Chinese Annals of Mathematics, Series B

(c) The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2015

Non-degeneracy of Extremal Points*

Min ZHOU 1

Abstract

For a family of smooth functions, the author shows that, under certain generic conditions, all extremal (minimal and maximal) points are non-degenerate.

Keywords Non-degeneracy, Extremal point, Generic condition
2000 MR Subject Classification 37D05, 58E05

1 Introduction

It is well-known that the set of Morse functions is residual in $C^{r}(M, \mathbb{R})$ space, where M is a closed manifold and $r \geq 2$. Let us extend this issue to a family of smooth functions. Let $F_{\lambda}: M \rightarrow \mathbb{R}$ be a family of smooth functions continuously depending on a parameter $\lambda \in[0,1]$, it is natural to ask that whether there exists a residual set $\mathfrak{R} \subset C^{r}(M, \mathbb{R})$ such that for each $V \in \Re$ and for each $\lambda \in[0,1]$, the function $F_{\lambda}+V$ is a Morse function. Unfortunately, it is not true even if F_{λ} smoothly depends on the parameter. Here is a counterexample. Let $F_{\lambda}: \mathbb{T} \rightarrow \mathbb{R}$ be a family of functions such that for each $\lambda \in[0,1], F_{\lambda}$ takes its maximum at $x=\frac{1}{2} \pi$, takes its minimum at $x=-\frac{1}{2} \pi$ and $F_{\lambda}=\frac{1}{3} x^{3}-\left(\frac{1}{2}-\lambda\right) x$ when the variables (λ, x) are restricted in a suitably small neighborhood of the origin $\left(\frac{1}{2}, 0\right)$. Clearly, the point $x= \pm\left(\frac{1}{2}-\lambda\right)^{\frac{1}{2}}$ is the non-degenerate critical point of F_{λ} for $\lambda>0$. There exists no critical point of F_{λ} in the neighborhood of $x=0$ for $\lambda>\frac{1}{2}$. For $\lambda=\frac{1}{2}$, the point $x=0$ is a degenerate critical point. We note that the third derivative of F_{λ} is bounded away from zero for all λ when x remains close to the origin and the second derivative monotonously increases with respect to λ. Therefore, for any C^{3}-small perturbation V, certain λ_{V} exists such that $\left|\lambda_{V}-\frac{1}{2}\right|$ is small and $F_{\lambda_{V}}+V$ has a degenerate critical point close to the origin.

However, we are in different situation if we only consider the minimal as well as the maximal points of functions. Let $[a]$ denote the integer part of the real number a. The following theorem is the main result of this paper.

Theorem 1.1 Let $F_{\lambda}: \mathbb{T} \rightarrow \mathbb{R}$ be a family of C^{r}-functions depending on the parameter $\lambda \in[0,1]$.
(1) If $r \geq 4$ and F_{λ} is Lipschitz in the parameter λ, there exists an open-dense set $\mathfrak{O} \subset$ $C^{r}(\mathbb{T}, \mathbb{R})$ such that for each $V \in \mathfrak{O}$ and each $\lambda \in[0,1]$, each global minimum as well as each global maximum of $F_{\lambda}-V$ is non-degenerate.

[^0](2) More generally, if F_{λ} is α-Hölder continuous in $\lambda(0<\alpha \leq 1)$ and
$$
k=\left[\frac{1}{4}\left(\frac{2}{\alpha}+1+\sqrt{\left(\frac{2}{\alpha}+1\right)^{2}+16}\right)\right]-1
$$
then there exists an open-dense set $\mathfrak{O} \subset C^{r}(\mathbb{T}, \mathbb{R})(r \geq 2 k+2)$ such that for each $V \in \mathfrak{O}$ and each $\lambda \in[0,1]$, certain weak non-degeneracy condition holds at each global minimum as well as each global maximum of $F_{\lambda}-V$: Some integer $1 \leq \ell \leq k$ exists such that $\frac{\partial^{2 \ell}\left(F_{\lambda}-V\right)}{\partial x^{2 \ell}} \neq 0$.

