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Abstract A high-codimension homoclinic bifurcation is considered with one orbit flip
and two inclination flips accompanied by resonant principal eigenvalues. A local active
coordinate system in a small neighborhood of homoclinic orbit is introduced. By analysis of
the bifurcation equation, the authors obtain the conditions when the original flip homoclinic
orbit is kept or broken. The existence and the existence regions of several double periodic
orbits and one triple periodic orbit bifurcations are proved. Moreover, the complicated
homoclinic-doubling bifurcations are found and expressed approximately.
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1 Introduction and Hypothesis

Homoclinic bifurcation is one of the origins of chaotic behaviors and has important applica-
tions in many fields. Amongst them, the flips cases began to catch attention in the last decade.
As is well-known, homoclinic orbits generically occur as a codimension-one phenomenon if the
genericity conditions are all kept. Otherwise, a higher codimension instance may take place,
such as the case of resonant eigenvalues, which was considered in [1]; orbit flips, that is, the
non-principal phenomenon, was treated in [2–3]; and the case of inclination flips or critically
twisted homoclinic orbits, for which one can refer to [4–5], etc, where the homoclinic-doubling
bifurcation, a codimension-two transition from an n-homoclinic to a 2n-homoclinic orbit, is
found to exist (see [6–10]). One may refer to the model for electro-chemical oscillators, or the
FitzHugh-Nagumo nerve-axon equations (see [11]), a Shimitzu-Morioka equation for convection
instabilities (see [12]), and a Hodgkin-Huxley model of thermally sensitive neurons (see [13])
for some applications.

Recently, the flip of heterodimensional cycles or accompanied by transcritical bifurcation
was studied (see [14–16]). The double and triple periodic orbit bifurcations were proved to exist,
and also some coexistence conditions for the homoclinic orbit and the periodic orbit were given.
But the research is not concerned with multiple flips or homoclinic-doubling bifurcations.

This paper produces mainly a study of the homoclinic bifurcation with multiple flips, con-
cretely one orbit flip and two inclination flips, which takes place at least in a four-dimensional
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system. Compared with the above work mentioned, the subject of multiple flips, especially
with resonance, is very challenging and difficult, because the codimension is higher and the re-
lationship of eigenvalues is more subtle. All these lead to the stronger degeneracy of bifurcation
equations. So it is extremely hard to solve the bifurcation equations. To well handle the prob-
lem, we choose the method initially established in [17], that is, first construct a local specifical
active coordinate system which reflects sufficiently the geometric structure of the corresponding
invariant manifolds in a small tubular neighborhood of the homoclinic orbit, then establish a
returning map, the Poincaré map, and get the associated successor function. By a delicate
analysis of the bifurcation equation, we get the existence of 1-periodic orbit, 1-homoclinic or-
bit, some double and triple periodic orbits, and particularly the 2n-homoclinic orbit and their
corresponding bifurcation surfaces.

The system to be considered is Cr as

ż = f(z) + g(z, μ), (1.1)

and its unperturbed system is

ż = f(z), (1.2)

where r ≥ 6, z ∈ R
4, μ ∈ R

l, l ≥ 4, 0 <| μ |� 1, f(0) = 0, and g(0, μ) = g(z, 0) = 0.
Suppose that (1.2) has an orbit Γ = {z = γ(t) : t ∈ R, γ(±∞) = 0} homoclinic to the hyper-

bolic equilibrium z = 0, which has two negative and two positive eigenvalues λ1, λ2,−ρ1,−ρ2

satisfying λ2 > λ1 > 0 > −ρ1 > −ρ2. Set W s (resp. W ss) and Wu (resp. Wuu) to be the stable
(resp. strong stable) manifold and unstable (resp. strong unstable) manifold of the equilibrium
z = 0, respectively. We further make three assumptions:

(H1) (Resonance) λ1(μ) ≡ ρ1(μ) for |μ| � 1, where λ1(0) = λ1 and ρ1(0) = ρ1.
(H2) (Orbit Flip) Define e+ = lim

t→−∞
γ̇(t)
|γ̇(t)| , e−s = lim

t→+∞
γ̇(t)
|γ̇(t)| . Then e+ ∈ T0W

u and

e−s ∈ T0W
ss are unit eigenvectors corresponding to λ1 and −ρ2 respectively, where T0W

u

(resp. T0W
ss) is the tangent space of the corresponding manifold Wu (resp. W ss) at the

saddle z = 0.
(H3) (Inclination Flips) Denote by e+

u and e− the unit eigenvectors corresponding to λ2 and
−ρ1 respectively, and let

Tγ(t)W
u → span{e−s , e+} as t → +∞, Tγ(t)W

s → span{e−, e+} as t → −∞.

Hypothesis (H3) means that in two directions when t → ±∞, the homoclinic orbit Γ comes
through two inclination flips. Under (H1)–(H3), the genericity conditions are all broken, and
therefore a codimension-4 homoclinic bifurcation occurs.

