Chinese Annals of Mathematics, Series B © The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2015

Non-degeneracy of Extremal Points^{*}

$Min ZHOU^1$

Abstract For a family of smooth functions, the author shows that, under certain generic conditions, all extremal (minimal and maximal) points are non-degenerate.

Keywords Non-degeneracy, Extremal point, Generic condition 2000 MR Subject Classification 37D05, 58E05

1 Introduction

It is well-known that the set of Morse functions is residual in $C^r(M, \mathbb{R})$ space, where M is a closed manifold and $r \geq 2$. Let us extend this issue to a family of smooth functions. Let $F_{\lambda}: M \to \mathbb{R}$ be a family of smooth functions continuously depending on a parameter $\lambda \in [0, 1]$, it is natural to ask that whether there exists a residual set $\mathfrak{R} \subset C^r(M, \mathbb{R})$ such that for each $V \in \mathfrak{R}$ and for each $\lambda \in [0, 1]$, the function $F_{\lambda} + V$ is a Morse function. Unfortunately, it is not true even if F_{λ} smoothly depends on the parameter. Here is a counterexample. Let $F_{\lambda}: \mathbb{T} \to \mathbb{R}$ be a family of functions such that for each $\lambda \in [0, 1]$, F_{λ} takes its maximum at $x = \frac{1}{2}\pi$, takes its minimum at $x = -\frac{1}{2}\pi$ and $F_{\lambda} = \frac{1}{3}x^3 - (\frac{1}{2} - \lambda)x$ when the variables (λ, x) are restricted in a suitably small neighborhood of the origin $(\frac{1}{2}, 0)$. Clearly, the point $x = \pm (\frac{1}{2} - \lambda)^{\frac{1}{2}}$ is the non-degenerate critical point of F_{λ} for $\lambda > 0$. There exists no critical point of F_{λ} in the neighborhood of x = 0 for $\lambda > \frac{1}{2}$. For $\lambda = \frac{1}{2}$, the point x = 0 is a degenerate critical point. We note that the third derivative of F_{λ} is bounded away from zero for all λ when x remains close to the origin and the second derivative monotonously increases with respect to λ . Therefore, for any C^3 -small perturbation V, certain λ_V exists such that $|\lambda_V - \frac{1}{2}|$ is small and $F_{\lambda_V} + V$ has a degenerate critical point close to the origin.

However, we are in different situation if we only consider the minimal as well as the maximal points of functions. Let [a] denote the integer part of the real number a. The following theorem is the main result of this paper.

Theorem 1.1 Let $F_{\lambda} : \mathbb{T} \to \mathbb{R}$ be a family of C^r -functions depending on the parameter $\lambda \in [0, 1]$.

(1) If $r \geq 4$ and F_{λ} is Lipschitz in the parameter λ , there exists an open-dense set $\mathfrak{O} \subset C^{r}(\mathbb{T},\mathbb{R})$ such that for each $V \in \mathfrak{O}$ and each $\lambda \in [0,1]$, each global minimum as well as each global maximum of $F_{\lambda} - V$ is non-degenerate.

Manuscript received June 5, 2013. Revised October 26, 2013.

¹School of Information Management, Nanjing University, Nanjing 210093, China.

E-mail: minzhou@nju.edu.cn

^{*}This work was supported by the National Natural Science Foundation of China (Nos.11201222, 11171146), the Basic Research Program of Jiangsu Province (No. BK2008013) and a program of the Priority Academic Program Development of Jiangsu Province.

M. Zhou

(2) More generally, if F_{λ} is α -Hölder continuous in λ ($0 < \alpha \leq 1$) and

$$k = \left[\frac{1}{4}\left(\frac{2}{\alpha} + 1 + \sqrt{\left(\frac{2}{\alpha} + 1\right)^2 + 16}\right)\right] - 1,$$

then there exists an open-dense set $\mathfrak{O} \subset C^r(\mathbb{T}, \mathbb{R})$ $(r \geq 2k+2)$ such that for each $V \in \mathfrak{O}$ and each $\lambda \in [0,1]$, certain weak non-degeneracy condition holds at each global minimum as well as each global maximum of $F_{\lambda} - V$: Some integer $1 \leq \ell \leq k$ exists such that $\frac{\partial^{2\ell}(F_{\lambda} - V)}{\partial x^{2\ell}} \neq 0$.

