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1 Introduction

For a system in quantum mechanics, quantum field theory and elasticity theory, the physical

reasoning may give a formal expression of its Hamiltonian. It is, in general, a partial differential

operator in an appropriate functional space, and we say “formal” when the domain of the

Hamiltonian is not specified. It is usually easy to find a dense domain on which the formal

Hamiltonian is well-defined (see [11]).

Let X be an infinite dimensional complex Hilbert space. The Hamiltonian operator is given

by the following densely-defined closed block-operator matrix:

H =
(

A B
C −A∗

)
, D(H) = (D(A) ∩ D(C)) ⊕ (D(B) ∩ D(−A∗)), (1.1)

where A is closed and B, C are self-adjoint in X . In particular, if A = 0 (resp. C = 0), we call H

off-diagonal (resp. upper triangular); while we call H non-negative if B and C are non-negative

operators.

Clearly, the Hamiltonian operator H satisfies JH ⊂ (JH)∗, J =
(

0 I
−I 0

)
. The Hamiltonian

operator, however, is not symplectic self-adjoint in general, i.e., (JH)∗ �= JH , for it might be

difficult to find a general approach to compute the adjoint of unbounded operator matrices,
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when there are rows or columns with more than one unbounded entry. In fact, a Hamiltonian

operator is symplectic self-adjoint if and only if its adjoint coincides with its formal adjoint.

It is well-known that the symplectic self-adjoint operator matrix H has some good spectral

properties as follows (see [1]). (i) The union of the point spectrum σp(H) and the residual

spectrum σr(H) is symmetric with respect to the imaginary axis, and σr(H) contains no point

symmetric with respect to the imaginary axis. Then, we further have that σr(H) = ∅ if and

only if σp(H) is symmetric with respect to the imaginary axis. (ii) The continuous spectrum

σc(H), and therefore the spectrum σ(H) and the resolvent set ρ(H) are all symmetric with

respect to the imaginary axis. These spectral properties have important applications in the

numerical computation of Hamiltonian systems, and in the completeness of the eigenfunction

system of symplectic self-adjoint operator matrices (see [14]).

The invariant subspaces of Hamiltonian operators and solutions of the corresponding Riccati

equations were studied in [8]. In [7], Kurina G. A. investigated the invertibility of non-negative

Hamiltonian operators with bounded off-diagonal entries, and Wu D. and Chen A. [15] extended

the results to the unbounded cases with diagonal and off-diagonal domains. In [9], Langer H.,

Markus A. S., Matsaev V. I. and Tretter C. introduced the concept of the quadratic numerical

range, which may be used to give enclosures for the spectrum of block operator matrices. The

numerical range of an operator may be used for studying spectral properties of operators.

However, the numerical range is not defined with respect to the block structure of operator

matrices, and thus the lost information of the entries may lead to the loss of some related

properties. The quadratic numerical range is always contained in the numerical range.

It has been shown that, for bounded operator matrices, the closure of the quadratic nu-

merical range contains their spectrum. But, it is not the case for unbounded block operator

matrices, even when we only consider the approximate point spectrum. In fact, the approxi-

mate point spectrum of an unbounded linear operator in a Hilbert space is contained in the

closure of the numerical range. In [13], Tretter C. proved the analogue of this inclusion for

the quadratic numerical range for diagonally dominant and for off-diagonally dominant block

operator matrices of order 0. In this paper, we make use of the particular block structure of the

unbounded Hamiltonian operators to consider the spectral inclusion properties of unbounded

Hamiltonian operators by the quadratic numerical range.

The present paper is organized as follows. In Section 2, we state some basic concepts. In

Section 3.1, the off-diagonally Hamiltonian operator is considered; the upper triangular case is

investigated in Section 3.2; in Section 3.3, we show the spectral inclusion properties of diagonally

dominant and off-diagonally dominant Hamiltonian operators of order 0.

