
Chin. Ann. Math.
36B(1), 2015, 67–80
DOI: 10.1007/s11401-014-0875-3

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2015

A Note on Schwarz-Pick Lemma for Bounded

Complex-Valued Harmonic Functions
in the Unit Ball of Rn∗

Shaoyu DAI1 Yifei PAN2

Abstract In this paper, the authors prove a Schwarz-Pick lemma for bounded complex-
valued harmonic functions in the unit ball of R

n.

Keywords Harmonic functions, Schwarz-Pick lemma, Unit ball
2000 MR Subject Classification 31B05, 31C05

1 Introduction

This paper is a note about Chen’s paper (see [1]). Using the same method as in [1], we obtain
Theorem 1.1, which extends the Schwarz-Pick lemma (see [1]) for planar harmonic mappings
to bounded complex-valued harmonic functions in the unit ball of Rn. In addition, motivated
by [1] and this paper, we consider a Schwarz lemma for harmonic mappings between real unit
balls in another paper. Now we introduce some denotations and the background.

Let n be a positive integer greater than 1. Rn is the real space of dimension n. For
x = (x1, · · · , xn) ∈ Rn, let |x| = (|x1|2 + · · ·+ |xn|2) 1

2 . Let Bn = {x ∈ Rn : |x| < 1} be the unit
ball of Rn. The unit sphere, i.e., the boundary of Bn is denoted by S; the normalized surface-
area measure on S is denoted by σ (so that σ(S) = 1). Let S+ denote the northern hemisphere
{x = (x1, · · · , xn) ∈ S : xn > 0} and S− denote the southern hemisphere {x = (x1, · · · , xn) ∈
S : xn < 0}. N = (0, · · · , 0, 1) denotes the north pole of S. Br = {x ∈ Rn : |x| < r} is the
open ball centered at origin of radius r; its closure is the closed ball Br. A twice continuously
differentiable, complex-valued function F defined on Bn is harmonic on Bn if and only if ΔF ≡ 0,
where Δ = D2

1 + · · ·+D2
n and D2

j denotes the second partial derivative with respect to the j-th
coordinate variable xj . By Ωn, we denote the class of all complex-valued harmonic functions
F (x) on Bn with |F (x)| < 1 for x ∈ Bn.

Let D be the unit disk in the complex plane C. Denote the disk {z ∈ C : |z| < r} by Dr; its
closure is the closed disk Dr.

For a holomorphic function f from D into D, the classical Schwarz lemma says that if
f(0) = 0, then

|f(z)| ≤ |z| (1.1)
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holds for z ∈ D. For 0 < r < 1, (1.1) may be written in the following form:

f(Dr) ⊂ Dr. (1.2)

So the classical Schwarz lemma can be regarded as concerning the region of f(Dr). If the
condition f(0) = 0 is relaxed, then what the region of f(Dr) is? The answer can be found in
the classical Schwarz-Pick lemma. By Schwarz-Pick lemma (see [2]), it is known that

|f(z1) − f(z2)|
|1 − f(z2)f(z1)|

≤ |z1 − z2|
|1 − z2z1| (1.3)

holds for z1, z2 ∈ D. Using the notations

dp(z1, z2) =
|z1 − z2|
|1 − z2z1|

for the pseudo-distance between z1, z2 ∈ D, we know that

dp(f(z1), f(z2)) ≤ dp(z1, z2) (1.4)

for z1, z2 ∈ D by (1.3). Denote �(z, r) = {ζ ∈ D : dp(ζ, z) ≤ r, z ∈ D, 0 < r < 1} for the closed
pseudo-disk with center at z and pseudo-radius r. Then (1.4) may be written in the following
form:

f(�(z, r)) ⊂ �(f(z), r)

for z ∈ D and 0 < r < 1. Note that �(0, r) = Dr. So for f without the assumption f(0) = 0,
we know

f(Dr) ⊂ �(f(0), r). (1.5)

When f(0) = 0, (1.5) becomes (1.2).
For a complex-valued harmonic function F on D such that F (D) ⊂ D and F (0) = 0, it is

known (see [3]) that

|F (z)| ≤ 4
π

arctan |z| (1.6)

holds for z ∈ D. For 0 < r < 1, (1.6) may be written in the following form:

F (Dr) ⊂ D 4
π arctan r. (1.7)

If the condition F (0) = 0 is relaxed, then what the region of F (Dr) is? Unfortunately, the
composition f ◦ F of a harmonic function F and a holomorphic function f do not need to be
harmonic, so it is a serious problem to seek the estimate corresponding to (1.5) for a harmonic
function F without the assumption F (0) = 0. Fortunately, Chen resolved this problem in [1]. In
[1], for any 0 < r < 1 and 0 ≤ ρ < 1, the author constructs a closed domain Er,ρ, which contains
ρ and is symmetric to the real axis, with the following properties: Let z ∈ D and w = ρeiα

be given. For every complex-valued harmonic function F with F (D) ⊂ D and F (z) = w, the
author has F (�(z, r)) ⊂ eiαEr,ρ = {eiαζ : ζ ∈ Er,ρ}; conversely, for every w′ ∈ eiαEr,ρ, there
exists a complex-valued harmonic function F such that F (D) ⊂ D, F (z) = w and F (z′) = w′ for
some z′ ∈ ∂�(z, r). Obviously, by Chen’s result, we know that for a complex-valued harmonic
function F on D such that F (D) ⊂ D without the assumption F (0) = 0, if F (0) = ρeiα, then

F (Dr) ⊂ eiαEr,ρ, (1.8)
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which is sharp. (1.8) is the estimate for complex-valued harmonic functions corresponding to
(1.5). Note that a complex-valued harmonic function F on D such that F (D) ⊂ D can be seen
as F ∈ Ω2. So it is natural to consider the same problem as in Ωn.

