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1 Introduction

Bochner [1–3] initiated a method, i.e., the well-known “Bochner technique”, which used
the Laplace operator and the general maximum principle of Hopf to deal with the relation
between vector or tensor fields and the curvature of manifolds, and got the global properties of
manifolds. From then on, the Bochner technique became a very useful method in geometrical
study. Both in Riemannian and Kählerian manifolds, the Bochner technique was discussed in
details in [4–8]. The Bochner technique is used to integrate the Laplacian of the pointwise
square norm of a harmonic form over a compact Riemannian manifolds, yielding thereby two
terms. One is the global square norm of the covariant derivatives of the harmonic form. The
other involves the curvature tensor. Under the suitable condition of the curvature tensor, it can
be obtained that the harmonic form must be zero or parallel. It was applied to (0, q)-forms on a
Kähler manifold with values in Hermitian holomorphic line bundles, due to Kodaira [9]. Later,
the technique was called as the Bochner-Kodaira technique. The Bochner-Kodaira technique
is the important method in differential geometry and is variated as the ∂∂ Bochner-Kodaira
technique due to Siu [10–11].

Recently, under the initiation of S. S. Chern, the global differential geometry of real and
complex Finsler manifolds gained a great development (see [12–17]), Abate and Pateizio [16]
set up a Cartan-Finsler connection in real Finsler manifolds and a Chern-Finsler connection in
complex Finsler manifolds. The main purpose of this paper is to generalize the Bochner-Kodaira
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techniques from Kähler manifolds to Kähler Finsler manifolds, and the vanishing theorem is
obtained by using the ∂H∂H Bochner-Kodaira technique.

2 Complex Finsler Manifolds

Let M be a compact complex manifold of dimension n, and π : T 1,0M →M , where T 1,0M

is the holomorphic tangent bundle of M . We denote by o : M → T 1,0M the zero section of
T 1,0M , and set M̃ = T 1,0M\o(M), which means the holomorphic tangent bundle minus its
zero section. Let z = (z1, · · · , zn) and (z, v) = (z1, · · · , zn, v1, · · · , vn) be the local coordinates
on M and the induced complex coordinates on T 1,0M , respectively. For simplicity, we denote

∂μ =
∂

∂zμ
, ∂̇α =

∂

∂vα
, 1 ≤ μ, α ≤ n,

which give a local holomorphic frame field of T 1,0M̃ .
Since there is a natural C∗ = C\{0} acting on TM by scalar multiplication, the projective

tangent bundle PTM can be defined by PTM = {(z, [v]) | (z, [v]) = (z, λv), ∀(z, v) ∈ M̃, λ ∈
C∗}. The local coordinate system (z, v) for TM may also be considered as a local coordinate
system for PTM as long as v is considered as a homogeneous coordinate system. The reason
for working on PTM rather than TM is that PTM is compact, if M is compact.

Let F be a strongly pseudoconvex complex Finsler metric defined on T 1,0M , that is F :
T 1,0M −→ R+ is a continuous function satisfying the following conditions (see [16]):

(i) G = F 2 is smooth on M̃ ;
(ii) F (v) > 0 for all v ∈ M̃ ;
(iii) F (λv) = |λ|F (v) for all v ∈ T 1,0M and λ ∈ C;
(iv) The Hermitian matrix (Gαβ) is positive definite on M̃ , where

Gαβ =
∂2G

∂vα∂vβ
,

and the derivatives with respect to the z-coordinates will be denoted by indexes after a semi-
colon, for instance,

G;μν =
∂2G

∂zμ∂zν
or Gα;ν =

∂2G

∂zν∂vα
.

A manifold M endowed with a strongly pseudoconvex complex Finsler metric will be called
a strongly pseudoconvex complex Finsler manifold.

Let TCM̃ be the complexity of the real tangent bundle TRM̃ of M̃ , and TCM be the com-
plexity of the real tangent bundle TRM of M . Then the differential dπ : TCM̃ −→ TCM of
π : M̃ −→M defines the vertical bundle V over M̃ by

V = Kerdπ ∩ T 1,0M̃ ⊂ T 1,0M̃,

which is a holomorphic vector bundle of rank n over M̃ . A local frame field of V is given by
{∂̇1, · · · , ∂̇n} and there is a well-defined Hermitian metric on V induced by F given by

〈V1, V2〉v = Gαβ(z, v)V α
1 V

β

2 , (2.1)

where (z, v) ∈ M̃, V1, V2 ∈ Vv with Vj = V α
j ∂̇α (j = 1, 2). Then there is a unique Chern-

Finsler connection D associated to the Hermitian structure induced by F . Then the Chern
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Finsler connection is the Hermitian connection of the holomorphic vector bundle (V〈 , 〉). Let
H ⊂ T 1,0M̃ be the complex horizontal bundle associated to the Chern Finsler connection, and
the natural local frame {δ1, · · · , δn} for H is given by

δμ = ∂μ − Γα
;μ∂̇α,

where Γα
;μ = GταGτ ;μ are called the nonlinear connection coefficients associated to (M,F ).