For the function of Lagrange action, the non-degeneracy of critical points corresponds to the hyperbolicity of periodic orbits of Lagrange flow (see [1]). It is closely related to the Mañé conjecture (see [2]), one can refer to [3] for some new progress in this problem.

We feel that the result can be extended to functions defined on closed smooth manifold with finite dimensions.

Conjecture 1.1 Let $F_{\lambda} \in C^{4}(M, \mathbb{R})$ be a family of smooth functions, where M is a closed smooth manifold and $\lambda \in[0,1]$. If F_{λ} is Lipschitz in the parameter λ, then some open-dense set $\mathfrak{O} \subset C^{4}(M, \mathbb{R})$ exists such that for each $V \in \mathfrak{O}$ and each $\lambda \in[0,1]$, each global minimum as well as each global maximum of $F_{\lambda}-V$ is non-degenerate.

2 Proof

We only need to prove the second part of the theorem, the first part is a special case of the second one. Obviously, the set \mathfrak{O} is the open set, as weak non-degeneracy of the critical point survives small perturbation. Therefore, we only need to show the density. Also, we only need to prove the non-degeneracy of the minimum, it is the same for the non-degeneracy of the maximum. Towards this goal, we introduce a set of small perturbations with $2 k+2$ parameters:

$$
\mathfrak{V}=\left\{V=\epsilon \sum_{i=1}^{k+1}\left(A_{i} \cos i x+B_{i} \sin i x\right):\left(A_{1}, B_{1}, \cdots, A_{k+1}, B_{k+1}\right) \in \mathbb{I}^{2 k+2}\right\}
$$

where $\mathbb{I}=[1,2]$. Let

$$
M=\frac{2}{(2 k+2)!} \sup _{x, \lambda}\left|\partial_{x}^{2 k+2} F_{\lambda}\right|
$$

We are going to show that, for any small numbers $\epsilon, d>0$, there exists $\left(A_{1}, B_{1}, \cdots, A_{k+1}, B_{k+1}\right)$ $\in \mathbb{I}^{2 k+2}$ such that

$$
\begin{equation*}
\left(F_{\lambda}-V\right)(x)-\min _{x}\left(F_{\lambda}-V\right) \geq M\left|x-x^{*}\right|^{2 k+2}, \quad \forall x \in\left[x^{*}-d, x^{*}+d\right] \tag{2.1}
\end{equation*}
$$

holds for each $\lambda \in[0,1]$ whenever the point x^{*} is a global minimizer of $F_{\lambda}-V$. It implies that there exists an even integer number $2 \leq j \leq 2 k$, such that the j th derivative of $F_{\lambda}-V$ at x^{*} is positive and the i th derivative is equal to zero for each $i<j$. Indeed, if there exists no such even integer j, one can see that the $(2 k+1)$ th derivative is also equal to zero because x^{*} is assumed the global minimum. Consequently, the above formula does not hold. In the following, we define

$$
\operatorname{Osc}_{I_{i}} F=\max _{x, x^{\prime} \in I_{i}}\left|F(x)-F\left(x^{\prime}\right)\right|
$$

By choosing sufficiently large integer N, the numbers $d=\frac{\pi}{N}$ and $\epsilon=d^{\frac{1}{p}}$ can be set arbitrarily small, where the integer $p \in \mathbb{Z}_{+}$will be determined later. Let

$$
x_{i}=\frac{2 i \pi}{N}, \quad I_{i}=\left[x_{i}-d, x_{i}+d\right]
$$

then $\bigcup_{i=0}^{N-1} I_{i}=\mathbb{T}$. Restricted on each interval I_{i}, each C^{∞}-function $V \in \mathfrak{V}$ is approximated by the Taylor series (module constant)

$$
\begin{equation*}
V_{i}(x)=\epsilon\left(\sum_{j=1}^{2 k+1} a_{j}\left(x-x_{i}\right)^{j}+O\left(\left|x-x_{i}\right|^{2 k+2}\right)\right), \quad \forall x \in I_{i} \tag{2.2}
\end{equation*}
$$