2 Normal Forms and Successor Functions

To well construct the Poincaré map and get the associated successor functions, we first need
to transform (1.1) into a normal form in some neighborhood U of the origin O. In fact, with
hypotheses (H1)–(H3) and the normal form theory, there must be a Cr−4 system as follows
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after four successive Cr to Cr−3 transformations in U (see [10] for the details),

ẋ = [λ1(μ) + a(μ)xy + o(|xy|)]x + O(u)[O(x2y) + O(v)],

ẏ = [−ρ1(μ) + b(μ)xy + o(|xy|)]y + O(v)[O(xy2) + O(u)],

u̇ = [λ2(μ) + c(μ)xy + o(|xy|)]u + x2H1(x, y, v),

v̇ = [−ρ2(μ) + d(μ)xy + o(|xy|)]v + y2H2(x, y, u),

(2.1)

with the assumption
(H4) H1(x, 0, 0) = 0, H2(0, y, 0) = 0.
Indeed we have

x2H1(x, y, v) = a1x
2+k1yk2 + a2x

2+k3vk4 + a3x
2+k5yk6vk7 + h.o.t.,

y2H2(x, y, u) = b1y
2+l1xl2 + b2y

2+l3ul4 + b3y
2+l5xl6ul7 + h.o.t.,

where 2 + ki − λ2
λ1

> max{ ρ2
λ1

, 2}, i = 1, 3, 5, k2 > max{ ρ2
λ1

, 2}, k4 > max{ 2λ1
ρ2

, 1} and k6 +
k7

ρ2
ρ1

> max{ ρ2
ρ1

, 2λ1
ρ1

}; 2 + li > ρ2
λ1

, i = 1, 3, 5, l2, l4 > 0 and l6 + l7
λ2
λ1

> 0; λ1(0) = λ1,
λ2(0) = λ2, ρ1(0) = ρ1 and ρ2(0) = ρ2; a(μ), b(μ), c(μ) and d(μ) are parameters depending on
μ. Equivalently, in U , we have

Wu
loc = {y = v = 0}, W s

loc = {x = u = 0},
W

u+
loc = Γ ∩ Wu

loc = {y = u = v = 0}, W
s−
loc = {x = u = 0, v = v(y)},

Wuu
loc = {x = y = v = 0}, W ss

loc = Γ ∩ W s
loc = {x = y = u = 0},

where z = (x, y, u, v) ∈ R
4, W

u+
loc (resp. W

s−
loc ) is the local weak unstable (resp. weak stable)

manifold which is tangent to e+ (resp. e−) at z = 0 and v(y) satisfies v(0) = v′(0) = 0.
Namely, we have straightened the corresponding invariant manifolds. It is possible to choose
some moment T , such that γ(−T ) = {δ, 0, 0, 0} and γ(T ) = {0, 0, 0, δ}, where δ is small enough
and {(x, y, u, v) : |x|, |y|, |u|, |v| < 2δ} ⊂ U .

Now we turn to consider the linear variational system of (1.2) and its adjoint system

ż = Df(γ(t))z, (2.2)

ż = −(Df(γ(t)))∗z. (2.3)

From the matrix theory, we immediately have the following lemma.

Lemma 2.1 There exists a fundamental solution matrix Z(t) = (z1(t), z2(t), z3(t), z4(t)) of
(2.2) satisfying

Z(−T ) =

⎛
⎜⎜⎝

w11 w21 0 w41

0 0 0 w42

w13 0 1 w43

w14 0 0 w44

⎞
⎟⎟⎠ and Z(T ) =

⎛
⎜⎜⎝

0 0 w31 0
w12 0 w32 1
1 0 w33 0
0 1 w34 0

⎞
⎟⎟⎠ ,

where z1(t) ∈ (Tγ(t)W
u)c ∩ (Tγ(t)W

s)c, z2(t) = − γ̇(t)
|γ̇(T )| ∈ Tγ(t)W

u ∩ Tγ(t)W
s, z3(t) ∈ Tγ(t)W

u

and z4(t) ∈ Tγ(t)W
s, and w14w21w31w42 
= 0, w21 < 0.

Proof Notice that the tangent subspace Tγ(−T )W
u is invariant and Wuu

loc ∩U is straightened
to be u axis. It is possible to choose z3(−T ) = (0, 0, 1, 0) since z3(t) ∈ Tγ(t)W

u. While for
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w31 
= 0, it is because lim
t→+∞Tγ(t)W

u = span{e+, e−s } and z3(T ) ∈ Tγ(T )W
u points to the x

axis.
As to zi(−T ) or zi(T ), i = 1, 2, 4, one may refer to [9–10] for the similar proof, and we omit

the details here.

Remark 2.1 The matrix (Z−1(t))∗ is a fundamental solution matrix of (2.3), denoted
by Φ(t) = (φ1(t), φ2(t), φ3(t), φ4(t)) = (Z−1(t))∗. Then φ1(t) ∈ (Tγ(t)W

u)c ∩ (Tγ(t)W
s)c is

bounded and tends to zero exponentially as | t |→ +∞.

Take a new coordinate N = N(t) = (n1(t), 0, n3(t), n4(t)) and define

s(t) � γ(t) + Z(t)N∗ = γ(t) + z1(t)n1 + z3(t)n3 + z4(t)n4. (2.4)

Substitute it into (1.1),

˙z(t) = ˙γ(t) + ˙Z(t)N∗ + Z(t)Ṅ∗ = f(γ(t) + Z(t)N∗) + g(γ(t) + Z(t)N∗, μ).

A simple calculation gives the system in a new coordinates,

ṅi = φ∗
i (t)gμ(γ(t), 0)μ + h.o.t., i = 1, 3, 4.

Now we want to construct a Poincaré map. Firstly choose two cross sections of Γ (see Figure
1),

S0 = {z = s(T ) : |x|, |y|, |u|, |v| < 2δ} ⊂ U,

S1 = {z = s(−T ) : |x|, |y|, |u|, |v| < 2δ} ⊂ U.