In this paper, we shall only use the adapted frame {δμ, ∂̇α} for T 1,0M̃ and its dual frame
{dzμ, δvα}, where δvα = dvα +Γα

;μdz
μ, because they have a simple rule of transformation under

the change of coordinates.
Using the complex horizontal map Θ : V → H, the Hermitian metric 〈 , 〉 on V can be

transferred on H by setting 〈H1, H2〉v = 〈Θ−1(H1),Θ−1(H2)〉v for v ∈ M̃ and H1, H2 ∈ Hv.
Note that we shall use v ∈ M̃ rather than (z, v) ∈ M̃ for simplicity, when there is no chance
of confusion. The Hermitian metric 〈 , 〉 on T 1,0M̃ is defined by requiring H to be orthogonal
to V and the Chern Finsler connection extends to the complex linear connection still called the
Chern Finsler connection on M̃ , which is compatible with the Hermitian metric 〈 , 〉 on T 1,0M̃ ,
but is not torsion free in general. It has H-valued (2,0)-torsion θ and V-valued (1,1)-torsion τ ,
and θ relates to the Kählerianity of the Chern Finsler connection D. More precisely, a strongly
pseudoconvex complex Finsler metric F is called strongly Kähler if and only if

Γα
μ;ν − Γα

ν;μ = 0, (2.2)

called Kähler if and only if
(Γα

μ;ν − Γα
ν;μ)vμ = 0, (2.3)

and called weakly Kähler if and only if

Gα(Γα
μ;ν − Γα

ν;μ)vμ = 0. (2.4)

Recently, Chen and Shen [18] showed that a Kähler-Finsler metric must be a strongly
Kähler-Finsler metric. Then, it is necessary to consider the Kählerian case in this paper.

By defining D(X) = DX and the complex linearity, the Chern Finsler connection D can
be extended to the whole complex vector bundle TCM̃ and its dual complex vector bundle
T ∗

C
M̃ by requiring Dϕ(X) + ϕ(DX) = dϕ(X) for every ϕ ∈ χ(T ∗

C
M̃) and X ∈ χ(TCM̃).

Thus the Chern Finsler connection can also be extended to the complex linear connection
D : χ(T r,s

C
M̃) → χ(T ∗

C
M̃ ⊗ T r,s

C
M̃) in the usual way. All the extended connections are still

called the Chern Finsler connection with the conjugation and preserving the type. Let ∇ be
the covariant differentiation defined by D. Since the complex Finsler fundamental tensor Gαβ

is both H-metrical and V-metrical, i.e.,

∇δγGαβ = 0, ∇∂̇γ
Gαβ = 0, (2.5)

Gαβ are also both H-metrical and V-metrical.

3 Bochner-Kodaira Techniques for the Pull-Back Bundles of Holomor-
phic Vector Bundles

The principal step in the Bochner-Kodaira technique is the computation of the Laplacian.
There are some results about the Laplacian and their applications for horizontal (p, q)-forms



128 J. X. Xiao, C. H. Qiu and T. D. Zhong

on the base manifold or the tangent bundle (see [19–23]). In preparation, we will give simple
statements for the Laplacian for the horizontal (p, q)-forms on PTM, and omit the complicated
computation. In this section, we focus on the horizontal Laplacian �H of the horizontal (p, q)-
form with the value in the Hermitian holomorphic vector bundles on PTM. Then, we will give
the expression of �H explicitly in terms of the horizontal covariant derivatives of the Chern
Finsler connection, which was called the Bochner-Kodaira technique.

Let (M,F ) be a compact Kähler Finsler manifold. It is known that F induces naturally a
non-degenerated Hermitian metric on the total space PTM,

G̃ = Gαβdzα ⊗ dzβ + (lnG)αβδv
α ⊗ δvβ .

Denote
ωV =

√
−1(lnG)αβδv

α ∧ δvβ , ωH =
√
−1Gαβdz

α ∧ dzβ .

Then the invariant volume form of PTM is given by

dv =
ωn
H
n!

∧ ωn−1
V

(n− 1)!
.

If we denote by dσ the pure vertical form of the volume form of PTM, thus

dσ =
ωn−1
V

(n− 1)!
,

and then
dv =

ωn
H
n!

∧ dσ.

Let Ap,q be the space of horizontal (p, q)-forms on PTM, that is, those coefficients of every
ϕ ∈ Ap,q are zero homogeneous with respect to fibre coordinates, and the elements of Ap,q in
local coordinates are

ϕ =
1
p!q!

∑
ϕα1···αpβ1···βq

dzα1 ∧ · · · ∧ dzαp ∧ dzβ1 ∧ · · · ∧ dzβq ,

ψ =
1
p!q!

∑
ψc1···cpd1···dq

dzc1 ∧ · · · ∧ dzcp ∧ dzd1 ∧ · · · ∧ dzdq .

Then the pointwise inner product is given by

〈ϕ, ψ〉 =
1
p!q!

∑
ϕα1···αpβ1···βq

ψc1···cpd1···dq
Gc1α1 · · ·GcpαpGβ1d1 · · ·Gβqdq . (3.1)

If we denote

Ap = (α1, · · · , αp), α1 < α2 < · · · < αp, 1 ≤ αi ≤ n,

An−p = (αp+1, · · · , αn), αp+1 < · · · < αn, 1 ≤ αi ≤ n,

where (α1, · · · , αp, αp+1, · · · , αn) is a permutation of (1, 2, · · · , n). Similarly, for Bq = (β1, · · · ,
βq), Bn−q = (βq+1, · · · , βn); Cp = (c1, · · · cp), Cn−p = (cp+1, · · · , cn); Dq = (d1, · · · , dq),
Dn−q = (dq+1, · · · , dn), and

GCpAp = Gc1α1 · · ·Gcpαp , GBqDq = Gβ1d1 · · ·Gβqdq ,
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then
〈ϕ, ψ〉 = ϕApBq

ψCpDq
GCpApGBqDq = ϕApBq

ψApBq , (3.2)

where ψApBq = ψCpDq
GCpApGBqDq .

Notice that there is a global inner product in Ap,q given by

(ϕ, ψ)PTM =
∫

PTM

〈ϕ, ψ〉dv. (3.3)

Then we can define the operator ∗ : Ap,q → An−q,n−p by the relation∫
PTM

ϕ ∧ ∗ψ ∧ dσ = (ϕ, ψ)PTM. (3.4)

It is easy to obtain that the operator ∗ has the following properties:
(i) ∗ψ = ∗ψ;
(ii) ∗ ∗ ψ = (−1)p+qψ.