2 Preliminaries

Throughout this paper, X and Y are always infinite dimensional complex Hilbert spaces
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unless otherwise stated. For a (linear) operator T on some Banach space, the domain, range

and kernel of T are denoted by D(T ), R(T ) and N (T ), respectively. If, in addition, T is an

operator on a Hilbert space, we use T ∗ to denote its adjoint. The resolvent set of T is defined

by

ρ(T ) := {λ ∈ C : T − λ is a bijection with (T − λ)−1 continuous},
and the set

σ(T ) := C \ ρ(T )

is called the spectrum of T .

In the following, we give some basic concepts which are used in our main theorems and their

proofs.

Definition 2.1 (see [2]) Let T be an operator on a Banach space X. The approximate

point spectrum σap(T ) of T is defined by

σap(T ) := {λ ∈ C : ∃(xn)∞1 ⊂ D(T ), ‖xn‖ = 1 such that (T − λI)xn → 0}.

Set

σr,1(T ) := {λ ∈ C : T − λI is injective,R(T − λI) �= X,R(T − λI) is closed},

and then, for a closed operator T , we have σ(T ) = σap(T )∪σr,1(T ) by the closed graph theorem.

Definition 2.2 (see [4]) For an operator T on X, the numerical range W (T ) of T is

defined by

W (T ) := {(Tx, x) : x ∈ D(T ), ‖x‖ = 1}.
Definition 2.3 (see [9]) For a block-operator matrix A = ( A B

C D ) with D(A) = (D(A) ∩
D(C)) ⊕ (D(B) ∩D(D)) = D1 ⊕D2 in X ⊕ Y , we define

Af,g :=
(

(Af, f) (Bg, f)
(Cf, g) (Dg, g)

)
, f ∈ D1, g ∈ D2,

which is clearly a 2 × 2 complex matrix. Then the set

W 2(A) :=
⋃

f∈D1,g∈D2
‖f‖=‖g‖=1

σp(Af,g)

is called the quadratic numerical range of A.

Definition 2.4 (see [12]) Let T : D(T ) ⊂ X → Y and S : D(S) ⊂ X → Z be linear

operators, where X, Y and Z are Banach spaces.

(i) S is called T -bounded (or relatively bounded with respect to T ), if D(T ) ⊂ D(S) and there

exist constants as, bs ≥ 0 such that

‖Sx‖ ≤ as‖x‖ + bs‖Tx‖, x ∈ D(T ). (2.1)
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The infimum δs of all bs so that (2.1) holds for some as ≥ 0 is called the T -bound of S (or the

relative bound of S with respect to T ).

(ii) S is called T -compact (or relatively compact with respect to T ) if D(T ) ⊂ D(S) and

for every bounded sequence (xn)∞1 ⊂ D(T ) such that (Txn)∞1 ⊂ F is bounded, the sequence

(Sxn)∞1 ⊂ G contains a convergent subsequence.

Note that if T is closed and S is closable, then D(T ) ⊂ D(S) already implies that S is

T -bounded.

Definition 2.5 (see [12]) Let X and Y be Banach spaces. The block-operator matrix A =

( A B
C D ) in X ⊕ Y is called

(i) diagonally dominant if C is A-bounded and B is D-bounded;

(ii) off-diagonally dominant if A is C-bounded and D is B-bounded.

Definition 2.6 (see [12]) Let X and Y be Banach spaces, and let δ ≥ 0. The block-operator

matrix A = ( A B
C D ) in X ⊕ Y is called

(i) diagonally dominant of order δ if C is A-bounded with A-bound δC , B is D-bounded with

D-bound δB, and δ = max{δB, δC};
(ii) off-diagonally dominant of order δ if A is C-bounded with C-bound δA, D is B-bounded

with B-bound δD, and δ = max{δA, δD}.

Definition 2.7 (see [12]) For ω ∈ [0, π), we define the sector

Σω := {reiϕ : r ≥ 0, |ϕ| ≤ ω} ⊂ C.

A densely defined operator T in a Banach space X is called sectorial if there exists an ω ∈ [0, π)

such that

(i) C \ Σω ⊂ ρ(T ),

(ii) sup
λ∈C\Σω

‖(T − λ)−1‖ < ∞.

