫

Q

( 1
sϕ

|∂tu|2 + s̃λ̃2|∂3
xu|2 + s̃3λ̃4|∂2

xu|2 + s̃5λ̃6|∂xu|2 + s̃7λ̃8|u|2
)
dxdt

≤ C

∫
Q

|T0u|2e2sϕdxdt, (A.1)

where s̃ = sϕ(x) and λ̃ = λμ(x). The reason is same as the second step in the proof of Lemma
3.2, i.e., the lower order terms can be absorbed by choosing sufficiently large parameters s and
λ. Here, for the sake of compactness, we omit the details.

Next throughout this section, we are aiming at proving the above estimate for T0. Let
w = esϕu and Pw = esϕ(∂t − a4(x)∂4

x)(e
−sϕw). Since ∂xϕ = λϕμ, ∂tϕ = −2β(t − t0)λϕ, we

have
esϕ∂t(e−sϕw) = 2sβ(t− t0)λϕw + ∂tw

and

esϕ(a4(x)∂4
x(e

−sϕw)) = a4(x)(∂4
xw − 4s̃λ̃∂3

xw + (6s̃2λ̃2 +O(s−1s̃2λ̃2))∂2
xw

− (4s̃3λ̃3 +O(s−1s̃3λ̃3))∂xw + (s̃4λ̃4 +O(s−1s̃4λ̃4))w).

Therefore, according to the order of (s̃, λ̃), we can split Pw into two terms, i.e., Pw = P1w+P2w,
where

P1w = −a4(x)∂4
xw − a4(x)(6s̃2λ̃2 +O(s−1s̃2λ̃2))∂2

xw − a4(x)(s̃4λ̃4 +O(s−1s̃4λ̃4))w,

P2w = ∂tw + 4a4(x)s̃λ̃∂3
xw + a4(x)(4s̃3λ̃3 +O(s−1s̃3λ̃3))∂xw.

Denote the inner product on Q by

(f, g) =
∫
Q

f(x, t)g(x, t)dxdt.

We can compute

(P1w,P2w) =
9∑

k=1

Jk.
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In the following, we use bj(x, t), b(x, t) to represent bounded functions when (s, λ) are sufficiently
large. For large λ > 1, s > 1, utilizing integration by parts and u ∈ C∞

0 (Q), we obtain

J1 = (−a4∂
4
xw, ∂tw) =

∫
Q

a4∂
3
xw∂x∂twdxdt +

∫
Q

∂xa4∂
3
xw∂twdxdt

=
1
2

∫
Q

∂t(a4)|∂2
xw|2dxdt+

∫
Q

∂2
xa4∂

2
xw∂twdxdt + 2

∫
Q

∂xa4∂
3
xw∂twdxdt

=
∫
Q

∂2
xa4∂

2
xw∂twdxdt+ 2

∫
Q

∂xa4∂
3
xw∂twdxdt

� J11 + J12. (A.2)

Since

∂tw = P2w − 4a4s̃λ̃∂
3
xw − a4(4s̃3λ̃3 +O(s−1s̃3λ̃3))∂xw

= P2w − 4a4s̃λ̃∂
3
xw − 4s̃3λ̃3a4(1 + s−1b1)∂xw,

we have

J11 =
∫
Q

∂2
xa4∂

2
xw(P2w − 4a4s̃λ̃∂

3
xw − 4s̃3λ̃3a4(1 + s−1b1)∂xw)dxdt

= J(1)
11 + J(2)

11 + J(3)
11 .