Under the local coordinate, if ψ =
∑
ψApBq

dzAp ∧ dzBq ,

∗ψ = (i)n(−1)
1
2n(n−1)+pn

∑
GAqAn−qBpBn−p

GCqAqGBpDpψDpCq
dzAn−q ∧ dzBn−p , (3.5)

where GAqAn−qBpBn−p
= Gα1···αqαq+1···αnβ1···βpβp+1···βn

= det(Gαiβk
).

If (M,F ) is a Kähler Finsler manifold, then by the symmetry of the horizontal connection
coefficients: Γα

μ;ν = Γα
ν;μ, the horizontal derivatives can be replaced by the horizontal covariant

derivatives, that is,

∂Hϕ =
1
p!q!

∑
∇δμϕα1···αpβ1···βq

dzμ ∧ dzα1 ∧ · · · ∧ dzβq , (3.6)

∂Hϕ =
1
p!q!

∑
∇δμϕα1···αpβ1···βq

dzμ ∧ dzα1 ∧ · · · ∧ dzβq . (3.7)

Let ∂∗H and ∂
∗
H be the adjoint operators of ∂H and ∂H with respect to the global inner product

in Ap,q, respectively, that is,

(∂Hψ, ϕ) = (ψ, ∂∗Hϕ), (∂Hψ, ϕ) = (ψ, ∂
∗
Hϕ),

which satisfy ∂∗H = − ∗ (∂H∗) and ∂
∗
H = − ∗ (∂H∗). Then by solving (∂Hψ, ϕ) = (ψ, ∂

∗
Hϕ), one

can get
(∂

∗
Hϕ)α1···αpβ1···βq

= −(−1)p
∑

Gβμ∇δβ
ϕα1···αpμβ1···βq

. (3.8)

By defining the horizontal Laplacian operator

�H = ∂H∂
∗
H + ∂

∗
H∂H, (3.9)

we can get its expression explicitly in terms of the horizontal covariant derivatives of the Chern
Finsler connection.

Theorem 3.1 (see [21]) For any ϕ ∈ Ap,q,

(�Hϕ)α1···αpβ1···βq

= −Gμν∇δν∇δμϕα1···αpβ1···βq
+

∑
ν,μ

q∑
i=1

(−1)i−1Gμν [∇δν ,∇δβi
]ϕ

α1···αpμβ1···β̂i···βq

. (3.10)
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In the following, we emphasize on deriving the horizontal Laplacian operator for the horizon-
tal (p, q)-form with value in the Hermitian holomorphic vector bundle on PTM by extending
the operators ∂H, ∂H, ∗, ∂

∗
H, ∂

∗
H, without confusion, and we continue to use all the symbols,

respectively.
Let Ẽ be a Hermitian holomorphic vector bundle over PTM with the Hermitian metric Lαβ.

In local coordinates, the curvature operator of metric Lαβ is given by (see [6, p. 117] and [16,
p. 93])

Ωα
β = ∂(Lαγ∂Lβγ),

where

∂ = δνdz
ν + ∂̇αψ

α
, ∂ = δνdz

ν + ∂̇αψ
α,

δν = ∂ν − Γα
ν ∂̇α, ψα = dvα + Γα

μdz
μ.

The coefficients of the horizontal part of Ωα
β are

Ωαβ;μν = δμδνLαβ + (δμΓλ
ν )(∂̇λLαβ) − Lστ (δμLατ )(δνLσβ), (3.11)

so we can define a horizontal curvature form of Ẽ by

Θαβ = −
√
−1Ωαβ;μνdzμ ∧ dzν . (3.12)

If the strongly pseudoconvex complex Finsler manifold is a Kähler manifold, then the nonlinear
connection Γα

ν = 0, and the horizontal curvature form (3.12) reduces to an ordinary curvature
form of the Kähler manifold (see [10]). Furthermore, for a Kähler Finsler manifold, there exists a
normal coordinate system (see [24–25]), for which one also has the nonlinear connection Γα

ν = 0,
and in this case, the horizontal curvature form (3.12) takes the form of a Kähler manifold, that
is, in the normal coordinate system, the Kähler Finsler manifold is very similar to a Kähler
manifold, so one often uses the normal coordinate system to simplify calculations (see [5]).

Let Ap,q(Ẽ) be the space of complex horizontal (p, q)-forms on PTM with value in Ẽ. If
{eσ}r

σ=1 is a local holomorphic frame of Ẽ, then φ, ψ ∈ Ap,q(Ẽ) are

φ =
r∑

σ=1

eσφ
σ , ψ =

r∑
μ=1

eμψ
μ,

respectively, where φσ, ψμ ∈ Ap,q, and we have

∂Hφ =
r∑

σ=1

eσ∂Hφσ. (3.13)

Then we define

∇̃δαφ = eμ(LλμδαLλνφ
ν + ∇δαφ

μ), ∇̃δβ
φ = eμ∇δβ

φμ, (3.14)

where ∇δα ,∇δβ
are the horizontal covariant derivatives of the Chern Finsler connection.

