Chinese Annals of Mathematics, Series B © The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2016

Gröbner-Shirshov Basis for Degenerate Ringel-Hall Algebras of Type F_4^*

Zhenzhen GAO¹ Abdukadir OBUL²

Abstract In this paper, by using the Frobenius morphism and the multiplication formulas of the generic extension monoid algebra, the authors first give a presentation of the degenerate Ringel-Hall algebra, and then construct the Gröbner-Shirshov basis for degenerate Ringel-Hall algebras of type F_4 .

Keywords Gröbner-Shirshov basis, Frobenius map, Degenerate Ringel-Hall algebras, Multiplication formulas
 2010 MR Subject Classification 16S15, 17B37, 16G20

1 Introduction

Through the works of Buchberger [1], Bergman [2] and Shirshov [3], the Gröbner-Shirshov basis theory has become a powerful tool for the solution of the reduction problem in algebra and provides a computational approach for the study of structures of algebras. The degenerate Ringel-Hall algebra is the specialization of the Ringel-Hall algebra at q = 0 and in [4] Reineke gave a remarkable basis which closes under multiplication.

In this paper, we first give a presentation of the degenerate Ringel-Hall algebra $\mathfrak{H}_0(F_4)$ by using the method of Frobenius morphism (see [5]) and the idea of monoid algebra (see [4]). Then, by using the relations which are computed to give this presentation, we construct a Gröbner-Shirshov basis for the degenerate Ringel-Hall algebra $\mathfrak{H}_0(F_4)$.

2 Some Preliminaries

First, we recall some relevant notions and results about the Gröbner-Shirshov basis theory from [6].

Let S be a linearly ordered set, k be a field and $k\langle S \rangle$ the free associative algebra generated by S over k. Let S^* be the free monoid generated by S. Order S^* by the deg-lex order " < ". Then any polynomial $f \in k\langle S \rangle$ has the leading word \overline{f} . We call f monic if the coefficient of \overline{f} is 1.

Manuscript received July 2, 2014. Revised August 30, 2015.

¹College of Applied Sciences, Beijing University of Technology, Beijing 100124, China.

E-mail: gaozhenzhen1224@163.com

²Corresponding author. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China. E-mail: abdu@vip.sina.com

^{*}This work was supported by the National Natural Science Foundation of China (Nos. 11361056, 112710 43, 11471186).

Let $f, g \in k \langle S \rangle$ be two monic polynomials and $\omega \in S^*$. If $\omega = \overline{f}b = a\overline{g}$ for some $a, b \in S^*$ such that $\deg(\overline{f}) + \deg(\overline{g}) < \deg(\omega)$, then $(f, g)_{\omega} = fb - ag$ is called the intersection composition of f and g relative to ω . If $\omega = \overline{f} = a\overline{g}b$ for some $a, b \in S^*$, then $(f, g)_{\omega} = f - agb$ is called the inclusion composition of f and g relative to ω .

Let $R \subset k\langle S \rangle$ be a monic set. A composition $(f,g)_{\omega}$ is called trivial modulo (R,ω) if $(f,g)_{\omega} = \sum \alpha_i a_i t_i b_i$, where each $\alpha_i \in k$, $t_i \in R$, $a_i, b_i \in S^*$ and $a_i \overline{t}_i b_i < \omega$.

R is called a Gröbner-Shirshov basis if any composition of polynomials from R is trivial modulo R.

A well order " <" on S^* is monomial if for any $u, v \in S^*$, we have

$$u > v \Longrightarrow \omega_1 u \omega_2 > \omega_1 v \omega_2$$
 for all $\omega_1, \omega_2 \in S^*$.

A standard result about the Gröbner-Shirshov basis theory is the following lemma.

Lemma 2.1 (see [6]) (Composition-Diamond Lemma) Let k be a field, $A = k\langle S | R \rangle = k\langle S \rangle / Id(R)$ and " < " be a monomial order on S^* , where Id(R) is the ideal of $k\langle S \rangle$ generated by R. Then the following statements are equivalent:

(a) R is a Gröbner-Shirshov basis;

(b) $f \in Id(R) \Longrightarrow \overline{f} = a\overline{t}b$ for some $t \in R$ and $a, b \in S^*$;

(c) $\operatorname{Irr}(R) = \{ u \in S^* \mid u \neq a\overline{t}b, t \in R, a, b \in S^* \}$ is a k-linear basis of the algebra A.

Next, we recall some relevant notions and results about the Frobenius morphism method from [5].