Let ε be any small positive constant, we have

|J(1)
11 | =

∣∣∣ ∫
Q

∂2
xa4∂

2
xwP2wdxdt

∣∣∣ ≤ C(a4)
(
ε

∫
Q

|P2w|2dxdt+
1
4ε

∫
Q

|∂2
xw|2dxdt

)
,

J(2)
11 = −4

∫
Q

s̃λ̃∂2
xa4 · a4∂

2
xw · ∂3

xwdxdt

= 2
∫
Q

s̃λ̃2∂2
xa4 · a4|∂2

xw|2dxdt+ 2
∫
Q

s̃∂x(λ̃∂2
xa4 · a4)|∂2

xw|2dxdt,

J(3)
11 = −4

∫
Q

s̃3λ̃3a4 · ∂2
xa4(1 + s−1b1)∂2

xw · ∂xwdxdt

= 6
∫
Q

s̃4λ̃4a4 · ∂2
xa4(1 + s−1b1)|∂xw|2dxdt

+ 2
∫
Q

s̃3∂x(λ̃3a4 · ∂2
xa4(1 + s−1b1))|∂xw|2dxdt.

Thus we can obtain

J11 ≥ −C(a4)
(
ε

∫
Q

|P2w|2dxdt+
1
4ε

∫
Q

|∂2
xw|2dxdt

)

+ 2
∫
Q

s̃λ̃2∂2
xa4 · a4|∂2

xw|2dxdt+ 2
∫
Q

s̃∂x(λ̃∂2
xa4 · a4)|∂2

xw|2dxdt

+ 6
∫
Q

s̃3λ̃4∂2
xa4 · a4(1 + s−1b1)|∂xw|2dxdt

+ 2
∫
Q

s̃3∂x(λ̃3a4∂
2
xa4(1 + s−1b1))|∂xw|2dxdt.
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Similar as J11, for J12, we have

J12 = 2
∫
Q

∂xa4∂
3
xw(P2w − 4s̃λ̃a4∂

3
xw − 4s̃3λ̃3a4(1 + s−1b1)∂xw)dxdt

= J(1)
12 + J(2)

12 + J(3)
12 ,

where

|J(1)
12 | =

∣∣∣2 ∫
Q

∂xa4∂
3
xwP2wdxdt

∣∣∣ ≤ C(a4)
(
ε

∫
Q

|P2w|2dxdt+
1
4ε

∫
Q

|∂3
xw|2dxdt

)
,

J(2)
12 = −8

∫
Q

s̃λ̃∂xa4 · a4|∂3
xw|2dxdt,

J(3)
12 = −8

∫
Q

s̃3λ̃3a4 · a4(1 + s−1b1)∂3
xw∂xwdxdt

= 8
∫
Q

s̃3λ̃3∂xa4 · a4(1 + s−1b1)|∂2
xw|2dxdt

− 36
∫
Q

s̃3λ̃5∂xa4 · a4(1 + s−1b1)|∂xw|2dxdt

− 12
∫
Q

s̃3∂x(λ̃4∂xa4 · a4(1 + s−1b1))|∂xw|2dxdt

− 12
∫
Q

s̃3λμ∂x(λ̃3∂xa4 · a4(1 + s−1b1))|∂xw|2dxdt

− 4
∫
Q

s̃3∂2
x(λ̃

3∂xa4 · a4(1 + s−1b1))|∂xw|2dxdt.

Combining all components of J1, we have

J1 ≥ −Cε
∫
Q

|P2w|2dxdt−
C

4ε

∫
Q

|∂2
xw|2dxdt−

C

4ε

∫
Q

|∂3
xw|2dxdt

− C

∫
Q

s̃λ̃|∂3
xw|2dxdt− C

∫
Q

s̃3λ̃3|∂2
xw|2dxdt− C

∫
Q

s̃3λ5|∂xw|2dxdt. (A.3)

Continuing to estimate the remainder J2–J9, we have

J2 = −4
∫
Q

s̃λ̃a2
4∂

3
xw∂

4
xwdxdt ≥

∫
Q

s̃λ̃2a2
4|∂3

xw|2dxdt, (A.4)

J3 = −18
∫
Q

s̃3λ̃4a2
4(1 + s−1b1 + λ−1b)|∂2

xw|2dxdt

+ 54
∫
Q

s̃3λ̃6a2
4(1 + s−1b1 + λ−1b)|∂xw|2dxdt, (A.5)