Then integrating both sides from −T to T of the above equation, we further achieve

ni(T ) = ni(−T ) + Miμ + h.o.t., i = 1, 3, 4, (2.5)

which means a regular map is well defined (see Figure 1(1)):

F1 : S1 → S0, N(−T ) �→ N(T ),

where M1 =
∫ +∞
−∞ φ∗

1(t)gμ(γ(t), 0)dt is Melnikov vector (see [9–10, 17]) and Mi =
∫ T

−T
φ∗

i (t)
gμ(γ(t), 0)dt, i = 3, 4.

�

�

�

� �

x

O
u

y

v

N(−T )
N(T )

F1

Γ

S1

S0

(1) F1: S1→S0

�

�

� �

x

O
u

y

v

Γ

(2) F0: S0→S1
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q1

F0

Figure 1 Transition Maps
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Set points s(T ) = q2j(x2j ,y2j,u2j ,v2j) ∈ S0, s(−T ) = q2j+1(x2j+1, y2j+1, u2j+1, v2j+1) ∈ S1

and N2j(T ) = (n2j,1,0,n2j,3,n2j,4), N2j+1(−T ) = (n2j+1,1,0,n2j+1,3, n2j+1,4), j = 0, 1, 2, · · · .
Then take t = −T and T respectively in (2.4), and it is easy to get the following relationship
between two coordinate systems:

n2j,1 = u2j − w33w
−1
31 x2j ,

n2j,3 = w−1
31 x2j ,

n2j,4 = y2j − w12u2j + (w12w33 − w32)w−1
31 x2j ,

(2.6)

n2j+1,1 = w−1
14 v2j+1 − w44w

−1
14 w−1

42 y2j+1,

n2j+1,3 = u2j+1 − w13w
−1
14 v2j+1 + (w13w44w

−1
14 − w43)w−1

42 y2j+1,

n2j+1,4 = w−1
42 y2j+1,

(2.7)

and

x2j+1 ≈ δ, v2j ≈ δ. (2.8)

Next, we set up a singular map F0 : S0 → S1, q0(x0, y0, u0, v0) �→ q1(x1, y1, u1, v1) (see
Figure 1(2)) induced by the solutions of system (2.1) in the neighborhood U . Firstly there is

x(t) = eλ1(μ)(t−T−τ)
{
x1 +

∫ t

T+τ

a(μ)e−λ1(μ)(s−T−τ)x2y ds
}

+ h.o.t.

= eλ1(μ)(t−T−τ)x1 + a(μ)
∫ t

T+τ

eλ1(μ)(t−s)e2λ1(μ)(s−T−τ)x2
1e

−ρ1(μ)(s−T )y0 ds + h.o.t.,

where τ is the time going from q0 ∈ S0 to q1 ∈ S1. Denote the Silnikov time s = e−λ1(μ)τ .
Then there is x0 � x(T ) = sx1 + O(x2

1y0s
2 ln s). By the same approach, one can also get the

values y1, u0 and v1 as below

y1 = y(T + τ) = s
ρ1(μ)
λ1(μ) y0 + O(x1y

2
0s

2 ln s),

u0 = u(T ) = s
λ2(μ)
λ1(μ) u1 + O(x1y0u1s

λ2(μ)
λ1(μ) +1 ln s),

v1 = v(T + τ) = s
ρ2(μ)
λ1(μ) v0 + O(x1y0v0s

ρ2(μ)
λ1(μ) +1 ln s).

(2.9)

It is exactly the definition of the map F0.
With all the equations from (2.5)–(2.9), the Poincaré map F � F1 ◦ F0 is well defined as

n21 = n11 + M1μ + h.o.t.

= w−1
14 δs

ρ2(μ)
λ1(μ) − w44w

−1
14 w−1

42 s
ρ1(μ)
λ1(μ) y0 + M1μ + h.o.t.,

n23 = n13 + M3μ + h.o.t.

= u1 − w13w
−1
14 δs

ρ2(μ)
λ1(μ) + (w13w44w

−1
14 − w43)w−1

42 s
ρ1(μ)
λ1(μ) y0 + M3μ + h.o.t.,

n24 = n14 + M4μ + h.o.t.

= w−1
42 s

ρ1(μ)
λ1(μ) y0 + M4μ + h.o.t.

Then we can get the associated successor function G(s, u1, y0) = (G1, G3, G4) = F (q0)− q0

G1 = w−1
14 δs

ρ2(μ)
λ1(μ) − u1s

λ2(μ)
λ1(μ) + w33w

−1
31 δs − w44w

−1
14 w−1

42 s
ρ1(μ)
λ1(μ) y0 + M1μ + h.o.t.,

G3 = u1 − w13w
−1
14 δs

ρ2(μ)
λ1(μ) − w−1

31 δs + (w13w44w
−1
14 − w43)w−1

42 s
ρ1(μ)
λ1(μ) y0 + M3μ + h.o.t.,

G4 = w−1
42 s

ρ1(μ)
λ1(μ) y0 − y0 + w12s

λ2(μ)
λ1(μ) u1 + (w32 − w12w33)w−1

31 δs + M4μ + h.o.t.

(2.10)
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3 Bifurcation Analysis

Notice that if the flying time τ of an orbit starting at a point in S0 to S1 is finite, then
a periodic orbit of (1.1) exists, and accordingly the Silnikov time s = e−λ1(μ)τ > 0; if τ is
infinite, then a homoclinic orbit exists, and accordingly s = 0. So from the establishment of
the associated successor function, it is enough to look for the nonnegative solutions s of (2.10)
to study the bifurcations.

First of all, G3 = 0 and G4 = 0 reveal that

u1 = w−1
31 δs − M3μ + h.o.t.,

y0 = (w32 − w33w12)w−1
31 δs + M4μ + h.o.t.