For the function of Lagrange action, the non-degeneracy of critical points corresponds to the hyperbolicity of periodic orbits of Lagrange flow (see [1]). It is closely related to the Mañé conjecture (see [2]), one can refer to [3] for some new progress in this problem.

We feel that the result can be extended to functions defined on closed smooth manifold with finite dimensions.

Conjecture 1.1 Let $F_{\lambda} \in C^4(M, \mathbb{R})$ be a family of smooth functions, where M is a closed smooth manifold and $\lambda \in [0, 1]$. If F_{λ} is Lipschitz in the parameter λ , then some open-dense set $\mathfrak{O} \subset C^4(M, \mathbb{R})$ exists such that for each $V \in \mathfrak{O}$ and each $\lambda \in [0, 1]$, each global minimum as well as each global maximum of $F_{\lambda} - V$ is non-degenerate.

2 Proof

We only need to prove the second part of the theorem, the first part is a special case of the second one. Obviously, the set \mathfrak{O} is the open set, as weak non-degeneracy of the critical point survives small perturbation. Therefore, we only need to show the density. Also, we only need to prove the non-degeneracy of the minimum, it is the same for the non-degeneracy of the maximum. Towards this goal, we introduce a set of small perturbations with 2k+2 parameters:

$$\mathfrak{V} = \Big\{ V = \epsilon \sum_{i=1}^{k+1} (A_i \cos ix + B_i \sin ix) : (A_1, B_1, \cdots, A_{k+1}, B_{k+1}) \in \mathbb{I}^{2k+2} \Big\},\$$

where $\mathbb{I} = [1, 2]$. Let

$$M = \frac{2}{(2k+2)!} \sup_{x,\lambda} |\partial_x^{2k+2} F_\lambda|.$$

We are going to show that, for any small numbers $\epsilon, d > 0$, there exists $(A_1, B_1, \dots, A_{k+1}, B_{k+1}) \in \mathbb{I}^{2k+2}$ such that

$$(F_{\lambda} - V)(x) - \min_{x} (F_{\lambda} - V) \ge M |x - x^*|^{2k+2}, \quad \forall x \in [x^* - d, x^* + d]$$
(2.1)

holds for each $\lambda \in [0, 1]$ whenever the point x^* is a global minimizer of $F_{\lambda} - V$. It implies that there exists an even integer number $2 \leq j \leq 2k$, such that the *j*th derivative of $F_{\lambda} - V$ at x^* is positive and the *i*th derivative is equal to zero for each i < j. Indeed, if there exists no such even integer *j*, one can see that the (2k + 1)th derivative is also equal to zero because x^* is assumed the global minimum. Consequently, the above formula does not hold. In the following, we define

$$\operatorname{Osc}_{I_i} F = \max_{x, x' \in I_i} |F(x) - F(x')|.$$

Non-degeneracy of Extremal Points

By choosing sufficiently large integer N, the numbers $d = \frac{\pi}{N}$ and $\epsilon = d^{\frac{1}{p}}$ can be set arbitrarily small, where the integer $p \in \mathbb{Z}_+$ will be determined later. Let

$$x_i = \frac{2i\pi}{N}, \quad I_i = [x_i - d, x_i + d]$$

then $\bigcup_{i=0}^{N-1} I_i = \mathbb{T}$. Restricted on each interval I_i , each C^{∞} -function $V \in \mathfrak{V}$ is approximated by the Taylor series (module constant)

$$V_i(x) = \epsilon \Big(\sum_{j=1}^{2k+1} a_j (x - x_i)^j + O(|x - x_i|^{2k+2})\Big), \quad \forall x \in I_i.$$
(2.2)