We can define the pointwise inner product on Ap,q(Ẽ) by

〈φ, ψ〉 =
r∑

σ,μ=1

〈eσ, eμ〉〈φσ, ψμ〉 =
r∑

σ,μ=1

Lσμ〈φσ , ψμ〉, (3.15)
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where 〈φσ, ψμ〉 is defined by (3.1).
The global inner product can be defined by

(φ, ψ) =
∫

PTM

〈φ, ψ〉dv =
∫

PTM

r∑
λ,μ=1

Lλμ〈φλ, ψμ〉dv

=
∫

PTM

r∑
λ,μ=1

Lλμφ
λ ∧ ∗ψμ ∧ dσ, (3.16)

and we define ‖ψ‖2 = (φ, φ), as usual.
The adjoint ∂

∗
H of ∂H on Ap,q(Ẽ) can be defined by solving

(∂Hφ, ψ) = (φ, ∂
∗
Hψ) (3.17)

for ∂
∗
H. Let ψ ∈ Ap,q+1(Ẽ), φ ∈ Ap,q(Ẽ) and τ = Lλμφ

λ ∧ ∗ψμ ∧ dσ, and then

0 =
∫

PTM

dτ =
∫

PTM

dHτ =
∫

PTM

∂Hτ

=
∫

PTM

Lλμ∂Hφλ ∧ ∗ψμ ∧ dσ + (−1)p+q

∫
PTM

φλ ∧ ∂H(Lλμ ∗ ψμ) ∧ dσ,

but ∫
PTM

Lλμ∂Hφλ ∧ ∗ψμ ∧ dσ =
∫

PTM

Lλμφ
λ ∧ ∗

(
∂
∗
Hψ

)μ ∧ dσ.

Thus
Lλμ ∗ (∂

∗
Hψ)μ = −(−1)p+q∂H(Lνλ ∗ ψν).

Then

∗(∂∗Hψ)μ = −(−1)p+qLλμ∂H(Lνλ ∗ ψν),

(∂
∗
Hψ)μ = − ∗ (∂H ∗ ψμ) − LλμδαLνλ ∗ (dzα ∧ ∗ψν) (3.18)

= ∂
∗
Hψ

μ − LλμδαLνλ ∗ (dzα ∧ ∗ψν).

In order to obtain the expression of (∂
∗
Hψ)μ explicitly, we need to compute ∗(dzα ∧ ∗ψν).

For ψν ∈ Ap,q, we can write

ψν = ψν
α1···αpβ1···βq

dzα1 ∧ · · ·dzαp ∧ dzβ1 · · · ∧ dzβq = ψν
ApBq

dzAp ∧ dzBq

and
∗ψν = in(−1)

1
2n(n−1)+pnGAqAn−qBpBn−p

GJqAqGBpIpψν
IpJq

dzAn−q ∧ dzBn−p .

If we set

ψν
An−qBn−p

= in(−1)
1
2n(n−1)+pnGAqAn−qBpBn−p

GJqAqGBpIpψν
IpJq

, (3.19)

then

∗ψν = ψν
An−qBn−p

dzAn−q ∧ dzBn−p

= sgn
(
Bq Bn−q

Ap An−p

)
ψν

Bn−qAn−p
dzBn−q ∧ dzAn−p
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and

∗(dzα ∧ ∗ψν) = ∗
(

sgn
(
Bq Bn−q

Ap An−p

)
ψν

Bn−qAn−p
dzα ∧ dzBn−q ∧ dzAn−p

)

= (i)n(−1)
1
2n(n−1)+(n−q+1)nsgn

(
Bq Bn−q

Ap An−p

)
GBn−pBpβAn−qEq−1

·GCn−pBn−pGAn−qDn−qGβαψν
Dn−qCn−p

dzBp ∧ dzEq−1 ,

where Eq−1 is the increasing set of numbers complementary to the set βAn−q ⊂ (1, · · · , n). Let
χq−1 be the increasing set of numbers complementary to the set βBn−q ⊂ (1, · · · , n), and set

η = in(−1)
1
2 n(n−1)+(n−q+1)nsgn

(
Bq Bn−q

Ap An−p

)
sgn

(
An−p Ap

Bn−q Bq

)
.

Then

∗(dzα ∧ ∗ψν) = ηGAn−pApβBn−qχq−1
GCn−pAn−pGBn−qDn−qGβαψν

Dn−qCn−p
dzAp ∧ dzχq−1

= ηsgn
(
Bn−q Bq

βBn−q χq−1

)
GAn−pApBn−qBq

GCn−pAn−pGBn−qDn−qGβα

· ψν
Dn−qCn−p

dzAp ∧ dzχq−1

and

in(−1)
1
2 n(n−1)+pnηsgn

(
Bn−q Bq

βBn−q χq−1

)

= (−1)n2+pn−qnsgn
(
Bq Bn−q

Ap An−p

)
sgn

(
An−p Ap

Bn−q Bq

)
sgn

(
Bn−q Bq

βBn−q χq−1

)

= (−1)n2+pn−qn+(n−p)p+(n−q)(q−1)sgn
(
Bq Bn−q

Ap An−p

)
sgn

(
Ap An−p

βχq−1 Bn−q

)

= (−1)psgn
(
Bq

βχq−1

)
,

by which, and (3.18), we get

∗(dzα ∧ ∗ψν) = (−1)psgn
(
Bq

βχq−1

)
Gβαψν

ApBq
dzAp ∧ dzχq−1 .

Hence, we have the following result.

Proposition 3.1 For any ψ ∈ Ap,q(Ẽ),

(∂
∗
Hψ)μ

ApBq−1
= (∂

∗
Hψ

μ)ApBq−1
− (−1)p

∑
LλμδαLνλG

βαψν
ApβBq−1

. (3.20)

By defining the horizontal Laplacian operator �H for the holomorphic vector bundle on PTM,
we have

�H = ∂H∂
∗
H + ∂

∗
H∂H

and �Hϕ = 0 for ϕ ∈ Ap,q(Ẽ), if and only if ϕ is harmonic horizontal (p, q)-form with value
in Ẽ.
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Theorem 3.2 If (M,F ) is a Kähler Finsler manifold, for any ψ ∈ Ap,q(Ẽ), we have

(�Hψ)μ

ApBq
= −Gβα∇̃δα∇̃δβ

ψμ

AP Bq
+

q∑
k=1

Gβα[∇δα ,∇δβk
]ψν

Apβ1···βk−1ββk+1···βq

−
q∑

k=1

(Ωμ β

ν;βk

− Γμ β

ν;βk

)ψν
Apβ1···βk−1ββk+1···βq

, (3.21)

where Ωμ β

ν;βk

= Ωμ

ν;βkα
Gβα, Γμ β

ν;βk

= GβαLλμ∂̇γ(Lνλ)δβk
(Γγ

α).