Putting them into G1 = 0, we get immediately the bifurcation equation

F (s, μ) ≡ −w44w
−1
14 w−1

42 M4μs − w32w44(w14w31w42)−1δs2 + w33w
−1
31 δs

+ w−1
14 δs

ρ2
λ1 − w−1

31 δs
λ2
λ1

+1 + M3μs
λ2
λ1 + M1μ + h.o.t. = 0. (3.1)

Here for concision, we have omitted the parameter μ in λi(μ) and ρi(μ), and replaced the
exponent ρ1

λ1
by one owing to (H1). Setting Q = (s, u1, y0) and G̃ = ∂(G1,G3,G4)

∂Q , we find that,
when w33 
= 0,

detG̃
∣∣∣Q=0
μ=0

=

∣∣∣∣∣∣
w33w

−1
31 δ 0 0

−w−1
31 δ 1 0

(w32 − w33w12)w−1
31 δ 0 −1

∣∣∣∣∣∣ 
= 0.

Therefore the implicit function theorem reveals that G = 0 has a unique solution

s = s(μ), u1 = u1(μ), y0 = y0(μ)

satisfying s(0) = 0, u1(0) = 0 and y0(0) = 0. So (1.1) has a unique periodic orbit as s > 0 or
a unique homoclinic orbit as s = 0, and they do not coexist. Furthermore, F (s, μ) = 0 has
explicitly a sufficiently small positive solution s = −δ−1w−1

33 w31M1μ+h.o.t. if w31w33M1μ < 0.
On the other hand, it has a solution s = 0 when μ ∈ H1 Δ= {μ | M1μ + h.o.t. = 0}. So we have
the following theorem.

Theorem 3.1 Suppose that M1 
= 0 and w33 
= 0 hold. Then (1.1) has at most one 1-
periodic orbit or one 1-homoclinic orbit in the neighborhood of Γ. Moreover, a 1-periodic orbit
exists (resp. does not exist) as μ is in the region defined by w31w33M1μ < 0 (resp. > 0) and a
1-homoclinic orbit exists as μ ∈ H1, but they do not coexist (see Figure 2(1–2)).

From Theorem 3.1, we know that (1.1) may have a codimension-1 orbit near Γ homoclinic to
the equilibrium O along x and y axes when μ ∈ H1, while a codimension-2 orbit flip homoclinic
orbit could exist if y0 = M4μ + h.o.t. = 0, where y0 is given by G4 = 0 (see Figure 2(3)). So
the following corollary is true.

Corollary 3.1 Assume that the hypotheses of Theorem 3.1 are still valid. Then (1.1) has
exactly a codimension-2 orbit flip homoclinic orbit near Γ as μ ∈ {μ | F (0, μ) = M1μ + h.o.t. =
0, y0 = M4μ + h.o.t. = 0}.

To well develop our study, we define two functions

H1(s, μ) = w44w
−1
42 δ−1M4μs + h.o.t.,
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H2(s, μ) = w14δ
−1M3μs

λ2
λ1 + s

ρ2
λ1 + w14δ

−1M1μ + h.o.t.,

where W = H1(s, μ) is a line and W = H2(s, μ) is a curve according to the variable s. Clearly
F (s, μ) = −w−1

14 δ(H1(s, μ) − H2(s, μ)).

�

�

��� �
u

y

O
1−P

x

v

(1) w31w33M1μ<0

Figure 2 Existence of the 1-periodic orbit (1-P) and the 1-homoclinic orbit (1-H)

�

�

��� �
u

y

O �

�

��� �

1−H

u

v

y

O

1−OH

v

x

(2) μ∈H1 (3) F (0,μ)=0

y0=M4μ+h.o.t.=0

x

Theorem 3.2 Suppose that Rank(M1, M3) = 2, λ2 < ρ2 < 2λ1 and w33 = 0 are valid.
Then

(1) (1.1) has a unique (resp. not any) 1-periodic orbit for M1μM3μ < 0 (resp. M1μM3μ > 0
and w14w42w44M1μM4μ < 0) and |M1μ| � |M3μ|

ρ2
ρ2−λ2 .

(2) (1.1) has a unique (resp. not any) 1-periodic orbit for w14M1μ < 0 (resp. w14M1μ > 0

and w42w44M4μ < 0) and |M3μ| � |M1μ|
ρ2−λ2

ρ2 .

Proof Denote s =
(− M1μ

M3μ

)λ1
λ2 + h.o.t. as w14M1μ < 0 and w14M3μ > 0. Then for

|M1μ| � |M3μ|
ρ2

ρ2−λ2 , there is |w14δ
−1M3μs

λ2
λ1 | � |s ρ2

λ1 |, so that H2(s, μ) = 0 has a small
positive solution s. That means the curve W = H2(s, μ) is monotonously increasing through

the line W = 0. Moreover, take s∗ =
(− 2M1μ

M3μ

)λ1
λ2 +h.o.t., H2(s∗, μ) = w14δ

−1M3μ
(− 2M1μ

M3μ

)
+

w14δ
−1M1μ+h.o.t. = −w14δ

−1M1μ+h.o.t. � w44w
−1
42 δ−1M4μ

(− 2M1μ
M3μ

)λ1
λ2 +h.o.t. = H1(s∗, μ).