For F ∈ Ωn, the harmonic Schwarz lemma (see [4]) says that if F (0) = 0, then

|F (x)| ≤ U(|x|N) (1.9)

holds for x ∈ Bn, where U is the Poisson integral of the function that equals 1 on S+ and −1
on S−. For 0 < r < 1, (1.9) may be written in the following form:

F (Br) ⊂ DU(rN). (1.10)

If the condition F (0) = 0 is relaxed, then what the region of F (Br) is? This problem will be
solved in this paper.

In this paper, by the same method as in [1], we obtain the following theorem about the
region of F (Br). The result is sharp. When n = 2, our result is coincident with (1.8). And
when F (0) = 0, our result is coincident with (1.10). Note that in the following theorem, Er,ρ

is defined as (3.1).

Theorem 1.1 Let 0 ≤ ρ < 1, α ∈ R and 0 < r < 1 be given. Then for every harmonic
function F with F (Bn) ⊂ D and F (0) = ρeiα, we have F (Br) ⊂ eiαEr,ρ = {eiαζ : ζ ∈ Er,ρ};
conversely, for every w′ ∈ eiαEr,ρ, there exists a harmonic function F such that F (Bn) ⊂ D,
F (0) = ρeiα and F (rN) = w′.

The theorem above will be proved in three steps as follows:
Step 1 Find the extremal line of F (Br) in the normal direction of e0i, which is related to

the value of F (0).
Step 2 Find the extremal line of F (Br) in the normal direction of a given direction. For

a given direction of eiβ with −π ≤ β ≤ π, construct a new harmonic function Fβ = e−iβF

through rotating F (Br) by an anti-clockwise rotation of angle β. Using the result of Step 1, we
will have the the extremal line of Fβ(Br) in the normal direction of e0i, which is denoted by l′β .
Note that F (Br) can be obtained from Fβ(Br) by a clockwise rotation of angle β. Then the
extremal line of F (Br) in the normal direction of eiβ, which is denoted by lβ, can be obtained
from l′β by a clockwise rotation of angle β.

Step 3 Using the result of Step 2, we will obtain all the extremal lines of F (Br) in every
normal direction, with which we can wrap F (Br) and obtain the region of F (Br).

Step 1 will be solved in Section 2. Step 2 and Step 3 will be solved in Section 3.

2 Some Lemmas

In this section, we will introduce some lemmas, which are important for the proof of Theorem
3.1. Lemma 2.1 will be used in Lemma 2.2. Lemma 2.2 will be used in Lemma 2.3. Lemmas
2.3–2.4 will be used in Theorem 3.1.

Now we give Lemma 2.1 first. Lemma 2.1 constructs a bijection (R, I) from R × R+ onto
the upper half disk {(a, b) : a ∈ R, b ∈ R, a2 + b2 < 1, b > 0}, which will be used to construct
ua,b,r in Lemma 2.2 for the case b > 0.

For 0 < r < 1, μ > 0 and a real number λ, define

Ar,λ,μ(ω) =
1
μ

( 1
|rN − ω|n − λ

)
, ω ∈ S (2.1)
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and

R(r, λ, μ) =
∫

S

Ar,λ,μ(ω)√
1 + A2

r,λ,μ(ω)
dσ, I(r, λ, μ) =

∫
S

1√
1 + A2

r,λ,μ(ω)
dσ. (2.2)

The idea of the conformation of Ar,λ,μ(ω), R(r, λ, μ) and I(r, λ, μ) originates from the needs of
(2.16) and (2.21).

Lemma 2.1 Let 0 < r < 1 be fixed. Then, there exists a unique pair of real functions λ =
λ(r, a, b) and μ = μ(r, a, b) > 0, defined on the upper half disk {(a, b) : a2 + b2 < 1, b > 0} and
analytic in the real sense, such that R(r, λ(r, a, b), μ(r, a, b)) = a and I(r, λ(r, a, b), μ(r, a, b)) = b

for any point (a, b) in the half disk.

Proof A simple calculation gives

∂R(r, λ, μ)
∂λ

= − 1
μ

∫
S

1
(1 + A2

r,λ,μ(ω))
3
2
dσ, (2.3)

∂R(r, λ, μ)
∂μ

= − 1
μ

∫
S

Ar,λ,μ(ω)
(1 + A2

r,λ,μ(ω))
3
2
dσ, (2.4)

∂I(r, λ, μ)
∂λ

=
1
μ

∫
S

Ar,λ,μ(ω)
(1 + A2

r,λ,μ(ω))
3
2
dσ, (2.5)

∂I(r, λ, μ)
∂μ

=
1
μ

∫
S

A2
r,λ,μ(ω)

(1 + A2
r,λ,μ(ω))

3
2
dσ. (2.6)

It is easy to see that
(i) by (2.3), ∂R(r,λ,μ)

∂λ < 0 for any λ and μ > 0, R(r, λ, μ) is strictly decreasing as a function
of λ for a fixed μ;