3 Main Results

Lemma 3.1 (see [12]) Let T be a closable operator in a Banach space X with closure T .

Then σap(T ) = σap(T ).

Lemma 3.2 (see [13]) Let A = ( A B
C D ) be diagonally dominant of order 0 in X ⊕ Y . Then

σap(A) ⊂ W 2(A).

Lemma 3.3 (see [13]) Let A = ( A B
C D ) be off-diagonally dominant of order 0 in X ⊕Y , and

let B, C be boundedly invertible. Then σap(A) ⊂ W 2(A).

Remark 3.1 Lemma 3.3 does not hold without the assumption that B, C are boundedly

invertible (see [13, Example 4.6]).
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3.1 The off-diagonally Hamiltonian case

Theorem 3.1 Let H = ( 0 B
C 0 ) be a Hamiltonian operator on X ⊕ X. If B and C are

surjective, then σ(H) ⊂ W 2(H).

Proof Since B and C are self-adjoint operators, the surjectiveness of B and C implies that

B and C are boundedly invertible. By Lemma 3.3, we obtain

σap(H) ⊂ W 2(H).

For off-diagonally Hamiltonian operators, we can easily verify

σr(H) = σr(H∗), σp(H) = σp(H∗).

So if λ ∈ σr(H), we have λ ∈ σr(H) and

λ ∈ σp(H∗) = σp(H) ⊂ σap(H).

Thus σ(H) = σap(H) ∪ σr,1(H) ⊂ W 2(H).

Corollary 3.1 Let H be a bounded off-diagonally Hamiltonian operator in X ⊕ X. Then

σ(H) ⊂ {λ ∈ C : |λ2| ≤ ‖B‖‖C‖}.

Proof For a bounded operator H , σ(H) ⊂ W 2(H) always holds. Thus,

W 2(H) =
{

λ ∈ C : λ = ±
√

(Bg, f)(Cf, g)
‖f‖2‖g‖2

, f ∈ D(C), g ∈ D(B)
}

⊂ {λ ∈ C : |λ2| ≤ ‖B‖‖C‖} (3.1)

implies σ(H) ⊂ {λ ∈ C : |λ2| ≤ ‖B‖‖C‖}.

3.2 The upper triangular Hamiltonian case

First, we consider the relation σap(H) ⊂ W 2(H).

Theorem 3.2 Let H =
(

A B
0 −A∗

)
be a Hamiltonian operator in X ⊕ X. If −A∗

D(B)∩D(−A∗)

is closable, then σap(H) ⊂ W 2(H).

Proof Clearly, D(H) = D(A) ⊕ (D(B) ∩ D(−A∗)). For convenience, set

−A∗
1 := −A∗

D(B)∩D(−A∗).

For the closable operator −A∗
1, we have σap(−A∗

1) = σap(−A∗
1) by Lemma 3.1 and W (−A∗

1) =

W (−A∗
1). In fact, the inclusion W (−A∗

1) ⊂ W (−A∗
1) is obvious. Conversely, if λ ∈ W (−A∗

1),

then there exists a g ∈ D(−A∗
1), ‖g‖ = 1 such that λ = (−A∗

1g, g). Thus, there is a sequence

(gn)∞1 ⊂ D(−A∗
1) with gn → g such that

(−A∗
1g, g) =

(
lim

n→∞−A∗
1gn, lim

n→∞ gn

)
= lim

n→∞(−A∗
1gn, gn).
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So λ ∈ W (A∗
1), i.e., W (−A∗

1) ⊂ W (−A∗
1). Thus,

σap(H) ⊂ σap(A) ∪ σap(−A∗
1) ⊂ W (A) ∪ W (−A∗

1)

⊂ W (A) ∪ W (−A∗
1) = W (A) ∪ W (−A∗

1)

= W 2(H). (3.2)

Corollary 3.2 Let H =
(

A B
0 −A∗

)
be a Hamiltonian operator in X ⊕X. If D(B)∩D(−A∗)

is a core of −A∗, then σap(H) ⊂ W 2(H).