So H1(s, μ) = H2(s, μ) must have a solution s̃ ∈ (s, s∗) (resp. s̃ ∈ (0, s)) as w42w44M4μ > 0
(resp. w42w44M4μ < 0) (see Figure 3(1) (resp. Figure 3(2))), or equivalently F (s, μ) = 0 has a
positive solution s̃, which means the existence of a 1-periodic orbit. For the case w14M3μ < 0,
w14M1μ > 0, the proof is similar (see Figure 3(3)). Thus (1) is true.

�

�

O

s

W=H2(s,μ)

W=H1(s,μ)

s s̃ s∗

(1) w14M3μ>0, w14M1μ<0

w42w44M4μ>0

Figure 3 Existence of 1-periodic orbit
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(3) w14M3μ<0, w14M1μ>0

w42w44M4μ<0

W W�
W=H2(s,μ)

(2) w14M3μ>0, w14M1μ<0

w42w44M4μ<0

W

�

W=H1(s,μ)
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Now if |M3μ| � |M1μ|
ρ2−λ2

ρ2 , we can verify that |w14δ
−1M3μs

λ2
λ1 | � |s ρ2

λ1 |, where s =

(−w14δ
−1M1μ)

λ1
ρ2 + h.o.t. for w14M1μ < 0, that is, the term s

ρ2
λ1 has a lower order in H2(s, μ),

so s is a positive solution of H2(s, μ) = 0. With the similar study of the solution of H1(s, μ) =
H2(s, μ), it is easy to get the result (2). This completes the proof.

Next we begin to look for the double 1-periodic orbit bifurcation. Redefine two functions

P (s, μ) = w44w
−1
42 δ−1M4μs − w14δ

−1M1μ + h.o.t.,

Q(s, μ) = s
ρ2
λ1 + w14δ

−1M3μs
λ2
λ1 + h.o.t.

We know that a double 1-periodic orbit bifurcation surface exists if and only if P (s, μ) =
Q(s, μ), P ′(s, μ) = Q′(s, μ) and P ′′(s, μ) 
= Q′′(s, μ) hold, that is,

w44w
−1
14 w−1

42 M4μs − M1μ = w−1
14 δs

ρ2
λ1 + M3μs

λ2
λ1 + h.o.t.,

w44w
−1
14 w−1

42 M4μ = ρ2λ
−1
1 w−1

14 δs
ρ2
λ1

−1 + λ2λ
−1
1 M3μs

λ2
λ1

−1 + h.o.t.,

0 
= ρ2(ρ2 − λ1)w−1
14 δs

ρ2
λ1

−2 + λ2(λ2 − λ1)M3μs
λ2
λ1

−2 + h.o.t.

(3.2)

In the region |M4μ| � |M3μ|
ρ2−λ1
ρ2−λ2 , the second equation of (3.2) yields a solution

s∗ =
( λ1w44M4μ

λ2w14w42M3μ

) λ1
λ2−λ1 + h.o.t.

as w42w44M4μ > 0 and w14M3μ > 0 or w42w44M4μ < 0 and w14M3μ < 0. Combining with
the value of s∗, the first equation of (3.2) gives a tangency condition, which corresponds to the
existence of the double periodic orbit bifurcation surface

SN1
1 : M1μ =

λ2 − λ1

λ1
M3μ

( λ1w44M4μ

λ2w14w42M3μ

) λ2
λ2−λ1 + h.o.t.

for w14M1μ > 0, w14M3μ > 0 and w42w44M4μ > 0 or w14M1μ < 0, w14M3μ < 0 and
w42w44M4μ < 0.

Notice that, when the tangency takes place, the line W = P (s, μ) lies under the curve
W = Q(s, μ). So if −w14M1μ increases (resp. decreases), the line must intersect the curve at
two (resp. no) sufficiently small positive points. Namely, F (s, μ) = 0 has two small positive
solutions, or equivalently, two 1-periodic orbits appear on the side of SN1

1 which points to
(sgnM3μ)M1.

If |M3μ| � |M4μ|
ρ2−λ2
ρ2−λ1 , the leading term of Q(s, μ) becomes s

ρ2
λ1 , and therefore the tangent

point is

s∗ =
(λ1w44M4μ

ρ2δw42

) λ1
ρ2−λ1 + h.o.t.

as w42w44M4μ > 0. Another double 1-periodic orbit bifurcation surface SN1
2 exists with the

expression

w14M1μ =
ρ2 − λ1

λ1
δ
(λ1w44M4μ

ρ2δw42

) ρ2
ρ2−λ1 + h.o.t.

confined to w42w44M4μ > 0 and w14M1μ > 0, which has the normal vector M1 at μ = 0.
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Furthermore, when 2λ1 > ρ2 > λ2, P ′′(s, μ) = Q′′(s, μ) is solvable with the solution

s∗ =
(
− λ2(λ2 − λ1)w14M3μ

ρ2(ρ2 − ρ1)δ

) λ1
ρ2−λ2 + h.o.t.

for w14M3μ < 0, which is a triple small positive solution of P (s, μ) = Q(s, μ). Multiplying both
sides of the second equation of (3.2) by s∗ and substituting it into the first one, we get easily
the triple 1-periodic orbit bifurcation surface

SN2 : w14M1μ =
(λ1 − ρ2)(ρ2 − λ2)δ

λ1λ2

(
− λ2(λ2 − λ1)w14M3μ

ρ2(ρ2 − ρ1)δ

) ρ2
ρ2−λ2 + h.o.t.,

M4μ =
ρ2(λ2 − ρ2)w42δ

λ1(λ2 − λ1)w44

(
− λ2(λ2 − λ1)w14M3μ

ρ2(ρ2 − ρ1)δ

) ρ2−λ1
ρ2−λ2 + h.o.t.

for w14M1μ < 0, w14M3μ < 0 and w42w44M4μ < 0.
Obviously, the hypersurface has a normal plane span{M1, M4} at μ = 0. To sum up, there

are the following results.