(ii) by (2.2), for a fixed μ, R(r, λ, μ) → −1 or 1 according to λ → +∞ or λ → −∞;
(iii) by (2.3)–(2.6) and the convexity of the square function,

∂R(r, λ, μ)
∂λ

∂I(r, λ, μ)
∂μ

− ∂R(r, λ, μ)
∂μ

∂I(r, λ, μ)
∂λ

< 0

for any λ and μ > 0;
(iiii) by (2.2), 0 < I(r, λ, μ) < 1 for any λ and μ > 0.
By (i) and (ii), we know that for fixed μ, R(r, λ, μ) is strictly decreasing from 1 to −1 as λ

increases from −∞ to +∞. Then for any −1 < a < 1 and fixed μ, there exists a unique real
number λ(μ, a) such that

R(r, λ, μ)|λ=λ(μ,a) = a. (2.7)

Further, using the implicit function theorem, we have that the function λ = λ(μ, a) defined on
{(μ, a) : μ > 0,−1 < a < 1} is a continuous function and

∂λ(μ, a)
∂μ

= −
(∂R(r, λ, μ)

∂μ

/∂R(r, λ, μ)
∂λ

)∣∣∣
λ=λ(μ,a)

.
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Next, we consider the function I(r, λ(μ, a), μ) for μ > 0.

∂I(r, λ(μ, a), μ)
∂μ

=
(∂I(r, λ, μ)

∂λ

∂λ(μ, a)
∂μ

+
∂I(r, λ, μ)

∂μ

)∣∣∣
λ=λ(μ,a)

=
((∂R(r, λ, μ)

∂λ

∂I(r, λ, μ)
∂μ

− ∂R(r, λ, μ)
∂μ

∂I(r, λ, μ)
∂λ

)/∂R(r, λ, μ)
∂λ

)∣∣∣
λ=λ(μ,a)

.

By (i) and (iii), we have ∂I(r,λ(μ,a),μ)
∂μ > 0, which shows that I(r, λ(μ, a), μ) is strictly increasing

as a function of μ on (0, +∞) for a fixed a. Note (iiii). Thus, for a fixed a, I(r, λ(μ, a), μ) has
a respectively finite limit as μ → 0 and μ → +∞.

For a fixed a, we claim that I(r, λ(μ, a), μ) → 0 as μ → 0, and I(r, λ(μ, a), μ) → √
1 − a2 as

μ → +∞.
As μ → 0, there exists a subsequence μk → 0 such that λ(μk, a) has a finite limit t or tends

to ∞. We only need to prove that I(r, λ(μk, a), μk) → 0 as k → ∞. Since I(r, λ(μk, a), μk) =∫
S

1√
1+A2

r,λ(μk,a),μk
(ω)

dσ, we only need to prove that |Ar,λ(μk,a),μk
(ω)| → +∞ almost everywhere

on S. Note that
|Ar,λ(μk,a),μk

(ω)| =
1
μk

∣∣∣ 1
|rN − ω|n − λ(μk, a)

∣∣∣
and

1
(1 + r)n

≤ 1
|rN − ω|n ≤ 1

(1 − r)n
.

If λ(μk, a) → t as k → ∞, then 1
|rN−ω|n −λ(μk, a) is bounded and 1

|rN−ω|n −λ(μk, a) �= 0 almost
everywhere on S. Thus |Ar,λ(μk ,a),μk

(ω)| → +∞ almost everywhere on S. If λ(μk, a) → ∞ as
k → ∞, then it is obvious that |Ar,λ(μk,a),μk

(ω)| → +∞ uniformly for ω ∈ S. The first claim is
proved.

As μ → +∞, 1
μ

1
|rN−ω|n → 0 uniformly for ω ∈ S. If there exists a subsequence μk → +∞

such that λ(μk,a)
μk

→ ∞, then |Ar,λ(μk,a),μk
(ω)| → +∞ uniformly for ω ∈ S, and I(r, λ(μk, a), μk)

→ 0, a contradiction. This shows that λ(μ,a)
μ is bounded as μ → +∞. Thus there exists a

subsequence μk → +∞ such that −λ(μk,a)
μk

tends to a finite limit t. That is

lim
k→∞

−λ(μk, a)
μk

= t. (2.8)

We only need to prove that I(r, λ(μk, a), μk) → √
1 − a2 as k → ∞. Let

(A(ω))k = Ar,λ(μk,a),μk
(ω).

By (2.1), (2.8) and μk → +∞, we obtain

lim
k→∞

(A(ω))k√
1 + ((A(ω))k)2

= lim
k→∞

1
μ k

( 1
|rN − ω|n − λ(μk, a)

)
√

1 +
1
μ2

k

( 1
|rN − ω|n − λ(μk, a)

)2

= lim
k→∞

−λ(μk, a)
μk√

1 +
(λ(μk, a)

μk

)2
=

t√
1 + t2

(2.9)
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uniformly for ω ∈ S, and

lim
k→∞

1√
1 + ((A(ω))k)2

= lim
k→∞

1√
1 +

1
μ2

k

( 1
|rN − ω|n − λ(μk, a)