Recall that if the numerical range of a densely defined operator T is not the whole com-

plex plane, then T is closable (see [4, Theorem V.3.4]). So we can obtain the next corollary

immediately.

Corollary 3.3 Let H =
(

A B
0 −A∗

)
be a Hamiltonian operator in X ⊕ X. If

W (−A∗
D(B)∩D(−A∗)) �= C,

then σap(H) ⊂ W 2(H).

Theorem 3.3 Let H =
(

A B
0 −A∗

)
be a Hamiltonian operator with diagonally dominant of

order δ < 1 on X ⊕ X. If D(A) = D(A∗), then σ(H) ⊂ W 2(H).

Proof Since H is diagonally dominant of order δ < 1, H∗ can be written as

H∗ =
(

A∗ 0
B −A

)
.

Then, for f ∈ D(A), g ∈ D(A∗), ‖f‖ = ‖g‖ = 1, we see that

(H∗)f,g =
(

(A∗f, f) 0
(Bf, g) (−Ag, g)

)

=
(

(Af, f) (Bg, f)
0 (−A∗g, g)

)∗

= (Hf,g)∗ (3.3)

by D(A) = D(A∗), and hence W 2(H∗) = W 2(H)∗. From Theorem 3.2, σap(H) ⊂ W 2(H)

follows immediately, so we only need to prove σr(H) ⊂ W 2(H). If λ ∈ σr(H), then λ ∈
σp(H∗) ⊂ W 2(H∗) = W 2(H)∗, i.e., λ ∈ W 2(H). Thus, σ(H) ⊂ W 2(H).

Theorem 3.4 Let H =
(

A B
0 −A∗

)
be a Hamiltonian operator with diagonally dominant of

order δ < 1 in X ⊕ X. Then, σ(H) ⊂ W 2(H), if one of the following statements is fulfilled:

(i) σr(H) = ∅;
(ii) σp(H) is symmetric with respect to the imaginary axis;

(iii) σr(A) = ∅ and σp(A) is symmetric with respect to the imaginary axis.
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Proof Since H is diagonally dominant of order δ < 1, H is a symplectic self-adjoint

operator, i.e., JH = (JH)∗, where J =
(

0 I
−I 0

)
.

(i) If σr(H) = ∅, then σ(H) = σap(H) ⊂ W 2(H) by Theorem 3.2.

(ii) For a symplectic self-adjoint operator H , σp(H) ∪ σr(H) is symmetric with respect to

the imaginary axis, and σr(H) contains no point symmetric with respect to the imaginary axis.

Then, we further have that σr(H) = ∅ if and only if σp(H) is symmetric with respect to the

imaginary axis. Thus, the relation σ(H) ⊂ W 2(H) follows from (i) immediately.

(iii) From σr(A) = ∅, we have

σp(H) ∪ σr(H) = {λ ∈ C : λ ∈ σp(A) or − λ ∈ σp(A)}.

If σp(A) is symmetric with respect to the imaginary axis, we get σp(H)∪σr(H) = σp(A). Note

that σp(A) ⊆ σp(H), and therefore σr(H) = ∅, from which the claim follows.

Theorem 3.5 Let H =
(

A B
0 −A∗

)
: D(A) ⊕ D(−A∗) ⊂ X ⊕ X → X ⊕ X be a Hamiltonian

operator. If every component of C \ W (A) contains a point λ ∈ ρ(A) and every component of

C \ W (−A∗) contains a point μ ∈ ρ(−A∗), then σ(H) ⊂ W 2(H).

Proof If every component of C \W (A) contains a point λ ∈ ρ(A) and every component of

C \ W (−A∗) contains a point μ ∈ ρ(−A∗), we obtain σ(A) ⊂ W (A) and σ(−A∗) ⊂ W (−A∗)

by [4, Theorem V.3.2]. Thus, σ(H) ⊂ σ(A) ∪ σ(−A∗) ⊂ W (A) ∪ W (−A∗) = W 2(H).