Given two points $\left(a_{1}, a_{2}, \cdots, a_{2 k+1}\right)$ and $\left(a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{2 k+1}^{\prime}\right)$, we obtain two functions $V_{i}(x)$ and $V_{i}^{\prime}(x)$ in the form of Taylor series as shown in (2.2). Let $\Delta V=V_{i}^{\prime}-V_{i}, \Delta a_{j}=a_{j}^{\prime}-a_{j}$ for $j=1,2, \cdots, 2 k+1$. We have $\Delta V\left(x_{i}\right)=0$ and

$$
\begin{gathered}
\Delta V\left(x_{i}+d\right)+\Delta V\left(x_{i}-d\right)=2 \epsilon\left(\Delta a_{2} d+\Delta a_{4} d^{3}+\cdots+\Delta a_{2 k} d^{2 k-1}\right) d+O\left(\epsilon d^{2 k+2}\right) \\
\Delta V\left(x_{i}+d\right)-\Delta V\left(x_{i}-d\right)=2 \epsilon\left(\Delta a_{1}+\Delta a_{3} d^{2}+\cdots+\Delta a_{2 k+1} d^{2 k}\right) d+O\left(\epsilon d^{2 k+2}\right) \\
\begin{array}{c}
\Delta V\left(x_{i} \pm \frac{1}{2} d\right)= \\
\epsilon\left(\pm \frac{1}{2} \Delta a_{1}+\frac{1}{4} \Delta a_{2} d \pm \frac{1}{8} \Delta a_{3} d^{2}+\cdots\right. \\
\left.\quad+\frac{1}{2^{2 k}} \Delta a_{2 k} d^{2 k-1} \pm \frac{1}{2^{2 k+1}} \Delta a_{2 k+1} d^{2 k}\right) d+O\left(\epsilon d^{2 k+2}\right)
\end{array}
\end{gathered}
$$

It follows that

$$
\begin{equation*}
\operatorname{Osc}_{I_{i}}\left(V_{i}^{\prime}-V_{i}\right) \geq \frac{\epsilon}{2^{2 k+1}} \max \left\{\left|\Delta a_{1}\right|,\left|\Delta a_{2}\right| d,\left|\Delta a_{3}\right| d^{2}, \cdots,\left|\Delta a_{2 k+1} d^{2 k}\right|\right\} d \tag{2.3}
\end{equation*}
$$

Let $M_{1}=3 \cdot 2^{2 k+1} M$. We construct a grid for the parameters $\left\{a_{j}\right\}_{j=1}^{2 k+1}$ by splitting the domain equally into a family of cuboids and setting the size by

$$
\Delta a_{1}=M_{1} d^{2 k+1-\frac{1}{p}}, \quad \Delta a_{2}=M_{1} d^{2 k-\frac{1}{p}}, \cdots, \Delta a_{2 k}=M_{1} d^{2-\frac{1}{p}}, \quad \Delta a_{2 k+1}=M_{1} d^{1-\frac{1}{p}}
$$

These cuboids are denoted by $\mathbf{C}_{i j}$ with $j \in \mathbb{J}_{i}=\{1,2, \cdots\}$, the cardinality of the set of the subscripts is up to the order

$$
\#\left(\mathbb{J}_{i}\right)=M_{2}\left[d^{-(k+1)(2 k+1)+\frac{2 k+1}{p}}\right]
$$

where the integer $0<M_{2} \in \mathbb{N}$ is independent of d. If $\operatorname{Osc}_{I_{i}} F_{\lambda}(\cdot) \leq M d^{2 k+2}$, we obtain from the formula (2.3) that

$$
\operatorname{Osc}_{I_{i}}\left(F_{\lambda}(x)-V(x)\right) \geq 2 M d^{2 k+2}
$$

if

$$
V(x)=\epsilon\left(a_{1}\left(x-x_{i}\right)+a_{2}\left(x-x_{i}\right)^{2}+\cdots+a_{2 k+1}\left(x-x_{i}\right)^{2 k+1}+O\left(\left|x-x_{i}\right|^{2 k+2}\right)\right)
$$

with

$$
\max \left\{\left|a_{1}\right| d^{-(2 k+1)+\frac{1}{p}},\left|a_{2}\right| d^{-2 k+\frac{1}{p}}, \cdots,\left|a_{2 k}\right| d^{-2+\frac{1}{p}},\left|a_{2 k+1}\right| d^{-1+\frac{1}{p}}\right\} \geq M_{1}
$$