)2

= lim
k→∞

1√
1 +

(λ(μk, a)
μk

)2
=

1√
1 + t2

(2.10)

uniformly for ω ∈ S. By the Lebesgue’s dominated convergence theorem, (2.2) and (2.9)–(2.10),
we have

lim
k→∞

R(r, λ(μk, a), μk) = lim
k→∞

∫
S

(A(ω))k√
1 + ((A(ω))k)2

dσ

=
∫

S

lim
k→∞

(A(ω))k√
1 + ((A(ω))k)2

dσ

=
t√

1 + t2
(2.11)

and

lim
k→∞

I(r, λ(μk, a), μk) = lim
k→∞

∫
S

1√
1 + ((A(ω))k)2

dσ

=
∫

S

lim
k→∞

1√
1 + ((A(ω))k)2

dσ

=
1√

1 + t2
. (2.12)

Note that R(r, λ(μk, a), μk) ≡ a by (2.7), and
(

t√
1+t2

)2 +
(

1√
1+t2

)2 = 1. Then by (2.11) we

obtain that t√
1+t2

= a and 1√
1+t2

=
√

1 − a2. Consequently by (2.12),

lim
k→∞

I(r, λ(μk, a), μk) =
√

1 − a2.

The second claim is proved.
It is proved that I(r, λ(μ, a), μ) is continuous and strictly increasing from 0 to

√
1 − a2 as μ

increases from 0 to +∞. Thus, for any 0 < b <
√

1 − a2 and −1 < a < 1, there exists a unique
real number μ(a, b) such that

I(r, λ(μ(a, b), a), μ(a, b)) = b. (2.13)

Further, using the implicit function theorem, we have that the function μ(a, b) defined on
{(a, b) : a2 + b2 < 1, b > 0} is a continuous function.

Denote λ(μ(a, b), a) by λ(r, a, b). Denote μ(a, b) by μ(r, a, b). We have proved that there
exists a unique pair of functions λ = λ(r, a, b) and μ = μ(r, a, b) such that

R(r, λ(r, a, b), μ(r, a, b)) = a, I(r, λ(r, a, b), μ(r, a, b)) = b

on the upper half disk. The real analyticity of λ = λ(r, a, b) and μ = μ(r, a, b) is asserted by
the implicit function theorem. The lemma is proved.
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Let a and b be two numbers such that 0 ≤ b < 1, −1 < a < 1 and a2 + b2 < 1. Let Ua,b

denote the class of real-valued functions u ∈ L∞(S) satisfying the following conditions:

‖u‖∞ ≤ 1,

∫
S

u(ω)dσ = a,

∫
S

√
1 − u2(ω)dσ ≥ b. (2.14)

Every function u ∈ L∞(S) defines a harmonic function

U(x) =
∫

S

1 − |x|2
|x − ω|n u(ω)dσ for x ∈ B

n.

Let 0 < r < 1 and define a functional Lr on L∞(S) by

Lr(u) = U(rN) =
∫

S

1 − r2

|rN − ω|n u(ω)dσ. (2.15)

Obviously, Ua,b is a closed set, and Lr is a continuous functional on Ua,b. Then there exists
an extremal function such that Lr attains its maximum on Ua,b at the extremal function. We
will claim in the following lemma that the extremal function is unique. In the proof of the
following lemma, we will construct a function u0 first and then prove that u0 is the unique
extremal function, which will be denoted by ua,b,r.

Lemma 2.2 For any a, b and r satisfying the above conditions, there exists a unique ex-
tremal function ua,b,r ∈ Ua,b such that Lr attains its maximum on Ua,b at ua,b,r.

Proof Let a, b and r be fixed. First assume that b > 0. From Lemma 2.1, we have
λ = λ(r, a, b) and μ = μ(r, a, b) > 0 such that R(r, λ, μ) = a and I(r, λ, μ) = b. For the need of
(2.21), let

u0(ω) =
Ar,λ,μ(ω)√

1 + A2
r,λ,μ(ω)

, (2.16)

where Ar,λ,μ(ω) is defined as in (2.1). Then ‖u0‖∞ < 1 and by (2.2), and we know∫
S

u0(ω)dσ = R(r, λ, μ) = a,

∫
S

√
1 − u2

0(ω)dσ = I(r, λ, μ) = b. (2.17)

This means that u0 ∈ Ua,b.
Let u ∈ Ua,b. By (2.14) and (2.17), we have

λ

∫
S

(u0(ω) − u(ω))dσ = 0, (2.18)

μ

∫
S

(√
1 − u2

0(ω) −
√

1 − u2(ω)
)
dσ ≤ 0. (2.19)

By the Taylor formula of the function
√

1 − x2, we have

√
1 − u2(ω) −

√
1 − u2

0(ω) =
u0(ω)(u0(ω) − u(ω))√

1 − u2
0(ω)

− (u0(ω) − u(ω))2

2(1 − ξ2)
3
2

≤ u0(ω)(u0(ω) − u(ω))√
1 − u2

0(ω)
, (2.20)
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where ξ is a real number between u0(ω) and u(ω). By (2.1) and (2.16), we have

1
|rN − ω|n − λ − μu0(ω)√

1 − u2
0(ω)

= 0. (2.21)

Then by (2.15) and (2.18)–(2.21), we obtain that

Lr(u0) − Lr(u)
1 − r2

=
∫

S

u0(ω) − u(ω)
|rN − ω|n dσ

≥
∫

S

u0(ω) − u(ω)
|rN − ω|n dσ − λ

∫
S

(u0(ω) − u(ω))dσ − μ

∫
S

(√
1 − u2(ω) −

√
1 − u2

0(ω)
)
dσ

=
∫

S

u0(ω) − u(ω)
|rN − ω|n dσ − λ

∫
S

(u0(ω) − u(ω))dσ

− μ

∫
S

u0(ω)(u0(ω) − u(ω))√
1 − u2

0(ω)
dσ + μ

∫
S

(u0(ω) − u(ω))2

2(1 − ξ2)
3
2

dσ

≥
∫

S

u0(ω) − u(ω)
|rN − ω|n dσ − λ

∫
S

(u0(ω) − u(ω))dσ − μ

∫
S

u0(ω)(u0(ω) − u(ω))√
1 − u2

0(ω)
dσ

=
∫

S

(u0(ω) − u(ω))
( 1
|rN − ω|n − λ − μu0(ω)√

1 − u2
0(ω)

)
dσ

= 0.