Given two points $(a_1, a_2, \dots, a_{2k+1})$ and $(a'_1, a'_2, \dots, a'_{2k+1})$, we obtain two functions $V_i(x)$ and $V'_i(x)$ in the form of Taylor series as shown in (2.2). Let $\Delta V = V'_i - V_i$, $\Delta a_j = a'_j - a_j$ for $j = 1, 2, \dots, 2k + 1$. We have $\Delta V(x_i) = 0$ and

$$\begin{split} \Delta V(x_i + d) + \Delta V(x_i - d) &= 2\epsilon (\Delta a_2 d + \Delta a_4 d^3 + \dots + \Delta a_{2k} d^{2k-1}) d + O(\epsilon d^{2k+2}), \\ \Delta V(x_i + d) - \Delta V(x_i - d) &= 2\epsilon (\Delta a_1 + \Delta a_3 d^2 + \dots + \Delta a_{2k+1} d^{2k}) d + O(\epsilon d^{2k+2}), \\ \Delta V\left(x_i \pm \frac{1}{2}d\right) &= \epsilon \left(\pm \frac{1}{2} \Delta a_1 + \frac{1}{4} \Delta a_2 d \pm \frac{1}{8} \Delta a_3 d^2 + \dots + \frac{1}{2^{2k}} \Delta a_{2k} d^{2k-1} \pm \frac{1}{2^{2k+1}} \Delta a_{2k+1} d^{2k}\right) d + O(\epsilon d^{2k+2}). \end{split}$$

It follows that

$$\operatorname{Osc}_{I_i}(V_i' - V_i) \ge \frac{\epsilon}{2^{2k+1}} \max\{|\Delta a_1|, |\Delta a_2|d, |\Delta a_3|d^2, \cdots, |\Delta a_{2k+1}d^{2k}|\}d.$$
(2.3)

Let $M_1 = 3 \cdot 2^{2k+1} M$. We construct a grid for the parameters $\{a_j\}_{j=1}^{2k+1}$ by splitting the domain equally into a family of cuboids and setting the size by

$$\Delta a_1 = M_1 d^{2k+1-\frac{1}{p}}, \quad \Delta a_2 = M_1 d^{2k-\frac{1}{p}}, \ \cdots, \ \Delta a_{2k} = M_1 d^{2-\frac{1}{p}}, \quad \Delta a_{2k+1} = M_1 d^{1-\frac{1}{p}}.$$

These cuboids are denoted by \mathbf{C}_{ij} with $j \in \mathbb{J}_i = \{1, 2, \dots\}$, the cardinality of the set of the subscripts is up to the order

$$#(\mathbb{J}_i) = M_2[d^{-(k+1)(2k+1) + \frac{2k+1}{p}}],$$

where the integer $0 < M_2 \in \mathbb{N}$ is independent of d. If $\operatorname{Osc}_{I_i} F_{\lambda}(\cdot) \leq M d^{2k+2}$, we obtain from the formula (2.3) that

$$\operatorname{Osc}_{I_i}(F_\lambda(x) - V(x)) \ge 2Md^{2k+2},$$

if

$$V(x) = \epsilon(a_1(x - x_i) + a_2(x - x_i)^2 + \dots + a_{2k+1}(x - x_i)^{2k+1} + O(|x - x_i|^{2k+2}))$$

with

I

$$\max\{|a_1|d^{-(2k+1)+\frac{1}{p}}, |a_2|d^{-2k+\frac{1}{p}}, \cdots, |a_{2k}|d^{-2+\frac{1}{p}}, |a_{2k+1}|d^{-1+\frac{1}{p}}\} \ge M_1.$$

The coefficients $(a_1, a_2, \dots, a_{2k+1})$ depend on the position x_i and the parameters $(A_1, B_1, \dots, A_{k+1}, B_{k+1})$. The gird for $(a_1, a_2, \dots, a_{2k+1})$ induces the partition for the parameters

 $(A_1, B_1, \cdots, A_{k+1}, B_{k+1})$, determined by the equation

$$\begin{vmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ \vdots \\ a_{2k} \\ a_{2k+1} \end{vmatrix} = \mathbf{C}_{(2k+1)\times(2k+2)} \begin{vmatrix} A_1 \\ B_1 \\ A_2 \\ B_2 \\ \vdots \\ A_{k+1} \\ B_{k+1} \end{vmatrix},$$
(2.4)

where $\mathbf{C}_{(2k+1)\times(2k+2)}$ is a $(2k+1)\times(2k+2)$ matrix as following