Proof From (3.3) and (3.13),

(∂Hψ)μ

ApβBq
= (∂Hψμ)ApβBq

= (−1)p
(
∇δβ

ψμ

ApBq
−

q∑
k=1

∇δβk
ψμ

Apβ1···βk−1ββk+1···βq

)
.

Then

(∂
∗
H∂Hψ)μ

ApBq
= (∂

∗
H∂Hψ

μ)ApBq
−

∑
LλμδαLνλG

βα
(
∇δβ

ψμ

ApBq

−
q∑

k=1

∇δβk
ψμ

Apβ1···βk−1ββk+1···βq

)
= (∂

∗
H∂Hψ

μ)ApBq
−

∑
LλμδαLνλG

βα∇δβ
ψμ

ApBq

+
∑

Lλμ∂αLλνG
βα

q∑
k=1

∇δβk
ψν

Apβ1···βk−1ββk+1···βq

and

(∂H∂
∗
Hψ)μ

ApBq
= (∂H∂

∗
Hψ

μ)ApBq
−

q∑
k=1

∇δβk

( ∑
LλμδαLνλG

βαψν
Apβ1···βk−1ββk+1···βq

)

= (∂H∂
∗
Hψ

μ)ApBq
−

q∑
k=1

∇δβk

( ∑
LλμδαLνλG

βα
)
ψν

Apβ1···βk−1ββk+1···βq

−
∑

LλμδαLνλG
βα

( q∑
k=1

∇δβk
ψν

Apβ1···βk−1ββk+1···βq

)
.

Thus

(�Hψ)μ

ApBq
= (�Hψμ)ApBq

−
∑

LλμδαLνλG
βα∇δβ

ψν
ApBq

−
q∑

k=1

∇δβk

(∑
LλμδαLνλG

βα
)
ψν

Apβ1···βk−1ββk+1···βq

= −Gβα∇δα∇δβ
ψμ

ApBq
+

q∑
k=1

Gβα[∇δα ,∇δβk
]ψμ

Apβ1···βk−1ββk+1···βq

−
∑

GβαLλμδαLνλ∇δβ
ψν

ApBq
−

q∑
k=1

(Ωμ β

ν;βk

− Γμ β

ν;βk

)ψν
Apβ1···βk−1ββk+1···βq

= −Gβα
(
∇δα∇δβ

ψμ

ApBq
+

∑
LλμδαLνλ∇δβ

ψν
ApBq

)
+

q∑
k=1

Gβα
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and

[∇δα ,∇δβk
]ψμ

Apβ1···βk−1ββk+1···βq

−
q∑

k=1

(Ωμ β

ν;βk

− Γμ β

ν;βk

)ψν
Apβ1···βk−1ββk+1···βq

= −Gβα∇̃δα∇̃δβ
ψμ

ApBq
+

q∑
k=1

Gβα[∇δα ,∇δβk
]ψμ

Apβ1···βk−1ββk+1···βq

−
q∑

k=1

(Ωμ β

ν;βk

− Γμ β

ν;βk

)ψν
Apβ1···βk−1ββk+1···βq

,

where Ωμ β

ν;βk

= Ωμ

ν;βkα
Gβα, Γμ β

ν;βk

= GβαLλμ∂̇γ(Lνλ)δβk
(Γγ

α).

Lemma 3.1 (see [16]) Let D : χ(T 1,0M̃) −→ χ(T ∗
CM̃ ⊗ T 1,0

C M̃) be the complex linear
connection on M̃ induced by the Chern-Finsler connection. Then for any Vα, Vβ ∈ χ(T 1,0M̃),
we have

DVαDVβ
−DVβ

DVα = D[Vα,Vβ ] + Ω(Vα, Vβ), (3.22)

DVαDV β
−DV β

DVα = D[Vα,V β ] + Ω(Vα, V β), (3.23)

DV α
DV β

−DV β
DV α

= D[V α,V β ], (3.24)

where Ω is the curvature operator of the Chern Finsler connection D. In local coordinates, the
curvature operator is given by

Ω = Ωα
β ⊗ [dzβ ⊗ δα + δvβ ⊗ ∂̇α]

and
Ωα

β = Rα
β;μνdzμ ∧ dzν +Rα

βδ;νδv
δ ∧ dzν +Rα

βγ;μdzμ ∧ δvγ + Rα
βδγδv

δ ∧ δvγ .

Let us calculate the second term on the right-hand side of (3.21). For a form ϕα of type
(1, 0),

[∇δμ ,∇δν
]ϕα = ∇[δμ,δν ]ϕα + Ω(δμ, δν)ϕα = −Γτ

ασδν(Γσ
;μ)ϕτ +Rτ

α;μνϕτ .

We denote T τ
αμν = −Γτ

ασδν(Γσ
;μ), T τ β

α ν = GβμT τ
αμν , T τ

α = GνμT τ
αμν , Rτ β

α;ν = GβμRτ
α;μν and

Rτ
α = GνμRτ

α;μν . Obviously, we have T τ
αμν = T τ

αμν and Rτ
α;μν = Rτ

α;μν . Then

Gβμ[∇δμ ,∇δν
]ϕα = T τ β

α ν ϕτ +Rτ β
α; νϕτ .