Thus Lr(u0) ≥ Lr(u) with equality if and only if μ
∫

S
(u0(ω)−u(ω))2

2(1−ξ2)
3
2

dσ = 0. Therefore Lr(u0) ≥
Lr(u) with equality if and only if u(ω) = u0(ω) almost everywhere. This shows that u0(ω) is
the unique extremal function, which will be denoted by ua,b,r(ω).

Next we consider the case b = 0. For a real number d, let

Sd = {x ∈ S : |N − x| = d}, (2.22)

S+
d = {x ∈ S : |N − x| < d}, (2.23)

S−
d = {x ∈ S : |N − x| > d}. (2.24)

For a fixed real number a such that −1 < a < 1, there exists a unique real number da such that
σ(S+

da
) = 1+a

2 and σ(S−
da

) = 1−a
2 . Let

u0(ω) =

⎧⎪⎨⎪⎩
1, ω ∈ S+

da
,

0, ω ∈ Sda ,

−1, ω ∈ S−
da

.

(2.25)

We want to prove that u0 is just the unique extremal function, which will be denoted by
ua,0,r(ω).

It is obvious that u0 ∈ Ua,0. Let u ∈ Ua,0. By (2.14) and (2.25), we have∫
S

(u0(ω) − u(ω))dσ = 0, (2.26)

u0(ω) − u(ω) ≥ 0 for ω ∈ S+
da

, (2.27)

u0(ω) − u(ω) ≤ 0 for ω ∈ S−
da

. (2.28)

Let

Ja = |rN − x0|, where x0 ∈ Sda. (2.29)
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Note that

|rN − ω| < Ja for ω ∈ S+
da

, (2.30)

|rN − ω| > Ja for ω ∈ S−
da

. (2.31)

Then by (2.15) and (2.26)–(2.31), we obtain that

Lr(u0) − Lr(u)
1 − r2

=
∫

S

u0(ω) − u(ω)
|rN − ω|n dσ

=
∫

S

( 1
|rN − ω|n − 1

Jn
a

)
(u0(ω) − u(ω))dσ

=
∫

S+
da

( 1
|rN − ω|n − 1

Jn
a

)
(u0(ω) − u(ω))dσ +

∫
S−

da

( 1
|rN − ω|n − 1

Jn
a

)
(u0(ω) − u(ω))dσ

≥ 0.

Thus Lr(u0) ≥ Lr(u) with equality if and only if u(ω) = u0(ω) almost everywhere. The lemma
is proved.

Let a and b be two real numbers with a2 + b2 < 1 and 0 < r < 1. If b ≥ 0, ua,b,r has been
defined in Lemma 2.2. Now, define

va,b,r(ω) =
√

1 − u2
a,b,r(ω) for ω ∈ S (2.32)

and

Ua,b,r(x) =
∫

S

1 − |x|2
|x − ω|n ua,b,r(ω)dσ, (2.33)

Va,b,r(x) =
∫

S

1 − |x|2
|x − ω|n va,b,r(ω)dσ. (2.34)

For b < 0, let

Ua,b,r(x) = Ua,−b,r(x), Va,b,r(x) = −Va,−b,r(x). (2.35)

Then for any a ∈ R, b ∈ R and a2 + b2 < 1, let

Fa,b,r(x) = Ua,b,r(x) + iVa,b,r(x) for x ∈ B
n. (2.36)

The harmonic function Fa,b,r(x) = Ua,b,r(x)+iVa,b,r(x) satisfies Fa,b,r(0) = a+bi and Fa,b,r(Bn)
⊂ D, since we will show that |Ua,b,r(x)|2 + |Va,b,r(x)|2 < 1. By the convexity of the square
function,

|Ua,b,r(x)|2 + |Va,b,r(x)|2 ≤
∫

S

1 − |x|2
|x − ω|n (u2

a,b,r(ω) + v2
a,b,r(ω))dσ = 1

with equality if and only if ua,b,r(ω) and va,b,r(ω) are constants almost everywhere on S. How-
ever ua,b,r(ω) is not possible to be a constant almost everywhere on S. Thus |Ua,b,r(x)|2 +
|Va,b,r(x)|2 < 1.

The functions Fa,b,r are the extremal functions in the following lemma.
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Lemma 2.3 Let F (x) = U(x) + iV (x) be a harmonic function such that F (Bn) ⊂ D,
F (0) = a + bi. Then, for 0 < r < 1 and ω ∈ S,

U(rω) ≤ Ua,b,r(rN)

with equality at some point rω if and only if F (x) = Fa,b,r(xA), where A is an orthogonal
matrix such that rωA = rN , Ua,b,r is defined as in (2.33) and (2.35), and Fa,b,r is defined as
in (2.36). Further, U(x) < Ua,b,r(rN) for |x| < r.