$$\mathbf{C}_{(2k+1)\times(2k+2)} = [I_1, I_2, \cdots, I_{2k+1}, I_{2k+2}]$$

in which each column has 2k + 1 entries which take the form

$$I_{2j-1} = \begin{bmatrix} j \cos\left(\frac{\pi}{2} + jx_i\right) \\ j^2 \cos(\pi + jx_i) \\ \vdots \\ j^{2k} \cos\left(2k\frac{\pi}{2} + jx_i\right) \\ j^{2k+1} \cos\left((2k+1)\frac{\pi}{2} + jx_i\right) \end{bmatrix},$$
$$I_{2j} = \begin{bmatrix} j \sin\left(\frac{\pi}{2} + jx_i\right) \\ j^2 \sin(\pi + jx_i) \\ \vdots \\ j^{2k} \sin\left(2k\frac{\pi}{2} + jx_i\right) \\ j^{2k+1} \sin\left((2k+1)\frac{\pi}{2} + jx_i\right) \end{bmatrix},$$

where the integer j ranges from 1 to k + 1.

The coefficient matrix $\mathbf{C}_{(2k+1)(2k+2)}$ is non-singular for each $x_i \in \mathbb{T}$. Indeed, and let \mathbf{M}_1 be the $(2k+1) \times (2k+1)$ matrix constituted by first (2k+1) columns of \mathbf{C} , and let \mathbf{M}_2 be the $(2k+1) \times (2k+1)$ matrix constituted by first 2k columns and the last column of \mathbf{C} . We find

$$det(\mathbf{M}_1)(x_i) = (-1)^{k-1} M_3 \sin(k+1) x_i,$$

$$det(\mathbf{M}_2)(x_i) = (-1)^k M_3 \cos(k+1) x_i,$$

where the constant M_3 is not equal to zero, and only depends on the integer k:

$$M_3 = \prod_{j=2}^k (j^3 - j)(j^4 - j^2) \prod_{j=3}^k \prod_{\ell=2}^{j-1} (j^2 - \ell^2)^2 ((k+1)^3 - (k+1)) \prod_{j=2}^k ((k+1)^2 - j^2).$$

It induces a positive lower bound

$$\inf_{x_i \in \mathbb{T}} \{ |\det(\mathbf{M}_1)(x_i)|, |\det(\mathbf{M}_2)(x_i)| \} = \frac{M_3}{2} \sqrt{2}.$$

Non-degeneracy of Extremal Points

Therefore, the grid for $\{a_j\}_{j=1}^{2k+1}$ induces a grid for $(A_1, B_1, \dots, A_{k+1}, B_{k+1})$ which contains as many as $M_4[d^{-(k+1)(2k+1)+\frac{2k+1}{p}}]$ (2k + 2)-dimensional strips ($M_4 > 0$ is independent of d), denoted by \mathbf{s}_{ij} with $j \in \mathbb{J}_i$. Each \mathbf{s}_{ij} is mapped onto \mathbf{c}_{ij} by (2.4).

Given certain parameter $\lambda \in [0, 1]$, if there exist Taylor coefficients $\{a_j\}_{j=1}^{2k+1}$ which determine a perturbation V such that

$$\operatorname{Osc}_{I_i}(F_\lambda(x) - V(x)) \le M d^{2k+2}$$

then for any other Taylor coefficients $\{a'_j\}_{j=1}^{2k+1}$ satisfying the condition

$$\max\left\{\frac{|a_1-a_1'|}{M_1d^{2k+1-\frac{1}{p}}},\frac{|a_2-a_2'|}{M_1d^{2k-\frac{1}{p}}},\cdots,\frac{|a_{2k}-a_{2k}'|}{M_1d^{2-\frac{1}{p}}},\frac{|a_{2k+1}-a_{2k+1}'|}{M_1d^{1-\frac{1}{p}}}\right\} \ge 1$$

which determines another perturbation V', one obtains from the formula (2.3) that

$$\operatorname{Osc}_{I_i}(F_{\lambda}(x) - V'(x)) \ge 2Md^{2k+2}.$$
 (2.5)