Let (Q, σ) be a quiver Q with the automorphism σ . The associated valued quiver $\Gamma = \Gamma(Q, \sigma)$ is defined as follows. Its vertex set Γ_0 and arrow set Γ_1 are simply the sets of σ -orbits in Q_0 and Q_1 , respectively. For $\rho \in Q_1$, its tail (resp., head) is the σ -orbit of tails (resp., heads) of arrows in ρ . The valuation of Γ is given by

$$d_i = |\{\text{vertices in } \sigma \text{-orbit } i\}| \quad \text{for } i \in \Gamma_0,$$
$$m_\rho = |\{\text{arrows in } \sigma \text{-orbit } \rho\}| \quad \text{for } \rho \in \Gamma_1.$$

Let \mathbb{F}_q be the finite field of q elements and $\mathcal{K} = \overline{\mathbb{F}}_q$ be the algebraic closure of \mathbb{F}_q .

Definition 2.1 (see [5, 7]) Let M be a vector-space over \mathcal{K} . An \mathbb{F}_q -linear isomorphism $F: M \longrightarrow M$ is called a Frobenius map if it satisfies:

- (a) $F(\lambda m) = \lambda^q F(m)$ for all $m \in M$ and $\lambda \in \mathcal{K}$;
- (b) For any $m \in M$, $F^n(m) = m$ for some n > 0.

Let C be a \mathcal{K} -algebra with identity 1. We do not assume generally that C is finitedimensional. A map $F_C : C \longrightarrow C$ is called a Frobenius morphism on C if it is a Frobenius map on the \mathcal{K} -space C, and it is also an \mathbb{F}_q -algebra isomorphism sending 1 to 1.

Let $A := \mathcal{K}Q$ be the path algebra of Q over \mathcal{K} . Then σ induces a Frobenius morphism $F = F_{Q,\sigma} = F_{Q,\sigma,q} : A \longrightarrow A$ given by $\sum_s x_s p_s \longmapsto \sum_s x_s^q \sigma(p_s)$, where $\sum_s x_s p_s$ is a \mathcal{K} -linear combination of paths p_s and $\sigma(p_s) = \sigma(\rho_t) \cdots \sigma(\rho_1)$ if $p_s = \rho_t \cdots \rho_1$ for arrows $\rho_1, \cdots, \rho_t \in Q_1$. Then the fixed-point algebra

$$A(q) = \mathfrak{A}(Q, \sigma; q) := A^{F} = \{a \in A \mid F(a) = a\}$$

is an \mathbb{F}_q -algebra associated with (Q, σ) .

Definition 2.2 (see [5]) Let (Q, σ) be a quiver with the automorphism σ . A representation $V = (V_i, \phi_{\rho})$ of Q is called F-stable (or equivalently, an F-stable A-module) if there is a Frobenius map $F_V : \bigoplus_{i \in Q_0} V_i \longrightarrow \bigoplus_{i \in Q_0} V_i$ satisfying $F_V(V_i) = V_{\sigma_i}$ for all $i \in Q_0$ such that $F_V \phi_{\rho} = \phi_{\sigma(\rho)} F_V$ for each arrow $\rho \in Q_1$

For an *F*-stable representation $V = (V_i, \phi_\rho)$, let $\operatorname{dim} V = \sum_{i \in \Gamma_0} (\operatorname{dim} V_i)i \in \mathbb{N}\Gamma_0$ and $\operatorname{dim} V = \sum_{i \in \Gamma_0} \operatorname{dim} V_i$ denote the dimension vector and the dimension of *V*, respectively. An *F*-stable representation is called indecomposable if it is nonzero and not isomorphic to a direct sum of two nonzero *F*-stable representations.

Lemma 2.2 (see [8]) There is a one-to-one correspondence between isoclasses of indecomposable A(q)-modules and isoclasses of indecomposable F-stable A-modules.

Then, we recall some relevant notions and results about the degenerate Ringel-Hall algebra from [8].

From now on, we assume that (Q, σ) is a Dynkin quiver Q with the automorphism σ . Dlab and Ringel [9–10] have shown that there is a bijection from the isoclasses of indecomposable A(q)-modules to the set $\Phi^+ = \Phi^+(Q, \sigma)$ of positive roots in the root system associated with the valued quiver $\Gamma = \Gamma(Q, \sigma)$. For each $\alpha \in \Phi^+$, let $M_q(\alpha)$ denote the corresponding indecomposable A(q)-module, so $\dim M_q(\alpha) = \alpha$. By the Krull-Schmidt theorem, every A(q)-module M is isomorphic to