Proof Step 1 First, the case rω = rN will be proved. Let 0 < r̃ < 1 be fixed. Construct
a function

G(x) = F (r̃x) for x ∈ B
n
.

G(x) is harmonic on B
n

and G(0) = a + bi. Let G(x) = u(x) + iv(x). Then

‖u‖∞ ≤ 1,

∫
S

u(ω)dσ = a,

∫
S

√
1 − u2(ω)dσ ≥

∫
S

|v(ω)|dσ ≥
∣∣∣ ∫

S

v(ω)dσ
∣∣∣ = |b|. (2.37)

So by (2.14) we know that u ∈ Ua,|b| and by Lemma 2.2, we have u(rN) ≤ Ua,b,r(rN) with
equality if and only if u(ω) = ua,|b|,r(ω) almost everywhere on S. For ua,|b|,r(ω), by (2.17) and
(2.25), we have ∫

S

√
1 − u2

a,|b|,r(ω)dσ = |b|. (2.38)

If u(ω) = ua,|b|,r(ω) almost everywhere on S, then by (2.33) and (2.35), we have

u(x) = Ua,|b|,r(x) = Ua,b,r(x) for x ∈ Bn;

and by (2.32), we have

va,|b|,r(ω) =
√

1 − u2
a,|b|,r(ω) =

√
1 − u2(ω). (2.39)

Note that by (2.37)–(2.39), we have

|b| =
∫

S

va,|b|,r(ω)dσ ≥
∫

S

|v(ω)|dσ ≥
∣∣∣ ∫

S

v(ω)dσ
∣∣∣ = |b|.

Then

v(ω) = va,|b|,r(ω) almost everywhere on S when b ≥ 0,

v(ω) = −va,|b|,r(ω) almost everywhere on S when b < 0.

So
v(x) = Va,b,r(x) for x ∈ B

n.

For G(x) = u(x) + iv(x), it is proved that u(rN) ≤ Ua,b,r(rN) with equality if and only if
G(x) = Fa,b,r(x). Now let r̃ → 1. Note that

lim
r̃→1

G(x) = lim
r̃→1

F (r̃x) = F (x), lim
r̃→1

u(rN) = U(rN).

Then by the result for G(x), we have U(rN) ≤ Ua,b,r(rN) with equality if and only if F (x) =
Fa,b,r(x).
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Step 2 Now we prove the case rω �= rN . Construct a function

F̃ (x) = F (xA−1) for x ∈ B
n,

where A is an orthogonal matrix such that rωA = rN and A−1 is the inverse matrix of A.
By [4], we know that F̃ (x) is also a harmonic function. Let F̃ (x) = Ũ(x) + iṼ (x). Note that
F̃ (0) = a + bi. Then by the result of Step 1, we have Ũ(rN) ≤ Ua,b,r(rN) with equality if
and only if F̃ (x) = Fa,b,r(x). Note that Ũ(rN) = U(rNA−1) = U(rω) and F̃ (x) = F (xA−1).
Thus U(rω) ≤ Ua,b,r(rN) with equality if and only if F (xA−1) = Fa,b,r(x). It is just that
U(rω) ≤ Ua,b,r(rN) with equality if and only if F (x) = Fa,b,r(xA).

Step 3 We will show that U(x) < Ua,b,r(rN) for |x| < r. By the result of Step 2 and
the maximum principle, we have U(x) ≤ Ua,b,r(rN) for |x| ≤ r. If the equality holds for
some x0 with |x0| < r, then U(x) must be equal to Ua,b,r(rN) identically for |x| ≤ r. Note
that if U(rN) = Ua,b,r(rN), then by the result of Step 1, we have U(x) = Ua,b,r(x). Thus
Ua,b,r(x) ≡ Ua,b,r(rN) for |x| ≤ r. However, it is impossible since Ua,b,r is not a constant. The
proof of the lemma is complete.

Lemma 2.4 For fixed 0 < r < 1 and x ∈ Bn, Fa,b,r(x) is defined as in (2.36). Then
Fa,b,r(x), as a function of variables a and b, is analytic in the real sense on the open half disk
{(a, b) : b > 0, a2 + b2 < 1} and is continuous to the real diameter.

Proof Let 0 < r < 1 and x ∈ Bn be fixed. It is obvious that Fa,b,r(x) is analytic in the
real sense on the open half disk, since it is determined there by the functions λ(r, a, b) and
μ(r, a, b) formulated in Lemma 2.1, which are analytic in the real sense on the open half disk
{(a, b) : b > 0, a2 + b2 < 1}. We only need to prove that Fa,b,r(x) is continuous at the points
of the real diameter. Note (2.36). Then we only need to prove that Ua,b,r(x) and Va,b,r(x) are
continuous at the points of the real diameter.

Let −1 < a0 < 1 be given. We want to prove that Ua,b,r(x) and Va,b,r(x) are continuous
at (a0, 0). It is just to prove that Ua,b,r(x) → Ua0,0,r(x) and Va,b,r(x) → Va0,0,r(x) as (a, b) →
(a0, 0).

Step 1 For the case (a, b) → (a0, 0) with b = 0, by (2.33)–(2.34), we only need to prove
ua,0,r(ω) → ua0,0,r(ω) almost everywhere on S as (a, 0) → (a0, 0). Recall that

ua,0,r(ω) =

⎧⎪⎨⎪⎩
1, ω ∈ S+

da
,

0, ω ∈ Sda ,

−1, ω ∈ S−
da

,

where S+
da

, Sda and S−
da

are defined as in (2.22)–(2.24). This shows that ua,0,r(ω) → ua0,0,r(ω)
almost everywhere on S as (a, 0) → (a0, 0).