The coefficients $\left(a_{1}, a_{2}, \cdots, a_{2 k+1}\right)$ depend on the position x_{i} and the parameters $\left(A_{1}, B_{1}\right.$, $\left.\cdots, A_{k+1}, B_{k+1}\right)$. The gird for $\left(a_{1}, a_{2}, \cdots, a_{2 k+1}\right)$ induces the partition for the parameters
$\left(A_{1}, B_{1}, \cdots, A_{k+1}, B_{k+1}\right)$, determined by the equation

$$
\left[\begin{array}{c}
a_{1} \tag{2.4}\\
a_{2} \\
a_{3} \\
a_{4} \\
\vdots \\
a_{2 k} \\
a_{2 k+1}
\end{array}\right]=\mathbf{C}_{(2 k+1) \times(2 k+2)}\left[\begin{array}{c}
A_{1} \\
B_{1} \\
A_{2} \\
B_{2} \\
\vdots \\
A_{k+1} \\
B_{k+1}
\end{array}\right],
$$

where $\mathbf{C}_{(2 k+1) \times(2 k+2)}$ is a $(2 k+1) \times(2 k+2)$ matrix as following

$$
\mathbf{C}_{(2 k+1) \times(2 k+2)}=\left[I_{1}, I_{2}, \cdots, I_{2 k+1}, I_{2 k+2}\right]
$$

in which each column has $2 k+1$ entries which take the form

$$
\begin{gathered}
I_{2 j-1}=\left[\begin{array}{c}
j \cos \left(\frac{\pi}{2}+j x_{i}\right) \\
j^{2} \cos \left(\pi+j x_{i}\right) \\
\vdots \\
j^{2 k} \cos \left(2 k \frac{\pi}{2}+j x_{i}\right) \\
j^{2 k+1} \cos \left((2 k+1) \frac{\pi}{2}+j x_{i}\right)
\end{array}\right] \\
I_{2 j}=\left[\begin{array}{c}
j \sin \left(\frac{\pi}{2}+j x_{i}\right) \\
j^{2} \sin \left(\pi+j x_{i}\right) \\
\vdots \\
j^{2 k} \sin \left(2 k \frac{\pi}{2}+j x_{i}\right) \\
j^{2 k+1} \sin \left((2 k+1) \frac{\pi}{2}+j x_{i}\right)
\end{array}\right]
\end{gathered}
$$

where the integer j ranges from 1 to $k+1$.
The coefficient matrix $\mathbf{C}_{(2 k+1)(2 k+2)}$ is non-singular for each $x_{i} \in \mathbb{T}$. Indeed, and let \mathbf{M}_{1} be the $(2 k+1) \times(2 k+1)$ matrix constituted by first $(2 k+1)$ columns of \mathbf{C}, and let \mathbf{M}_{2} be the $(2 k+1) \times(2 k+1)$ matrix constituted by first $2 k$ columns and the last column of \mathbf{C}. We find

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{M}_{1}\right)\left(x_{i}\right) & =(-1)^{k-1} M_{3} \sin (k+1) x_{i} \\
\operatorname{det}\left(\mathbf{M}_{2}\right)\left(x_{i}\right) & =(-1)^{k} M_{3} \cos (k+1) x_{i}
\end{aligned}
$$

where the constant M_{3} is not equal to zero, and only depends on the integer k :

$$
M_{3}=\prod_{j=2}^{k}\left(j^{3}-j\right)\left(j^{4}-j^{2}\right) \prod_{j=3}^{k} \prod_{\ell=2}^{j-1}\left(j^{2}-\ell^{2}\right)^{2}\left((k+1)^{3}-(k+1)\right) \prod_{j=2}^{k}\left((k+1)^{2}-j^{2}\right)
$$