J4 ≥ J0
4 + 12

∫
Q

β(t− t0)s̃2λλ̃2a4(1 + s−1b2 + λ−1b)|∂xw|2dxdt

− 3
∫
Q

s̃λ̃2a4|∂xw|2dxdt, (A.6)

where

J0
4 = −ε

∫
Q

|P2w|2dxdt−
1
4ε

∫
Q

144s̃4λ̃6a2
4(1 + s−1b2 + λ−1b)2|∂xw|2dxdt

+ 48
∫
Q

s̃3λ̃4a2
4|∂2

xw|2dxdt− 48
∫
Q

s̃5λ̃6a2
4|∂xw|2dxdt− C

∫
Q

s̃3λ̃6a2
4|∂xw|2dxdt. (A.7)
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In addition,

J5 = 36
∫
Q

a2
4s

3λ4ϕ3μ4(1 + s−1b2 + λ−1b)|∂2
xw|2dxdt, (A.8)

J6 = 60
∫
Q

s5λ6ϕ5μ6a2
4((1 + s−1b1)(1 + s−1b2) + λ−1b)|∂xw|2dxdt, (A.9)

J7 ≥ −C
∫
Q

s̃4λλ̃4a4|w|2dxdt, (A.10)

J8 = −30
∫
Q

s̃5λ̃5a2
4|∂xw|2dxdt+ 250

∫
Q

s̃5λ̃8a2
4|w|2dxdt, (A.11)

J9 = 14
∫
Q

a2
4s̃

7λ̃8(1 + s−1bλ−1b)|w|2dxdt. (A.12)

Combining J1–J9, we derive

(P1w,P2w) ≥
∫
Q

s̃λ̃2a2
4|∂3

xw|2dxdt + 18
∫
Q

s̃3λ̃4|∂2
xw|2dxdt+ 30

∫
Q

s̃5λ̃6a2
4|∂xw|2dxdt

+ 54
∫
Q

s̃3λ̃6a2
4|∂xw|2dxdt+ 14

∫
Q

s̃7λ̃8a2
4|w|2dxdt+ 250

∫
Q

a2
4s̃

5λ̃8|w|2dxdt

− C

∫
Q

s̃4λλ̃4a4|w|2dxdt+ 12
∫
Q

β(t− t0)s̃2λλ̃2a4|∂xw|2dxdt

− 3
∫
Q

s̃2λ̃2a4
∂tb3
s

|∂xw|2dxdt+ J1 + J0
4. (A.13)

Moreover, based on (A.3) and (A.7), we have

J0
4 + J1 ≥ −C0ε

∫
Q

|P2w|2dxdt−
144
4ε

∫
Q

s̃4λ̃6a2
4|∂xw|2dxdt−

C

4ε

∫
Q

|∂2
xw|2dxdt

− C

4ε

∫
Q

|∂3
xw|2dxdt− C

∫
Q

s̃λ|∂3
xw|2dxdt+ 47

∫
Q

s̃3λ̃4a2
4|∂2

xw|2dxdt

− 48
∫
Q

s̃5λ̃6a2
4|∂xw|2dxdt− C

∫
Q

s̃3λ̃6a2
4|∂xw|2dxdt. (A.14)

Inserting (A.14) into (A.13) yields

1
4

∫
Q

s̃λ̃2a2
4|∂3

xw|2dxdt+ 63
∫
Q

s̃3λ̃4a2
4|∂2

xw|2dxdt− 17
∫
Q

s̃5λ̃5|∂xw|2dxdt

− C

∫
Q

s̃3λ̃6a2
4|∂xw|2dxdt−

144
4ε

∫
Q

s̃4λ̃6a2
4|∂xw|2dxdt+ 13

∫
Q

s̃7λ̃8a2
4|w|2dxdt

≤ C0

(
(P1w,P2w) + ε

∫
Q

|P2w|2dxdt
)
. (A.15)

Noticing that in (A.15), the sign of |∂xw|2 is negative, hence we have to obtain another
estimate. In the following, we will estimate