3.3 The general 2 × 2 Hamiltonian case

Theorem 3.6 Let H given by (1.1) be a Hamiltonian operator with diagonally dominant of

order 0. If D(A) = D(A∗), then σ(H) ⊂ W 2(H).

Proof From Lemma 3.2, σap(H) ⊂ W 2(H). Similar to the proof of Theorem 3.3, we can

obtain σr(H) ⊂ W 2(H), and therefore σ(H) ⊂ W 2(H).

The next corollary is a direct consequence of Theorem 3.6. In fact, the boundedness and

relative compactness both imply relative boundedness with relative bound 0 (see [3, Corollary

III.7.7]).

Corollary 3.4 Let H given by (1.1) be a Hamiltonian operator with D(A) = D(A∗). If B

is bounded or −A∗-compact, and if C is bounded or A-compact, then σ(H) ⊂ W 2(H).

For a sectorial operator T , the fractional powers T γ, γ ∈ (0, 1), are defined (see [10, Section

2.6], [5, Chapter 1.5.8]).

Corollary 3.5 Let H given by (1.1) be a Hamiltonian operator with D(A) = D(A∗). Then,

(i) if A and A∗ are sectorial operators, and if there are γ, η ∈ (0, 1) with D(Aγ) ⊂ D(C)

and D((A∗)η) ⊂ D(B), then σ(H) ⊂ W 2(H);
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(ii) if there are γ, η ∈ (0, 1) with D(|A|γ) ⊂ D(C) and D(|A∗|η) ⊂ D(B), then σ(H) ⊂
W 2(H).

Proof (i) Since Aγ and C are closed operators, the inclusion D(Aγ) ⊂ D(C) implies C is

Aγ-bounded. By [10, Corollary 2.6.11], there is a K > 0 such that

‖Aγx‖ ≤ K(ε−γ‖x‖ + ε1−γ‖Ax‖), x ∈ D(A) ⊂ D(Aγ)

for every ε > 0. This and γ < 1 imply that Aγ is A-bounded with A-bound 0. Since C is

Aγ-bounded, we see that C is A-bounded with C-bound 0. Similarly, we can prove that B is

A∗-bounded with A∗-bound 0. Thus, applying Theorem 3.6 yields σ(H) ⊂ W 2(H).

(ii) For non-sectorial operators A and A∗ in the Hilbert space, |A| and |A∗| are sectorial

operators. By [12, Corollary 2.1.20], we have that H is diagonally dominant of order 0, and

hence σ(H) ⊂ W 2(H).

Theorem 3.7 Let H given by (1.1) be a Hamiltonian operator with off-diagonally dominant

of order 0. If D(B) = D(C) and 0 /∈ σp(B) ∩ σp(C), then σ(H) ⊂ W 2(H).

Proof By Lemma 3.3, σap(H) ⊂ W 2(H). Since H is off-diagonally dominant of order 0,

H∗ can also be written as

H∗ =
(

A∗ C
B −A

)
: D(B) ⊕D(C) ⊂ X ⊕ X → X ⊕ X.

From D(B) = D(C), for f ∈ D(B), g ∈ D(C), ‖f‖ = ‖g‖ = 1, we have

(H∗)f,g =
(

(A∗f, f) (Cg, f)
(Bf, g) (−Ag, g)

)

=
(

(Af, f) (Bg, f)
(Cf, g) (−A∗g, g)

)∗

= (Hf,g)∗, (3.4)

which implies W 2(H∗) = W 2(H)∗. If λ ∈ σr(H), then λ ∈ σp(H∗) ⊂ W 2(H)∗. Thus,

σ(H) ⊂ W 2(H).