For a form ϕβ of type (0,1),

Gγμ[∇δμ ,∇δν
]ϕβ = −Gγμ[∇δμ ,∇δν

]ϕβ = −(T τ γ

β ν
ϕτ +Rτ γ

β;ν
ϕτ ).

Similarly, we see

Gβα[∇δα ,∇δβk
]ψμ

Apβ1···βk−1ββk+1···βq

=
p∑

i=1

(T τ β

αi βk

+Rτ β

αi;βk

)ψμ

α1···αi−1ταi+1···αpβ1···βk−1ββk+1···βq

− (T τ
βk

+Rτ
;βk

)ψμ

Apβ1···βk−1τβk+1···βq

. (3.25)
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Then, (3.21) can be rewritten as

(�Hψ)μ

ApBq
= −Gβα∇̃δα∇̃δβ

ψμ

ApBq

+
q∑

k=1

p∑
i=1

(T τ β

αi βk

+Rτ β

αi;βk

)ψμ

α1···αi−1ταi+1···αpβ1···βk−1ββk+1···βq

−
q∑

k=1

(T τ
βk

+Rτ
;βk

)ψμ

Apβ1···βk−1τβk+1···βq

−
q∑

k=1

(Ωμ β

ν;βk

− Γμ β

ν;βk

)ψν
Apβ1···βk−1ββk+1···βq

. (3.26)

Let β = 〈eμ∇δβ
ψμ, ψ〉dzβ , where 〈 , 〉 is understood in the sense of (3.15). When M is a

compact Kähler Finsler manifold, by Stokes’ theorem,
∫
PTM(∂

∗
Hβ)dv = 0, so

0 =
∫

PTM

Gβα∇δα

(
Lμν∇δβ

ψμ

ApBq
ψνApBq

)
dv

=
∫

PTM

Gβα∇δα

(
Lμν∇δβ

ψμ

ApBq

)
ψνApBq dv +

∫
PTM

GβαLμν∇δβ
ψμ

ApBq
∇δα

ψνApBqdv

=
∫

PTM

GβαLμν∇̃δα∇̃δβ
ψμ

ApBq
ψνApBqdv + ‖∇̃Hψ‖2.

Thus, ‖∇̃Hψ‖2 = −(eμ(Gβα∇̃δα∇̃δβ
ψμ), ψ).

When M is a compact Kähler Finsler manifold, by contracting (3.21) with 1
p!q!ψ ∈ Ap,q(Ẽ)

and integrating over PTM, we obtain

‖∂∗Hψ‖2 + ‖∂Hψ‖2

= ‖∇̃Hψ‖2 +
1

(p− 1)!(q − 1)!

∫
PTM

Lμλ(T τ β
α ν +Rτ β

α; ν )ψμ

τAp−1βBq−1
ψλαAp−1νBq−1dv

− 1
p!(q − 1)!

∫
PTM

Lμλ((T β
x +Rβ

x)ψμ

Apβχq−1

+
(
Ωμ β

ν;βk

− Γμ β

ν;βk

)
ψν

Apβχq−1
)ψλApxχq−1dv, (3.27)

where ‖ · ‖ denotes the global L2 norm over PTM, and ∇̃Hψ denotes the Ẽ-valued tensor with

components ∇δβ
ψν . (3.27) is the ∇̃H Bochner-Kodaira technique.

Since

[∇̃δα , ∇̃δβ
]ψμ = ∇̃δα∇̃δβ

ψμ − ∇̃δβ
∇̃δαψ

μ = [∇δα ,∇δβ
]ψμ − Ωμ

ν;βα
ψν ,

that is,
−∇̃δα∇̃δβ

ψμ = −∇̃δβ
∇̃δαψ

μ − [∇δα ,∇δβ
]ψμ + Ωμ

ν;βα
ψν , (3.28)

by applying the commutation formula for [∇̃δα , ∇̃δβ
]ψμ to (3.21), with (3.25), we obtain

(�Hψ)μ

ApBq
= −Gβα∇̃δβ

∇̃δαψ
μ
AP βBq

−Gβα[∇δα ,∇δβ
]ψμ

ApBq
+ Ωμ

νψ
ν
ApBq

+
q∑

k=1

Gβα[∇δα ,∇δβk
]ψν

Apβ1···βk−1ββk+1···βq
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−
q∑

k=1

(Ωμ β

ν;βk

− Γμ β

ν;βk

)ψν
Apβ1···βk−1ββk+1···βq

= −Gβα∇̃δβ
∇̃δαψ

μ

ApBq
−

q∑
k=1

(Ωμ β

ν;βk

− Γμ β

ν;βk

)ψν
Apβ1···βk−1ββk+1···βq

+
q∑

k=1

p∑
i=1

(T τ β

αi βk

+Rτ β

αi;βk

)ψμ

α1···αi−1ταi+1···αpβ1···βk−1ββk+1···βq

−
p∑

i=1

(T τ
αi

+Rτ
αi

)ψμ

α1···αi−1ταi+1···αpBq
. (3.29)

When M is a compact Kähler Finsler manifold, and by contracting (3.29) with 1
p!q!ψ ∈ Ap,q(Ẽ)

and integrating over PTM, we obtain

‖∂∗Hψ‖2 + ‖∂Hψ‖2

= ‖∇̃Hψ‖2 − 1
p!q!

∫
PTM

LμλΩμ
νψ

ν
ApBq

ψλApBqdv

− 1
p!(q − 1)!

∫
PTM

Lμλ

(
Ωμ β

ν;x − Γμ β
ν;x

)
ψν

Apβχq−1
ψλApxχq−1dv

− 1
(p− 1)!q!

∫
PTM

Lμλ(T τ
ν +Rτ

ν)ψμ

τAp−1Bq
ψλνAp−1Bqdv

+
1

(p− 1)!(q − 1)!