$$M_q(\lambda) := \bigoplus_{\alpha \in \Phi^+} \lambda(\alpha) M_q(\alpha)$$

for some function $\lambda: \Phi^+ \longrightarrow \mathbb{N}$. Thus, the isoclasses of A(q)-modules are indexed by the set

$$\mathfrak{B} = \mathfrak{B}(Q, \sigma) =: \{\lambda \mid \lambda : \Phi^+ \longrightarrow \mathbb{N}\} = \mathbb{N}^{\Phi^+},$$

which is independent of q. By Lemma 2.2, the isoclasses of F-stable $\mathcal{K}Q$ -modules are also indexed by \mathfrak{B} . Clearly, for each $i \in \Gamma_0$, there is a complete simple A(q)-module S_i corresponding to i.

For $M, N_1, \dots, N_t \in A(q)$ -mod, let F_{N_1,\dots,N_t}^M be the number of filtrations

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{t-1} \supseteq M_t = 0$$

such that $M_{i-1}/M_i \cong N_i$ for all $1 \le i \le t$ is finite. By [11], F_{N_1,\dots,N_t}^M is a polynomial in q when q varies. More precisely, for $\lambda, \mu, \nu \in \mathfrak{B} = \mathfrak{B}(Q, \sigma)$, there exists a polynomial $\varphi_{\mu,\nu}^{\lambda}(\mathbf{q}) \in \mathbb{Z}[\mathbf{q}]$ (the polynomial ring over \mathbb{Z} in one indeterminate \mathbf{q}) such that $\varphi_{\mu,\nu}^{\lambda}(q_k) = F_{M_{q_k(\mu)},M_{q_k(\nu)}}^{M_{q_k}(\lambda)}$ holds for any finite field k with q_k elements.

The generic Ringel-Hall algebra $\mathfrak{H} = \mathfrak{H}_q(Q, \sigma)$ is the free module over $\mathbb{Z}[q]$ with the basis $\{u_\lambda \mid \lambda \in \mathfrak{B}\}$ and the multiplication defined by

$$u_{\mu}u_{\nu} = \sum_{\lambda \in \mathfrak{B}} \varphi_{\mu,\nu}^{\lambda}(\mathbf{q})u_{\lambda}.$$

It is an $\mathbb{N}^{|\Gamma_0|}$ -graded algebra

$$\mathfrak{H} = igoplus_{e \in \mathbb{N}^{|\Gamma_0|}} \mathfrak{H}_e,$$

where \mathfrak{H}_e is spanned by all μ_{α} , $\alpha \in \mathfrak{B}_e := \{\beta \in \mathfrak{B} \mid \operatorname{dim} M_q(\beta) = e\}.$

For each $\lambda \in \mathfrak{B}$, set $M_q(\lambda)_{\mathcal{K}} := M_q(\lambda) \otimes_{\mathbb{F}_q} \mathcal{K}$ which is the *F*-stable $\mathcal{K}Q$ -module corresponding to λ .

Now by specializing q to 0, we obtain the Z-algebra $\mathfrak{H}_0(Q, \sigma)$, called the degenerate Ringel-Hall algebra associated with $\Gamma = \Gamma(Q, \sigma)$. In other words, $\mathfrak{H}_0(Q, \sigma) = \mathfrak{H}_q(Q, \sigma) \otimes_{\mathbb{Z}[q]} \mathbb{Z}$, where Z is viewed as a Z[q]-module with the action of q by zero. By abuse of notations, we also write $u_{\lambda} = u_{\lambda} \otimes 1$. Thus, the set $\{u_{\lambda} \mid \lambda \in \mathfrak{B}\}$ is a Z-basis of $\mathfrak{H}_0(Q, \sigma)$. Let $u_i = u_{[S_i]} \otimes 1$ in $\mathfrak{H}_0(Q, \sigma)$ for $i \in \Gamma_0$.

Lemma 2.3 (see [12]) As a \mathbb{Z} -algebra, $\mathfrak{H}_0(Q, \sigma)$ is generated by $u_i, i \in \Gamma_0$.

Finally, we recall some relevant notions and results about monoid algebras from [4].

For $\mathcal{K}Q$ -modules M and N, the generic extension M * N of M by N was defined in [13] as the unique (up to isomorphism) element in $\mathbf{Ext}^{1}_{\mathcal{K}Q}(M, N)$ having an endomorphism algebra of the minimal dimension. As shown in [4], the star operation * defines the structure of a monoid on the set $\mathcal{M}_Q = \mathcal{M}_{Q,\mathcal{K}}$ of isoclasses of $\mathcal{K}Q$ -modules.