Remark 3.2 For a Hamiltonian operator, if it is diagonally dominant of order δ < 1 and

D(A) = D(A∗), or if it is off-diagonally dominant of order δ < 1 and D(B) = D(C), the

quadratic numerical range W 2(H) is symmetric with respect to the imaginary axis. In the

following, we take a Hamiltonian matrix

H :=

⎛
⎜⎜⎝

i 1 1 i
2 2i −i 0
2 1 − i i −2

1 + i 2 −1 2i

⎞
⎟⎟⎠ (3.5)

as an example to illustrate this property. Figure 1 is the quadratic numerical range of H , which

is figured by the Monte-Carlo method. The random vectors f and g are sampled from two



Spectral Inclusion Properties of Unbounded Hamiltonian Operators 209

independent uniform distributions on the unit sphere of C2, the red dot is the eigenvalue of

H , and the different colors between blue and yellow show the density of the eigenvalues of the

Hf,g. Here we call it the density of the quadratic numerical range of H . From the figure, the

quadratic numerical range and the eigenvalues of H are both obviously symmetric with respect

to the imaginary axis. In addition, it is interesting that the density of W 2(H) is also symmetric

with respect to the imaginary axis.

Figure 1 The quadratic numerical range of H defined in (3.5)

Corollary 3.6 Let H given by (1.1) be a Hamiltonian operator, and let B and C be injective

with D(B) = D(C). If A is bounded, or if A is C-compact and −A∗ is B-compact, then

σ(H) ⊂ W 2(H).

Corollary 3.7 Let H given by (1.1) be a Hamiltonian operator, and let B and C be injective

with D(B) = D(C). Then,

(i) if B and C are sectorial operators with D(Cγ) ⊂ D(A) and D(Bη) ⊂ D(A∗) for some

γ, η ∈ (0, 1), then σ(H) ⊂ W 2(H);

(ii) if D(|C|γ) ⊂ D(A) and D(|B|η) ⊂ D(A∗) for some γ, η ∈ (0, 1), then σ(H) ⊂ W 2(H).

Corollary 3.8 Let H given by (1.1) be a Hamiltonian operator with D(A) = D(A∗) and

B, C be bounded. If inf{|Reλ| : λ ∈ W (A)} > ‖B‖‖C‖, then H is boundedly invertible.

Proof By the assumption inf{|Re λ| : λ ∈ W (A)} > ‖B‖‖C‖, we obtain W (A)∩W (−A∗) =

∅ and dist(W (A), W (−A∗)) > 2
√‖B‖‖C‖. Set β := dist(W (A), W (−A∗)) and assume that λ

belongs to the line that separates the convex sets W (A) and W (−A∗), and has the distance β
2

to both of them. Then, for all f ∈ D(A) and g ∈ D(−A∗),

|det(Hf,g − λI)| = |(λ − (Af, f))(λ − (−A∗g, g)) − (Bg, f)(Cf, g)|
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≥ |λ − (Af, f)||λ − (−A∗g, g)| − ‖B‖‖C‖

≥ β2

4
− ‖B‖‖C‖ > 0, (3.6)

which shows that λ /∈ W 2(H). By Theorem 3.6, 0 /∈ σ(H), i.e., H is boundedly invertible.

The norm of the resolvent (T − λI)−1 of a bounded linear operator T can be estimated in

terms of the numerical range as

‖(T − λI)−1‖ ≤ 1
dist(λ, W (T ))

, λ /∈ W (T ). (3.7)

For an unbounded operator T , the above resolvent estimation is invalid in general. But for the

Hamiltonian operators in Theorems 3.1, 3.3, 3.6–3.7, we claim that (3.7) holds true.

Corollary 3.9 Let H be Hamiltonian operators defined as in Theorem 3.1, 3.3, 3.6–3.7.

Then ‖(H − λI)−1‖ ≤ 1
dist(λ,W (H)) , λ /∈ W (H).

Proof By Theorems 3.1, 3.3, 3.6–3.7, we have σ(H) ⊂ W 2(H) ⊂ W (H). Then every

component of C\W (H) contains a point λ ∈ ρ(H). So, the resolvent satisfies the norm estimate

(see [4, Theorem V.3.2])

‖(H − λI)−1‖ ≤ 1
dist(λ, W (H))

, λ /∈ W (H).