∫
PTM

Lμλ(T τ β
α ν +Rτ β

α; ν )ψμ

τAp−1βBq−1
ψλαAp−1νBq−1dv, (3.30)

where ‖ · ‖ denotes the global L2 norm over PTM, and ∇̃Hψ denotes the Ẽ-valued tensor with
components ∇δαψ

μ. (3.30) is the ∇̃H Bochner-Kodaira technique.

Remark 3.1 If the Kähler Finsler manifold is a Kähler manifold, then (3.27) and (3.30)
coincide with (1.3.3) and (1.3.5) in [11].

4 ∂H∂H Bochner-Kodaira Technique

∂∂ Bochner-Kodaira technique was initiated by Siu [10] and named in [11], and the method
is a modification of the classical Bochner-Kodaira technique by replacing the operator � with
∂∂ and exploits the bigraded structure of the differential forms on a Kähler manifold in a
more serious way than usual in the computations with �. In this section, we study the ∂H∂H
Bochner-Kodaira technique on Kähler Finsler manifolds and get the vanishing theorem for the
Hermitian holomorphic bundle on PTM on Kähler Finsler manifolds.

Let Ẽ be the Hermitian holomorphic vector bundle of rank r on PTM is the same bundle as
stated in Section 3. We know that there exist normal coordinates of M and normal fiber coor-
dinates of Ẽ, which can be found with detailed information in [24–25]. This greatly simplifies
our calculations in local coordinates, and then, in all the following computations, we will use
the normal coordinates of M and the normal fiber coordinates of Ẽ.

Letting ϕ =
∑
eμϕ

μ ∈ A0,q(Ẽ), and under the normal coordinates of M and the normal
fiber coordinates of Ẽ, we have ∇̃Hϕ =

∑
eμ∇Hϕμ, where ∇H is the horizontal covariant

differentiation of Chern Finsler connection. If M is a Kähler Finsler manifold, and ∇Hϕμ =
∂Hϕμ, letting

Φ = ∂H∂H(Lμλϕ
μ ∧ ϕλ ∧ ωn−q−1

H ), (4.1)
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where ωH =
√
−1Gαβdz

α ∧ dzβ , and dHωH = 0 on Kähler Finsler manifolds, then

Φ = ∂H∂H(Lμλϕ
μ ∧ ϕλ ∧ ωn−p−1

H )

=
√
−1Θμλ ∧ ϕμ ∧ ϕλ ∧ ωn−q−1

H + Lμλ∇H∂Hϕμ ∧ ϕλ ∧ ωn−q−1
H

+ (−1)q+1Lμλ∂Hϕ
μ ∧ ∂Hϕλ ∧ ωn−q−1

H + (−1)qLμλ∇Hϕμ ∧∇Hϕλ ∧ ωn−q−1
H

+ Lμλϕ
μ ∧ ∂H∂Hϕλ ∧ ωn−q−1

H . (4.2)

When M is a compact Kähler Finsler manifold, and by integrating over PTM, we obtain

0 =
∫

PTM

Φ ∧ dσ

=
√
−1

∫
PTM

Θμλ ∧ ϕμ ∧ ϕλ ∧ ωn−q−1
H ∧ dσ

+
∫

PTM

Lμλ∇H∂Hϕμ ∧ ϕλ ∧ ωn−q−1
H ∧ dσ

+ (−1)q+1

∫
PTM

Lμλ∂Hϕ
μ ∧ ∂Hϕλ ∧ ωn−q−1

H ∧ dσ

+ (−1)q

∫
PTM

Lμλ∇Hϕμ ∧∇Hϕλ ∧ ωn−q−1
H ∧ dσ

+
∫

PTM

Lμλϕ
μ ∧ ∂H∂Hϕλ ∧ ωn−q−1

H ∧ dσ. (4.3)

By applying integration by parts to the second term and the last term, from

d(Lμλ∂Hϕ
μ ∧ ϕλ ∧ ωn−q−1

H ∧ dσ)

= Lμλ∇H∂Hϕμ ∧ ϕλ ∧ ωn−q−1
H ∧ dσ

+ (−1)q+1Lμλ∂Hϕ
μ ∧ ∂Hϕλ ∧ ωn−q−1

H ∧ dσ,

it follows that∫
PTM

Lμλ∇H∂Hϕμ ∧ ϕλ ∧ ωn−q−1
H ∧ dσ = (−1)q

∫
PTM

Lμλ∂Hϕ
μ ∧ ∂Hϕλ ∧ ωn−q−1

H ∧ dσ.

Likewise,∫
PTM

Lμλϕ
μ ∧ ∂H∂Hϕλ ∧ ωn−q−1

H ∧ dσ = (−1)q

∫
PTM

Lμλ∂Hϕ
μ ∧ ∂Hϕλ ∧ ωn−q−1

H ∧ dσ.

Hence

√
−1

∫
PTM

Θμλϕ
μ ∧ ϕλ ∧ ωn−q−1

H ∧ dσ

+ (−1)q

∫
PTM

Lμλ∂Hϕ
μ ∧ ∂Hϕλ ∧ ωn−q−1

H ∧ dσ

+ (−1)q

∫
PTM

Lμλ∇Hϕμ ∧∇Hϕλ ∧ ωn−q−1
H ∧ dσ = 0. (4.4)

We are going to transform, by using the exterior algebra of Hermitian vector spaces, each
term in (4.4) to a corresponding term obtained from the ∇̃H Bochner-Kodaira technique.
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We will list the formulae we need concerning exterior algebras of Hermitian vector spaces,
which were collected together by Siu [11]. Let L be the operator of taking a wedge product
with ωH =

√
−1Gαβdzα ∧ dzβ, and ∧ be the adjoint operator of L with the pointwise inner

product 〈 , 〉 on Ap,q defined by (3.1). A k-form ψ ∈ Ap,q is called primitive if ∧ψ = 0.
For any primitive k-form ψ and s ≤ r,

∧sLrψ =
( s−1∏

i=0

(r − i)
)( s∏

j=1

(n− k − r + j)
)
Lr−sψ. (4.5)

Let εp,q = (−1)
1
2 (p+q)(p+q+1)(

√
−1)p−q. For any primitive (p,q)-form ψ with p+ q = k,

∗Llψ = εp,q
l!