∫
Q(P1w) × s̃3λ̃4a4wdxdt to further estimate∫

Q s̃
5λ̃6a2

4|∂xw|2dxdt, where

∫
Q

(Pw)s̃3λ̃4a4wdxdt =
3∑

k=1

Ik.
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By integration by parts and w ∈ C∞
0 (Q), we have

I1 = −
∫
Q

s̃3λ̃4a2
4|∂2

xw|2dxdt+ 18
∫
Q

s̃3λ̃6a2
4|∂xw|2dxdt− 81

∫
Q

s̃3λ̃8a2
4|w|2dxdt. (A.16)

In addition,

I2 = 6
∫
Q

s̃5λ̃6a2
4|∂xw|2 − 75

∫
Q

s̃5λ̃8a2
4|w|2dxdt. (A.17)

Combining (A.16) and (A.17), we obtain

5
∫
Q

s5λ6ϕ5μ6a2
4|∂xw|2dxdt

≤ 1
2
‖P1w‖2 +

∫
Q

s̃7λ̃8a2
4|w|2dxdt+

∫
Q

s̃3λ̃4a2
4|∂2

xw|2dxdt. (A.18)

Thus (A.18) × 5 + (A.15) gives

1
4

∫
Q

s̃λ̃2a2
4|∂3

xw|2dxdt+ 58
∫
Q

s̃3λ̃4a2
4|∂2

xw|2dxdt

+ 8
∫
Q

s̃5λ̃6a2
4|∂xw|2dxdt+ 7

∫
Q

s̃7λ̃7a2
4|w|2dxdt

≤ 1
2
‖P1w‖2 + C0((P1w,P2w) + ε‖P2w‖2). (A.19)

Letting C0 > 1, by taking 0 < ε ≤ 1
2 , we have

1
2
‖P1w‖2 + C0(P1w,P2w) + C0ε‖P2w‖2

≤ C0

(1
2
‖P1w‖2 +

1
2
‖P2w‖2 + (P1w,P2w)

)
≤ 1

2
C0

∫
Q

|L0u|2e2sϕdxdt. (A.20)

Combining (A.19) and (A.20), we have

1
4

∫
Q

s̃λ̃2a2
4|∂3

xw|2dxdt+ 58
∫
Q

s̃3λ̃4a2
4|∂2

xw|2dxdt

+ 8
∫
Q

s̃5λ̃6a2
4|∂xw|2dxdt+ 7

∫
Q

s̃7λ̃7a2
4|w|2dxdt

≤ 1
2
C

∫
Q

|L0u|2e2sϕdxdt. (A.21)

Finally, we proceed to estimating ∂tw and ∂4
xw. Since

|∂tw|2 ≤ C1|P2w|2 + C1s̃
2λ̃2a2

4|∂3
xw|2 + C1s̃

6λ̃6a2
4|∂xw|2, (A.22)
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by taking ε = 1
4 and s ≥ 4

C0
, we have∫

Q

1
s̃
|∂tw|2dxdt ≤ C1

∫
Q

1
sϕ

|P2w|2dxdt+ C1

∫
Q

sλ2ϕμ2a2
4|∂3

xw|2dxdt

+ C1

∫
Q

s5λ6ϕ5μ6a2
4|∂xw|2dxdt

≤ C1

s
‖P2w‖2 + C1

(1
2
‖P1w‖2 + C(P1w,P2w) + Cε‖P2w‖2

)
≤ C · C1

[( 1
Cs

+ ε
)
‖P2w‖2 +

1
2
‖P1w‖2 + (P1w,P2w)

]
≤ 1

2
C · C1

∫
Q

|L0u|2e2sϕdxdt. (A.23)

Finally, adding (A.23) to (A.21) gives∫
Q

(1
s̃
|∂tw|2dxdt+ s̃λ̃2|∂3

xw|2dxdt + s̃3λ̃4|∂2
xw|2dxdt+ s̃5λ̃6|∂xw|2dxdt+ s̃7λ̃8|w|2

)
dxdt

≤ C

∫
Q

|L0u|2e2sϕdxdt. (A.24)

Noticing w = esϕu, we finally get the Carleman estimate of u in Lemma 3.3.