Step 2 For the case (a, b) → (a0, 0) with b > 0, by (2.33)–(2.34), we only need to prove
ua,b,r(ω) → ua0,0,r(ω) for any ω ∈ S as (a, b) → (a0, 0) with b > 0.

First we want to prove that μ(r, a, b) → 0 as (a, b) → (a0, 0) with b > 0, where μ(r, a, b) is
defined as μ(a, b) in (2.13). Assume that μ(r, a, b) � 0 as (a, b) → (a0, 0) with b > 0. Then
there exists a sequence (ak, bk) → (a0, 0) with bk > 0 such that μk = μ(r, ak, bk) has a positive
lower bound since μ(r, a, b) > 0. Then by (2.2) and (2.13), we have∫

S

(
1 +

1
μ2

k

( 1
|rN − ω|n − λk

)2)− 1
2
dσ = I(r, λk, μk) = bk → 0,
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where λk = λ(r, ak, bk), λ(r, a, b) is defined as λ(μ(a, b), a) in (2.13). Thus λk → ∞. Assume
that λk → +∞. Then by (2.1) and (2.16)–(2.17), we obtain

uak,bk,r(ω) =

1
μk

( 1
|rN − ω|n − λk

)
(
1 +

1
μ2

k

( 1
|rN − ω|n − λk

)2) 1
2
→ −1

uniformly for ω ∈ S, and ak → −1, a contradiction.
Now, we want to prove that

λ(r, a, b) → λ0 =
1

Jn
a0

as (a, b) → (a0, 0) with b > 0, where Jn
a0

is defined as in (2.29). On the contrary, assume
that λ(r, a, b) � λ0 as (a, b) → (a0, 0) with b > 0. Then there is a sequence (ak, bk) → (a0, 0)
with bk > 0 such that λk = λ(r, ak, bk) → λ′ �= λ0. If λ′ = ∞, then, as above, |ak| → 1, a
contradiction. In the case that λ′ is finite, by (2.1) and (2.16)–(2.17), we have

uak,bk,r(ω) =

1
|rN − ω|n − λk(

μ2
k

( 1
|rN − ω|n − λk

)2) 1
2
→ sgn

{ 1
|rN − ω|n − λ′

}
,

ak =
∫

S

uak,bk,r(ω)dσ →
∫

S

sgn
{ 1
|rN − ω|n − λ′

}
dσ

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1, λ′ ≥ 1

(1 − r)n
,

1, λ′ ≤ 1
(1 + r)n

,

a′, λ′ =
1

Jn
a′

, −1 < a′ < 1, a′ �= a0.

This contradicts ak → a0.
It is proved that μ(r, a, b) → 0 and λ(r, a, b) → λ0 as (a, b) → (a0, 0) with b > 0. Thus,

ua,b,r(ω) → sgn
{ 1
|rN − ω|n − λ0

}
= ua0,0,r(ω).

Step 3 For the case that (a, b) → (a0, 0) with b < 0, by the result of Step 2, we know
that Ua,−b,r(x) → Ua0,0,r(x) and Va,−b,r(x) → Va0,0,r(x) as (a,−b) → (a0, 0) with −b > 0.
Note that Ua,−b,r(x) = Ua,b,r(x), Va,−b,r(x) = −Va,b,r(x) and Va0,0,r(x) ≡ 0. Then we have
Ua,b,r(x) → Ua0,0,r(x) and Va,b,r(x) → Va0,0,r(x) = 0 as (a, b) → (a0, 0) with b < 0.

It is proved that Ua,b,r(x) and Va,b,r(x) are continuous at (a0, 0). The lemma is proved.

3 Main Results

For −π ≤ β ≤ π and a real number δ, denote the straight line l(β, δ) and the closed half
plane P (β, δ) by

l(β, δ) = {w = u + iv : Re{we−iβ} = u cosβ + v sin β = δ}
and

P (β, δ) = {w = u + iv : Re{we−iβ} = u cosβ + v sinβ ≤ δ},
respectively.
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Theorem 3.1 Let 0 < r < 1 and 0 ≤ ρ < 1. Denote

Pβ = P (β, Uρ cos β,−ρ sin β,r(rN)), lβ = l(β, Uρ cos β,−ρ sin β,r(rN))),

and define

Er,ρ =
⋂

−π≤β≤π

Pβ , (3.1)

Γr,ρ = {w : w = fr,ρ(β) = eiβFρ cos β,−ρ sin β,r(rN),−π ≤ β ≤ π},

where Uρ cos β,−ρ sin β,r is defined as in (2.33) and (2.35), and Fρ cos β,−ρ sin β,r is defined as in
(2.36). Then

(1) for any harmonic function F such that F (Bn) ⊂ D and F (0) = ρ, we have F (Br) ⊂ Er,ρ;
(2) Er,ρ is a closed convex domain and is symmetrical with respect to the real axis, and ρ is

an interior point of Er,ρ;
(3) Γr,ρ is a convex Jordan closed curve and ∂Er,ρ = Γr,ρ;
(4) for any w′ ∈ Er,ρ, there is a harmonic function F such that F (Bn) ⊂ D, F (0) = ρ and

F (rN) = w′.