(n− k − l)!
Ln−k−lψ (4.6)

for 0 ≤ l ≤ n− k. One has ∗Llψ = 0 if l > n− k.
Every k-form v can be uniquely written as

v =
∑

r

Lrvr,

where each vr is primitive, and r runs from max{0, k − n} to the largest integer
[

k
2

]
, not

exceeding k
2 .

Lemma 4.1 (see [11]) For any (1, q)-form η,

ε1,qη ∧ η ∧
ωn−q−1
H

(n− q − 1)!
= (〈η, η〉 − 〈∧η,∧η〉)ω

n
H
n!
. (4.7)

For detailed information of these formulae, see [6, p. 69].

Lemma 4.2

− ε0,qΘμλ ∧ ϕμ ∧ ϕλ ∧ ωn−q−1
H

(n− q − 1)!
∧ dσ

=
( 1
q!

Ωμλϕ
μ

Bq
ϕλBq − 1

(q − 1)!
Ω β

μλ; x
ϕμ

βBq−1
ϕλxBq−1

)
dv, (4.8)

where as in (3.11), Θμλ = −
√
−1Ωμλ;αxdzα ∧ dzx and Ωμλ = GαxΩμλ;αx.

Proof Since ϕλ is (0, q)-form, it is primitive. By (4.6),

−ε0,qΘμλ ∧ ϕμ ∧ ϕλ ∧ ωn−q−1
H
n!

∧ dσ = −Θμλ ∧ ϕμ ∧ ∗Lϕλ ∧ dσ

= 〈−Θμλ ∧ ϕμ, Lϕλ〉dv
= 〈∧(−Θμλ ∧ ϕμ), ϕλ〉dv.

Using local coordinates, we have

−(Θμλ ∧ ϕμ)αβBq
=

√
−1

(
Ωμλ;αβϕ

μ

Bq
−

q∑
k=1

Ωμλ;αβk
ϕμ

β1···βk−1ββk+1···βq

)
.
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Contracting both sides with Gαβ , we obtain

−(∧(Θμλ ∧ ϕμ))Bq
= Ωμλϕ

μ

Bq
−

q∑
k=1

Ω β

μλ; βk

ϕμ

β1···βk−1ββk+1···βq

.

Taking the inner product with ϕλ, we obtain the desired equation.

By applying (4.6) to the case η = ∂Hϕ and l = 0, we get

ε0,q+1Lμλ∂Hϕ
μ ∧ ∂Hϕλ ∧ ωn−q−1

H
(n− q − 1)!

∧ dσ =
∑

Lμλ∂Hϕ
μ ∧ ∗∂Hϕλ ∧ dσ

= 〈∂Hϕ, ∂Hϕ〉dv. (4.9)

By using Lemma 4.1 in the case η = ∂Hϕμ = ∇Hϕμ, we have

ε1,qLμλ∂Hϕ
μ ∧ ∂Hϕλ ∧ ωn−q−1

H
(n− q − 1)!

∧ dσ = (〈∇̃Hϕ, ∇̃Hϕ〉 − 〈∂∗Hϕ, ∂
∗
Hϕ〉)dv. (4.10)

Using ε1,q =−ε0,q+1 =(−1)q+1
√
−1ε0,q, we multiply (4.4) by (−1)q ε1,q

(n−q−1)! =
√
−1 ε0,q

(n−q−1)! ,
and we obtain∫

PTM

( 1
q!

Ωμλϕ
μ

Bq
− 1

(q − 1)!

q∑
k=1

Ω β

μλ; βk

ϕμ

β1···βk−1ββk+1···βq

)
ϕλBq dv

− ‖∂Hϕ‖2 + ‖∇̃Hϕ‖2 − ‖∂∗Hϕ‖2 = 0, (4.11)

which is the same as (3.30) obtained by ∇̃H Bochner-Kodaira technique under the normal
coordinates of M and the normal fiber coordinates of Ẽ .

Then combining (4.4) with (4.9)–(4.10), we have

ε0,q

∫
PTM

Θαβϕ
α ∧ ϕβ ∧ ωn−q−1

H

(n− q − 1)!
∧ dσ

= −‖∂Hϕ‖2 − ‖∂∗Hϕ‖2 + ‖∇̃Hϕ‖2. (4.12)

Then, we have the following result.

Theorem 4.1 (Vanishing Theorem) Let M be an n-dimensional compact Kähler Finsler
manifold, ϕ ∈ A0,q(Ẽ), ϕ =

∑
eαϕ

α. If the horizontal curvature form Θαβ of Ẽ satisfies

ε0,q

∫
PTM

Θαβϕ
α ∧ ϕβ ∧ ωn−q−1

H
(n− q − 1)!

∧ dσ < 0, (4.13)

then there is no nonzero horizontal harmonic (0, q)-form over PTM with valued in Ẽ, for all
0 < q ≤ n.

Proof Since M is compact, ϕ is horizontal harmonic if and only if ∂Hϕ = ∂
∗
Hϕ = 0. From

(4.12), we have

ε0,q

∫
PTM

Θαβϕ
α ∧ ϕβ ∧ ωn−q−1

H
(n− q − 1)!

∧ dσ ≥ 0,

which contradicts (4.13) when ϕ is not identically zero. Hence ϕ ≡ 0.
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