Under the map defined by (2.4), the inverse image of a cuboid \mathbf{c}_{i} with the size

$$2M_1 d^{2k+1-\frac{1}{p}} \times 2M_1 d^{2k-\frac{1}{p}} \times \dots \times 2M_1 d^{2-\frac{1}{p}} \times 2M_1 d^{1-\frac{1}{p}}$$

is a strip in the parameter space of $(A_1, B_1, A_2, B_2, \cdots, A_{k+1}, B_{k+1})$, denoted by $\mathbf{s}_j(\lambda)$, with the Lebesgue measure as small as $N_3^{-1}[d^{(k+1)(2k+1)-\frac{2k+1}{p}}]$. If the cuboid \mathbf{c}_j is centered at $(a_{1j}, a_{2j}, \cdots, a_{2k+1,j})$, then for $(a'_{1j}, a'_{2j}, \cdots, a'_{2k+1,j}) \notin \mathbf{c}_j$, (2.5) holds. In other words, if $(A'_1, B'_1, A'_2, B'_2, \cdots, A'_{k+1}, B'_{k+1}) \notin \mathbf{s}_j$, (2.5) holds.

Splitting the interval [0, 1] equally into small sub-intervals E_{ℓ} with the size $|E_{\ell}| = M_5^{-1} d^{\frac{2k+2}{\alpha}}$, we obtain as many as $[M_5 d^{-\frac{2k+2}{\alpha}}]$ small intervals. As the function F_{λ} is α -Hölder continuous in λ , suitably large positive number M_5 can be chosen so that

$$\max_{x \in I_i} |F_{\lambda}(x) - F_{\lambda'}(x)| < \frac{1}{2} M d^{2k+2}, \quad \forall \lambda, \lambda' \in E_{\ell}.$$

Therefore, for $V \in \mathfrak{V}$ with $(A_1, B_1, A_2, B_2, \cdots, A_{k+1}, B_{k+1}) \notin \mathbf{s}_j$, one has

$$\operatorname{Osc}_{I_i}(F_\lambda(x) - V(x)) \ge M d^{2k+2}.$$
(2.6)

Picking up one parameter λ_{ℓ} in each small interval E_{ℓ} , we obtain $[M_5 d^{-\frac{2k+2}{\alpha}}]$ strips $\mathbf{s}_j(\lambda_{\ell})$. By considering all small intervals I_i with $i = 0, 1, \dots, N-1$, we find

$$\operatorname{meas}\left(\bigcup_{j,\ell} \mathbf{S}_j(\lambda_\ell)\right) \le N_3^{-1} d^{(k+1)(2k+1) - \frac{2k+1}{p}} M_5 d^{-\frac{2k+1}{\alpha}} d^{-1} = M_5 N_3^{-1} d^T,$$

where

$$T = (2k+2)\left(k - \frac{1}{\alpha}\right) + \left(k - \frac{2k+1}{p}\right) > 0$$

if we choose p = 2k + 2 and set

$$k = \left[\frac{1}{4}\left(\frac{2}{\alpha} + 1 + \sqrt{\left(\frac{2}{\alpha} + 1\right)^2 + 16}\right)\right] - 1.$$

Letting

$$\mathbf{S}^{c} = \mathbb{I}^{2k+2} \setminus \bigcup_{j,\ell} \mathbf{S}_{j}(\lambda_{\ell}),$$

we obtain the Lebesgue measure estimate

$$\operatorname{meas}(\mathbf{S}^c) \ge 1 - M_5 N_3^{-1} d^T \to 1 \quad \text{as} \ d \to 0.$$

Obviously, for any $(A_1, B_1, A_2, B_2, \dots, A_{k+1}, B_{k+1}) \in \mathbf{S}^c$, $\lambda \in [0, 1]$ and $i = 0, 1, 2, \dots, N - 1$, (2.6) holds. It implies the density that all global minimal points of $F_{\lambda}(\cdot)$ satisfy the following property: There is

$$1 \le \ell \le k, \quad \frac{\partial^{2\ell}(F_{\lambda} - V)}{\partial x^{2\ell}} > 0.$$

Letting $\alpha = 1$, one immediately obtains the first part of the theorem.

References

- [1] Cheng, C. Q. and Zhou, M., Hyperbolicity of minimal periodic orbits, 2013. arXiv: 1302.4889
- [2] Mañé, R., Generic properties and problems of Lagrangian system, Nonlinearity, 9, 1996, 323–334.
- Oliveira, E. R., Generic properties of Lagrangians on surfaces: The Kupka-Smale theorem, Discrete Contin. Dyn. Syst., 21, 2008, 551–569.