Theorem 3.3 Suppose that Rank(M1, M3, M4) = 3, 2λ1 > ρ2 > λ2 and w33 = 0 hold.
Then in the small neighborhood of the orgin of μ space,

(1) For w14M1μ > 0, w14M3μ > 0 and w42w44M4μ > 0 (or w14M1μ < 0, w14M3μ < 0 and
w42w44M4μ < 0), there exists a double 1-periodic orbit bifurcation surface SN1

1 as |M4μ| �
|M3μ|

ρ2−λ1
ρ2−λ2 or a double 1-periodic orbit bifurcation surface SN1

2 as |M3μ| � |M4μ|
ρ2−λ2
ρ2−λ1 .

Moreover, they both have the normal vector M1 at μ = 0 and bifurcate two 1-periodic orbits
on their side pointing to the direction (sgn M3μ)M1 or (sgnw14)M1 respectively, and have no
1-periodic orbits on the other side (see Figure 4).

(2) For w14M1μ < 0, w14M3μ < 0 and w42w44M4μ < 0, there exists a triple 1-periodic
orbit bifurcation surface SN2 with the normal plane span{M1, M4} at μ = 0, such that (1.1)
has exactly a triple 1-periodic orbit when μ ∈ SN2.

Figure 4 w14M1µ > 0, w14M3µ > 0, w42w44M4µ > 0
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Remark 3.1 There does not exist an n-multiple 1-periodic orbit bifurcation surface in any
case for n > 3.
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In the case of Miμ = 0 for i = 1, 3, 4, some fruitful bifurcation results are obtained.

Theorem 3.4 Suppose that 2λ1 > ρ2 > λ2 and w33 = 0 hold. Then there are the following
results:

(1) If M1 = 0, (1.1) has exactly a 1-homoclinic orbit, and moreover,
(a) (1.1) has a unique (resp. not any) 1-periodic orbit for w42w44M4μ > 0 (resp. w42w44M4μ

< 0 and w14M3μ > 0);
(b) for Rank(M3, M4) = 2, w14M3μ < 0 and w42w44M4μ < 0, there exists a double 1-

periodic orbit bifurcation surface

SN1
3 : M4μ = − (ρ2 − λ2)δw42

(λ2 − λ1)w44

(
− (λ2 − λ1)w14M3μ

(ρ2 − λ1)δ

) ρ2−λ1
ρ2−λ2 + h.o.t.

with a normal vector M4 at μ = 0, which undergoes two 1-periodic orbits when μ lies on the
side of SN1

3 pointing to the direction (sgn w42w44)M4 and no undergoes 1-periodic orbit in the
opposite direction.

(2) If M3 = 0,
(a) (1.1) has exactly a (resp. not any) 1-periodic orbit for w14M1μ < 0 (resp. w14M1μ > 0

and w42w44M4μ < 0);
(b) for Rank(M1, M4) = 2, w14M1μ > 0 and w42w44M4μ > 0, there exists a double 1-

periodic orbit bifurcation surface

SN1
4 : w14M1μ =

ρ2 − λ1

λ1δ

(λ1w44M4μ

ρ2δw42

) ρ2
ρ2−λ1 + h.o.t.

with a normal vector M1 at μ = 0, which bifurcates two 1-periodic orbits when μ locates on the
side of SN1

4 directed by −(sgnw14)M1 and bifurcates no 1-periodic orbit on the opposite side.
(3) If M4 = 0,
(a) (1.1) has exactly a (resp. not any) 1-periodic orbit for w14M1μ < 0 (resp. w14M1μ > 0

and w14M3μ > 0);
(b) for Rank(M1, M3) = 2, w14M1μ > 0 and w14M3μ < 0, there exists a double 1-periodic

orbit bifurcation surface

SN1
5 : w14M1μ =

ρ2 − λ2

λ2
δ
(
− λ2w14M3μ

ρ2δ

) ρ2
ρ2−λ2 + h.o.t.

with a normal vector M1 at μ = 0, which bifurcates two 1-periodic orbits when μ locates on the
side of SN1

5 directed by −(sgnw14)M1 and bifurcates no 1-periodic orbit on the opposite side.
(4) If M2

1 +M2
3 = 0 or M2

1 +M2
4 = 0, (1.1) has exactly a 1-homoclinic orbit and a 1-periodic

orbit for w42w44M4μ > 0 or w14M3μ < 0 respectively.
(5) If M2

3 + M2
4 = 0, (1.1) has only a 1-periodic orbit for w14M3μ < 0.

(6) If M2
1 + M2

3 + M2
4 = 0, (1.1) has only a 1-homoclinic orbit.

Proof Recall that for M1 = 0, (3.1) becomes

F (s, μ) ≡ s(−w44w
−1
14 w−1

42 M4μ + M3μs
λ2
λ1

−1 + w−1
14 δs

ρ2
λ1

−1 + h.o.t.) = 0.
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Obviously, it has a zero solution that corresponds to a 1-homoclinic orbit. Set s
λ2−λ1

λ1 = h,
and

P1(h, μ) = δ−1w44w
−1
42 M4μ − δ−1w14M3μh + h.o.t.,

Q1(h, μ) = h
ρ2−λ1
λ2−λ1 + h.o.t.