It induces a positive lower bound

$$
\inf _{x_{i} \in \mathbb{T}}\left\{\left|\operatorname{det}\left(\mathbf{M}_{1}\right)\left(x_{i}\right)\right|,\left|\operatorname{det}\left(\mathbf{M}_{2}\right)\left(x_{i}\right)\right|\right\}=\frac{M_{3}}{2} \sqrt{2}
$$

Therefore, the grid for $\left\{a_{j}\right\}_{j=1}^{2 k+1}$ induces a grid for $\left(A_{1}, B_{1}, \cdots, A_{k+1}, B_{k+1}\right)$ which contains as many as $M_{4}\left[d^{-(k+1)(2 k+1)+\frac{2 k+1}{p}}\right](2 k+2)$-dimensional strips $\left(M_{4}>0\right.$ is independent of $\left.d\right)$, denoted by $\mathbf{S}_{i j}$ with $j \in \mathbb{J}_{i}$. Each $\mathbf{S}_{i j}$ is mapped onto $\mathbf{C}_{i j}$ by (2.4).

Given certain parameter $\lambda \in[0,1]$, if there exist Taylor coefficients $\left\{a_{j}\right\}_{j=1}^{2 k+1}$ which determine a perturbation V such that

$$
\operatorname{Osc}_{I_{i}}\left(F_{\lambda}(x)-V(x)\right) \leq M d^{2 k+2}
$$

then for any other Taylor coefficients $\left\{a_{j}^{\prime}\right\}_{j=1}^{2 k+1}$ satisfying the condition

$$
\max \left\{\frac{\left|a_{1}-a_{1}^{\prime}\right|}{M_{1} d^{2 k+1-\frac{1}{p}}}, \frac{\left|a_{2}-a_{2}^{\prime}\right|}{M_{1} d^{2 k-\frac{1}{p}}}, \cdots, \frac{\left|a_{2 k}-a_{2 k}^{\prime}\right|}{M_{1} d^{2-\frac{1}{p}}}, \frac{\left|a_{2 k+1}-a_{2 k+1}^{\prime}\right|}{M_{1} d^{1-\frac{1}{p}}}\right\} \geq 1
$$

which determines another perturbation V^{\prime}, one obtains from the formula (2.3) that

$$
\begin{equation*}
\operatorname{Osc}_{I_{i}}\left(F_{\lambda}(x)-V^{\prime}(x)\right) \geq 2 M d^{2 k+2} \tag{2.5}
\end{equation*}
$$

Under the map defined by (2.4), the inverse image of a cuboid \mathbf{C}_{j} with the size

$$
2 M_{1} d^{2 k+1-\frac{1}{p}} \times 2 M_{1} d^{2 k-\frac{1}{p}} \times \cdots \times 2 M_{1} d^{2-\frac{1}{p}} \times 2 M_{1} d^{1-\frac{1}{p}}
$$

is a strip in the parameter space of $\left(A_{1}, B_{1}, A_{2}, B_{2}, \cdots, A_{k+1}, B_{k+1}\right)$, denoted by $\mathbf{s}_{j}(\lambda)$, with the Lebesgue measure as small as $N_{3}^{-1}\left[d^{(k+1)(2 k+1)-\frac{2 k+1}{p}}\right]$. If the cuboid \mathbf{C}_{j} is centered at $\left(a_{1 j}, a_{2 j}, \cdots, a_{2 k+1, j}\right)$, then for $\left(a_{1 j}^{\prime}, a_{2 j}^{\prime}, \cdots, a_{2 k+1, j}^{\prime}\right) \notin \mathbf{c}_{j},(2.5)$ holds. In other words, if $\left(A_{1}^{\prime}, B_{1}^{\prime}, A_{2}^{\prime}, B_{2}^{\prime}, \cdots, A_{k+1}^{\prime}, B_{k+1}^{\prime}\right) \notin \mathbf{s}_{j}$, (2.5) holds.