Finally, we conclude with an example, which is inspired by [4, Example V.3.34]. In what

follows, L2([a, b], C) is the Hilbert space of square Lebesgue integrable complex-valued functions

on [a, b], and AC([a, b], C) denotes the space of complex-valued functions on [a, b] that are

absolutely continuous on every compact subinterval of [a, b].

Example 3.1 Let X = L2([a, b], C) and K = AC([a, b], C). Consider the Hamiltonian

operator H =
(

A B
0 −A∗

)
with Au = p0(x)u′′ + p1(x)u′ + p2(x)u, −A∗u = −p0(x)u′′ + p1(x)u′ −

p2(x)u and Bu = iu′, where pk(x), k = 1, 2, 3 are real-valued, p0(x) < 0, p′′0 , p′1, p2 are

continuous on [a, b], and

D(A) = D(−A∗) = {x ∈ X : x, x′ ∈ K, x′′ ∈ X, x(a) = x(b) = 0},
D(B) = {x ∈ X : x ∈ K, x′ ∈ X, x(a) = x(b)}.

We claim that

σ(H) ⊂
{
λ ∈ C : Re λ ≥ γ1, |arg(λ − γ1)| ≤ arctan

( 1
k1

)}
∪

{
λ ∈ C : Re λ ≤ γ2, |arg(λ − γ2)| ≥ π − arctan

( 1
k2

)}
. (3.8)

Indeed, for u ∈ D(A), we have

(Au, u) =
∫ b

a

(p0(x)u′′ + p1(x)u′ + p2(x)u)udx
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= −
∫ b

a

p0 |u′|2 dx +
∫ b

a

[(p1 − p′0)u′ + p2 u] udx. (3.9)

Since −p0(x) ≥ m0 > 0, |p1(x) − p′0(x)| ≤ M1, |p2(x)| ≤ M2 for some positive constants

m0, M1, M2, we know for any k1 > 0 that

Re(Au, u) − k1|Im(Au, u)|

≥ m0

∫ b

a

|u′|2 dx − (1 + k1)M1

∫ b

a

|u′||u| dx − M2

∫ b

a

|u|2 dx

≥ [m0 − ε(1 + k1)M1]
∫ b

a

|u′|2 dx −
((1 + k1)M1

4ε
+ M2

) ∫ b

a

|u|2 dx, (3.10)

where ε > 0 is arbitrary. If ε is chosen in such a way that m0 − ε(1 + k1)M1 ≥ 0, then

Re(Au, u) − k1|Im(Au, u)| ≥ γ1(u, u) for some negative number γ1. In other words,

|Im(Au, u)| ≤ 1
k1

Re((A − γ1)u, u).

This means

W (A) ⊂
{
λ ∈ C : Re λ ≥ γ1, |arg(λ − γ1)| ≤ arctan

( 1
k1

)}
.

Similarly, we deduce that

W (−A∗) ⊂
{
λ ∈ C : Re λ ≤ γ2, |arg(λ − γ2)| ≥ π − arctan

( 1
k2

)}

for a given k2 > 0 and some positive number γ2. For a sufficiently large λ ∈ R ∩ (C \ W (A)),

we easily verify −λ /∈ σp(A∗), i.e., d(A + λ) = 0, which together with n(A + λ) = 0 and the

closedness of R(A + λ) implies λ ∈ ρ(A). This means ρ(A) ∩ (C \W (A)) �= ∅. Analogously, we

also have ρ(−A∗) ∩ (C \ W (−A∗)) �= ∅. By Theorem 3.5, we obtain the following estimates:

σ(H) ⊂
{
λ ∈ C : Re λ ≥ γ1, |arg(λ − γ1)| ≤ arctan

( 1
k1

)}
∪

{
λ ∈ C : Re λ ≤ γ2, |arg(λ − γ2)| ≥ π − arctan

( 1
k2

)}
. (3.11)
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