Proof (1) Denote

P ′
β = P (0, Uρ cos β,−ρ sin β,r(rN)), l′β = l(0, Uρ cos β,−ρ sin β,r(rN)).

Pβ and lβ are obtained from P ′
β and l′β by an anti-clockwise rotation of angle β, respectively.

Let F be a harmonic function such that F (Bn) ⊂ D and F (0) = ρ. For −π ≤ β ≤ π,
let Fβ = e−iβF . Then, Fβ(Bn) ⊂ D and Fβ(0) = ρ(cosβ − i sin β). Using Lemma 2.3 to the
harmonic function Fβ , we have Fβ(Br) ⊂ P ′

β and consequently, F (Br) ⊂ Pβ . This shows (1).
(2) It is obvious that Er,ρ is a closed convex set and is symmetrical with respect to the real

axis. We only need to prove that ρ is an interior point of Er,ρ.
First we want to prove that fr,ρ(β) ∈ ∂Er,ρ for −π ≤ β ≤ π. fr,ρ(β) ∈ lβ since

Fρ cos β,−ρ sin β,r(rN) ∈ l′β . Let G(x) = eiβFρ cos β,−ρ sin β,r(x). The harmonic function G satisfies
the conditions G(Bn) ⊂ D and G(0) = ρ. By (1), fr,ρ(β) = G(rN) ∈ Er,ρ. Note that Er,ρ ⊂ Pβ ,
lβ = ∂Pβ and fr,ρ(β) ∈ lβ which was proved above. Then we have fr,ρ(β) ∈ ∂Er,ρ.

For fr,ρ(0), fr,ρ(π), fr,ρ

(
π
2

)
and fr,ρ

( − π
2

)
, by Lemma 2.3, we have

fr,ρ(0) = Fρ,0,r(rN) = Uρ,0,r(rN) > Uρ,0,r(0) = ρ, (3.2)

fr,ρ(π) = −F−ρ,0,r(rN) = −U−ρ,0,r(rN) < −U−ρ,0,r(0) = ρ, (3.3)

Imfr,ρ

(π

2

)
= U0,−ρ,r(rN) = U0,ρ,r(rN) > U0,ρ,r(0) = 0,

Imfr,ρ

(
− π

2

)
= −U0,ρ,r(rN) < −U0,ρ,r(0) = 0.

Then ρ is an interior point of Er,ρ since Er,ρ is a convex set.
(3) First we want to prove that Γr,ρ is a Jordan closed curve. Γr,ρ is close and continuous

by Lemma 2.4. Assume that there exist 0 < β1 < β2 < π such that w0 = fr,ρ(β1) = fr,ρ(β2).
Then β2 − β1 < π and w0 is the vertex of the angular domain Pβ1 ∩ Pβ2 . Further, it is easy to
see that fr,ρ(β) = w0 for β1 < β < β2, since lβ ∩ ∂Er,ρ = w0 and fr,ρ(β) ∈ lβ ∩ ∂Er,ρ. fr,ρ(β)
is analytic on (0, π) in the real sense by Lemma 2.4. Then we have fr,ρ(β) = w0 for 0 < β < π

and by the continuity, fr,ρ(0) = fr,ρ(π) = w0. This is a contraction, since fr,ρ(0) > fr,ρ(π) by
(3.2)–(3.3). This shows that Γ+

r,ρ = {w = fr,ρ(β) : 0 ≤ β ≤ π} is a Jordan curve. For the same
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reason, Γ−
r,ρ = {w = fr,ρ(β) : −π ≤ β ≤ 0} is also a Jordan curve. Then Γr,ρ is a Jordan closed

curve.
For −π ≤ β ≤ π, it is proved in (2) that fr,ρ(β) ∈ ∂Er,ρ. Then Γr,ρ ⊂ ∂Er,ρ. Note that

∂Er,ρ must be a convex Jordan closed curve. Thus ∂Er,ρ = Γr,ρ.
(4) For w′ ∈ Er,ρ, draw a straight line l passing through w′ and intersect ∂Er,ρ at w1 and

w2. Let w′ = k1w1 + k2w2 with k1, k2 ≥ 0 and k1 + k2 = 1. There are two real numbers
β1 and β2 such that fr,ρ(β1) = w1 and fr,ρ(β2) = w2. Then the harmonic function F =
k1eiβ1Fρ cos β1,−ρ sin β1,r+k2eiβ2Fρ cos β2,−ρ sin β2,r satisfies F (Bn) ⊂ D, F (0) = ρ and F (rN) = w′.
The theorem is proved.

When ρ = 0, we have a corollary as follows, which is coincident with (1.10).

Corollary 3.1 Let 0 < r < 1. For any harmonic mapping F such that F (Bn) ⊂ D and
F (0) = 0, we have

F (Br) ⊂ DU(rN),

where U is the Poisson integral of the function that equals 1 on S+ and −1 on S−.

Proof By Theorem 3.1, we only need to prove that Er,0 = DU(rN). Further, by the
definition of Er,ρ in Theorem 3.1, we only need to prove that U0,0,r(rN) = U(rN). Note that
by (2.25),

u0,0,r(ω) =

⎧⎪⎨⎪⎩
1, ω ∈ S+,

0, ω ∈ S,

−1, ω ∈ S−.

Then by (2.33) we know that U0,0,r(rN) = U(rN). The corollary is proved.

From Theorem 3.1, we obtain Theorem 1.1, which is the general version of the above The-
orem 3.1.
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