Splitting the interval $[0,1]$ equally into small sub-intervals E_{ℓ} with the size $\left|E_{\ell}\right|=M_{5}^{-1} d^{\frac{2 k+2}{\alpha}}$, we obtain as many as $\left[M_{5} d^{-\frac{2 k+2}{\alpha}}\right]$ small intervals. As the function F_{λ} is α-Hölder continuous in λ, suitably large positive number M_{5} can be chosen so that

$$
\max _{x \in I_{i}}\left|F_{\lambda}(x)-F_{\lambda^{\prime}}(x)\right|<\frac{1}{2} M d^{2 k+2}, \quad \forall \lambda, \lambda^{\prime} \in E_{\ell} .
$$

Therefore, for $V \in \mathfrak{V}$ with $\left(A_{1}, B_{1}, A_{2}, B_{2}, \cdots, A_{k+1}, B_{k+1}\right) \notin \mathbf{s}_{j}$, one has

$$
\begin{equation*}
\operatorname{Osc}_{I_{i}}\left(F_{\lambda}(x)-V(x)\right) \geq M d^{2 k+2} \tag{2.6}
\end{equation*}
$$

Picking up one parameter λ_{ℓ} in each small interval E_{ℓ}, we obtain $\left[M_{5} d^{-\frac{2 k+2}{\alpha}}\right]$ strips $\mathbf{S}_{j}\left(\lambda_{\ell}\right)$. By considering all small intervals I_{i} with $i=0,1, \cdots, N-1$, we find

$$
\operatorname{meas}\left(\bigcup_{j, \ell} \mathbf{s}_{j}\left(\lambda_{\ell}\right)\right) \leq N_{3}^{-1} d^{(k+1)(2 k+1)-\frac{2 k+1}{p}} M_{5} d^{-\frac{2 k+1}{\alpha}} d^{-1}=M_{5} N_{3}^{-1} d^{T}
$$

where

$$
T=(2 k+2)\left(k-\frac{1}{\alpha}\right)+\left(k-\frac{2 k+1}{p}\right)>0
$$

if we choose $p=2 k+2$ and set

$$
k=\left[\frac{1}{4}\left(\frac{2}{\alpha}+1+\sqrt{\left(\frac{2}{\alpha}+1\right)^{2}+16}\right)\right]-1 .
$$

Letting

$$
\mathbf{S}^{c}=\mathbb{I}^{2 k+2} \backslash \bigcup_{j, \ell} \mathbf{s}_{j}\left(\lambda_{\ell}\right)
$$

we obtain the Lebesgue measure estimate

$$
\operatorname{meas}\left(\mathbf{S}^{c}\right) \geq 1-M_{5} N_{3}^{-1} d^{T} \rightarrow 1 \quad \text { as } d \rightarrow 0
$$

Obviously, for any $\left(A_{1}, B_{1}, A_{2}, B_{2}, \cdots, A_{k+1}, B_{k+1}\right) \in \mathbf{S}^{c}, \lambda \in[0,1]$ and $i=0,1,2, \cdots$, $N-1$, (2.6) holds. It implies the density that all global minimal points of $F_{\lambda}(\cdot)$ satisfy the following property: There is

$$
1 \leq \ell \leq k, \quad \frac{\partial^{2 \ell}\left(F_{\lambda}-V\right)}{\partial x^{2 \ell}}>0 .
$$

Letting $\alpha=1$, one immediately obtains the first part of the theorem.

References

[1] Cheng, C. Q. and Zhou, M., Hyperbolicity of minimal periodic orbits, 2013. arXiv: 1302.4889
[2] Mañé, R., Generic properties and problems of Lagrangian system, Nonlinearity, 9, 1996, 323-334.
[3] Oliveira, E. R., Generic properties of Lagrangians on surfaces: The Kupka-Smale theorem, Discrete Contin. Dyn. Syst., 21, 2008, 551-569.

[^0]: Manuscript received June 5, 2013. Revised October 26, 2013.
 ${ }^{1}$ School of Information Management, Nanjing University, Nanjing 210093, China.
 E-mail: minzhou@nju.edu.cn
 *This work was supported by the National Natural Science Foundation of China (Nos. 11201222, 11171146), the Basic Research Program of Jiangsu Province (No. BK2008013) and a program of the Priority Academic Program Development of Jiangsu Province.