Similar to the proof of Thereom 3.2, it is easy to get a 1-periodic orbit as w42w44M4μ > 0
owing to the relative position of the line W = P1(h, μ) and the curve W = Q1(h, μ). Thereby
the claim (1)(a) holds.

Further, equations P1(h, μ) = Q1(h, μ), P ′
1(h, μ) = Q′

1(h, μ) and P ′′
1 (h, μ) 
= Q′′

1(h, μ) ex-
actly determine the double 1-periodic orbit bifurcation surface SN1

3 for w14M3μ < 0 and

w42w44M4μ < 0 with the corresponding tangent point h =
( − (λ2−λ1)w14M3μ

(ρ2−λ1)δ

)λ2−λ1
ρ2−λ2 + h.o.t.

Without difficulty, on the side of SN1
3 which points to (sgnw42w44)M4, there appear two 1-

periodic orbits. Now (1) is complete.
For the cases (2) and (3), the proofs are very close to those in Theorems 3.2–3.3 or as

above. We omit the details here and only give the tangent points of the corresponding double
1-periodic orbit bifurcation surface. When M3 = 0, set

P2(s, μ) = w44w
−1
42 δ−1M4μs − w14δ

−1M1μ + h.o.t.,

Q2(s, μ) = s
ρ2
λ1 + h.o.t.

So P ′
2(s, μ) = Q′

2(s, μ) gives a small positive solution s∗ =
(

λ1w44M4μ
ρ2w42δ

) λ1
ρ2−λ1 + h.o.t. for

w42w44M4μ > 0. P2(s∗, μ) = Q2(s∗, μ) subsequently defines SN1
4 .

In the case M4 = 0, one may set another kind of curves

P3(h, μ) = −δ−1w14M3μh − δ−1w14M1μ + h.o.t.,

Q3(h, μ) = h
ρ2
λ2 + h.o.t.,

where s
λ2
λ1 = h, and the relevant tangent point is h∗ =

(− λ2w14M3μ
ρ2δ

) λ2
ρ2−λ2 +h.o.t. for w14M3μ <

0.
As to the case (4), if M2

1 +M2
3 = 0, F (s, μ) = s(−w44w

−1
42 w−1

14 M4μ+w−1
14 δs

ρ2−λ1
λ1 +h.o.t.) = 0

has two solutions s1 = 0 and s2 =
(

w44M4μ
w42δ

) λ1
ρ2−λ1 + h.o.t. for w42w44M4μ > 0.

If M2
1 + M2

4 = 0, F (s, μ) = s
λ2
λ1 (w−1

14 δs
ρ2−λ2

λ1 + M3μ + h.o.t.) = 0 gives s1 = 0 and s3 =

(−w14δ
−1M3μ)

λ1
ρ2−λ2 + h.o.t. for w14M3μ < 0, corresponding to a 1-homoclinic orbit and a

1-periodic orbit respectively.
The last claim is very clear. We finish the proof here.

From now on, we try to study the homoclinic doubling bifurcation. To begin with, we need
to get the second returning successor function F ◦ F (q0) − q0. Reset τ1 and τ2 to be the time
going from q0(x0, y0, u0, v0) ∈ S0 to q1(x1, y1, u1, v1) ∈ S1 and from q2(x2, y2, u2, v2) ∈ S0 to
q3(x3, y3, u3, v3) ∈ S1 respectively, s1 = e−λ1τ1 , s2 = e−λ1τ2 , and F0(q0) = q1, F1(q1) = q2,
F0(q2) = q3, F1(q3) = q4 = q0. Repeat the process of the establishment of (2.10), F ◦F (q0)− q0

can be expressed as G2(s1, s2, u1, u3, y0, y2) = (G1
1,G

3
1,G

4
1,G

1
2,G

3
2,G

4
2):

G1
1 = w−1

14 δs
ρ2
λ1
1 − w44w

−1
14 w−1

42 s
ρ1
λ1
1 y0 − u3s

λ2
λ1
2 + w33w

−1
31 δs2 + M1μ + h.o.t.,
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G3
1 = u1 − w13w

−1
14 δs

ρ2
λ1
1 − w−1

31 δs2 + (w13w44w
−1
14 − w43)w−1

42 s
ρ1
λ1
1 y0 + M3μ + h.o.t.,

G4
1 = w−1

42 s
ρ1
λ1
1 y0 − y2 + w12s

λ2
λ1
2 u3 + (w32 − w12w33)w−1

31 δs2 + M4μ + h.o.t.,

G1
2 = w−1

14 δs
ρ2
λ1
2 − w44w

−1
14 w−1

42 s
ρ1
λ1
2 y2 − u1s

λ2
λ1
1 + w33w

−1
31 δs1 + M1μ + h.o.t.,

G3
2 = u3 − w13w

−1
14 δs

ρ2
λ1
2 − w−1

31 δs1 + (w13w44w
−1
14 − w43)w−1

42 s
ρ1
λ1
2 y2 + M3μ + h.o.t.,

G4
2 = w−1

42 s
ρ1
λ1
2 y2 − y0 + w12s

λ2
λ1
1 u1 + (w32 − w12w33)w−1

31 δs1 + M4μ + h.o.t.

When w33 = 0 and 2λ1 > ρ2 > λ2, eliminating y0, u1, y2 and u3 from Gj
i = 0, i = 1, 2 and

j = 3, 4, and putting them into G1
1 = 0 and G1

2 = 0, we obtain

w−1
14 δs

ρ2
λ1
1 − w44w

−1
14 w−1

42 M4μs1 − w−1
31 δs1s

λ2
λ1
2 + M3μs

λ2
λ1
2 + M1μ + h.o.t. = 0, (3.3)

w−1
14 δs

ρ2
λ1
2 − w44w

−1
14 w−1

42 M4μs2 − w−1
31 δs2s

λ2
λ1
1 + M3μs

λ2
λ1
1 + M1μ + h.o.t. = 0. (3.4)

Notice that a 2-homoclinic orbit Γ2 means that the orbit returns twice near the singular point
in finite and infinite time respectively, which corresponds to the solution s1 = 0 and s2 > 0 or
s1 > 0 and s2 = 0 of (3.3) and (3.4). So it is sufficient to seek the small solutions of s1 = 0 and
s2 > 0 by the symmetry of G2. Therefore

M3μs
λ2
λ1
2 + M1μ + h.o.t. = 0, (3.5)

s
ρ2
λ1
2 − w44w

−1
42 δ−1M4μs2 + δ−1w14M1μ + h.o.t. = 0. (3.6)

(3.5) has a solution s2 =
(− M1μ

M3μ

)λ1
λ2 + h.o.t. for M1μM3μ < 0 and |M1μ|

|M3μ| sufficiently small.
With this, (3.6) determines a 2-homoclinic orbit bifurcation surface in the region {μ | |M1μ| �
|M3μ|

ρ2
ρ2−λ2 }

H2 : w14M1μ = −δ
(
− M1μ

M3μ

) ρ2
λ2 + w44w

−1
42 M4μ

(
− M1μ

M3μ

) λ1
λ2 + h.o.t.

for M1μM3μ < 0 and (w14M1μ)w42w44M4μ > 0, which has a normal vector M1 at μ = 0.
Going through the same procedure of finding H2, one can still find a 4-homoclinic orbit

bifurcation surface H4 (see [9–10]). Concretely, we first have, parallel to (3.3) and (3.4),

w−1
14 δs

ρ2
λ1
1 − w44w

−1
14 w−1

42 M4μs1 − w−1
31 δs1s

λ2
λ1
2 + M3μs

λ2
λ1
2 + M1μ + h.o.t. = 0,

w−1
14 δs

ρ2
λ1
2 − w44w

−1
14 w−1

42 M4μs2 − w−1
31 δs2s

λ2
λ1
3 + M3μs

λ2
λ1
3 + M1μ + h.o.t. = 0,

w−1
14 δs

ρ2
λ1
3 − w44w

−1
14 w−1

42 M4μs3 − w−1
31 δs3s

λ2
λ1
4 + M3μs

λ2
λ1
4 + M1μ + h.o.t. = 0,

w−1
14 δs

ρ2
λ1
4 − w44w

−1
14 w−1

42 M4μs4 − w−1
31 δs4s

λ2
λ1
1 + M3μs

λ2
λ1
1 + M1μ + h.o.t. = 0.

(3.7)

Without loss of generality, it is enough to consider the solution s1 = 0 and si > 0, i = 2, 3, 4.
Then (3.7) is

M3μs
λ2
λ1
2 + M1μ + h.o.t. = 0, (3.8)



Bifurcation Analysis of the Multiple Flips Homoclinic Orbit 103

w−1
14 δs

ρ2
λ1
2 − w44w

−1
14 w−1

42 M4μs2 − w−1
31 δs2s

λ2
λ1
3 + M3μs

λ2
λ1
3 + M1μ + h.o.t. = 0, (3.9)

w−1
14 δs

ρ2
λ1
3 − w44w

−1
14 w−1

42 M4μs3 − w−1
31 δs3s

λ2
λ1
4 + M3μs

λ2
λ1
4 + M1μ + h.o.t. = 0, (3.10)

w−1
14 δs

ρ2
λ1
4 − w44w

−1
14 w−1

42 M4μs4 + M1μ + h.o.t. = 0. (3.11)

Evidently (3.8) gives s2 =
(− M1μ

M3μ

)λ1
λ2 +h.o.t. for M1μM3μ < 0. And s4 = w14w42M1μ

w44M4μ +h.o.t.
from (3.11) for w14w42w44M1μM4μ > 0. (3.10) permits

s3 =
w14w42M1μ

w44M4μ
− w14w42δu

w44M4μ

(w14w42M1μ

w44M4μ

)λ2
λ1 + h.o.t.

With all these values of si for i = 2, 3, 4, (3.9) finally defines the 4-homoclinic orbit bifurca-
tion surface with the same principal part of H2:

H4 : w14M1μ = −δ
(
− M1μ

M3μ

) ρ2
λ2 + w44w

−1
42 M4μ

(
− M1μ

M3μ

) λ1
λ2 + h.o.t.

for M1μM3μ < 0 and (w14M1μ)w42w44M4μ > 0, which has a vector M1 at μ = 0.
If we repeat the process, the 2n-homoclinic orbit bifurcation surface H2n

can be achieved

in the approximate form w14M1μ = w44w
−1
42 M4μ

( − M1μ
M3μ

)λ1
λ2 + h.o.t. To sum up, we conclude

the following.

Theorem 3.5 Suppose that Rank(M1, M3, M4) = 3, 2λ1 > ρ2 > λ2 and w33 = 0 hold.
Then in the neighborhood of the origin of μ space, there exists a 2n-homoclinic orbit bifur-

cation surface H2n

: w14M1μ = w44w
−1
42 M4μ

( − M1μ
M3μ

)λ1
λ2 + h.o.t. for |M1μ| � |M3μ|

ρ2
ρ2−λ2 ,

(w14M1μ)w42w44M4μ > 0 and M1μM3μ < 0, which has the normal vector M1 at μ = 0.
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