Proposition 2.1 (see [7]) If M and N are two F-stable $\mathcal{K}Q$ -modules, then M * N is also F-stable.

By this proposition, the set of isoclasses [M] of *F*-stable $\mathcal{K}Q$ -modules, together with the operation [M] * [N] = [M * N], defines a submonoid $\mathcal{M}_{Q,\sigma}$ of \mathcal{M}_Q with the unit element [0].

Since all the indecomposable A(q)-modules are indexed by the set \mathfrak{B} , we give an enumeration on Φ^+ defined by $\beta_1, \beta_2, \cdots, \beta_N$ such that for all prime powers q,

$$\operatorname{Hom}_{A(q)}(M_q(\beta_s), M_q(\beta_t)) \neq 0 \quad \text{implies} \quad s \leq t.$$

Moreover, in this case, $\operatorname{Ext}^{1}_{A(q)}(M_{q}(\beta_{s}), M_{q}(\beta_{t})) \neq 0$ implies s > t. Thus, we give an enumeration on indecomposable A(q)-modules and set $M_{q}(\beta_{1}) \prec M_{q}(\beta_{2}) \prec \cdots M_{q}(\beta_{N})$.

By the definition of the generic extension, if $\operatorname{\mathbf{Ext}}^{1}_{A(q)}(M,N) = 0$, then $M * N \cong M \oplus N$. Consequently, we have the following known result.

Lemma 2.4 Each element $[M_q(\lambda)_{\mathcal{K}}]$ in $\mathcal{M}_{Q,\sigma}$ with $\lambda \in \mathfrak{B}$ can be written as

$$[M_q(\lambda)_{\mathcal{K}}] = [M_q(\beta_1)_{\mathcal{K}}]^{*\lambda_{\beta_1}} * \cdots * [M_q(\beta_N)_{\mathcal{K}}]^{*\lambda_{\beta_N}}.$$

Moreover, these elements form a \mathbb{Z} -basis of $\mathbb{Z}\mathcal{M}_{Q,\sigma}$.

For a dimension vector $d = \sum_{i \in \Gamma_0} d_i i \in \mathbb{N}\Gamma_0$, we consider the affine space

$$R_d = \prod_{\alpha: i \to j} \operatorname{Hom}_{\mathcal{K}}(\mathcal{K}^{d_i}, \mathcal{K}^{d_j}).$$

Then the group $G_d := \prod_{i \in \Gamma_0} \operatorname{GL}_{d_i}(\mathcal{K})$ acts on R_d by conjugation, i.e., by

$$(g_i) \cdot (x_\rho)_\rho = (g_j x_\rho g_i^{-1})_{\rho:i \to j}.$$

The orbits of G_d correspond bijectively to the isoclasses of representations of Γ of the dimension vector d. Denote by \mathcal{O}_M the orbit corresponding to the isoclass [M]. Since there are only finitely many G_d -orbits in R_d , there exists a dense one, whose corresponding representation is denoted by E_d . **Lemma 2.5** (see [14]) Let i_1, \dots, i_n be an enumeration of Γ_0 such that k < l if there is an arrow from i_k to i_l . Then for all $d = \sum_{k=1}^n d_k \alpha_{i_k} \in \Phi^+$, we have $[E_d] = [S_{i_1}]^{*d_i} * \dots * [S_{i_n}]^{*d_n}$ in $\mathcal{M}_{Q,\sigma}$.

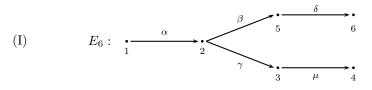
Like the Ringel-Hall algebras, there is a natural grading on the monoid algebra $\mathbb{Z}\mathcal{M}_{Q,\sigma}$ in terms of dimension vectors:

$$\mathbb{Z}\mathcal{M}_{Q,\sigma} = \bigoplus_{e \in \mathbb{N}^{|\Gamma_0|}} \mathbb{Z}\mathcal{M}_e,$$

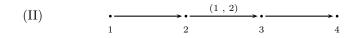
where $\mathbb{Z}\mathcal{M}_e$ is spanned by all $[M_q(\alpha)_{\mathcal{K}}], \alpha \in \mathfrak{B}_e$.

3 Presentation of Degenerate Ringel-Hall Algebra $\mathfrak{H}_0(F_4)$

In the following, we consider the quiver:



where σ is the automorphism of E_6 such that $\sigma(1) = 1$, $\sigma(2) = 2$, $\sigma(3) = 5$, $\sigma(4) = 6$, $\sigma(5) = 3$, $\sigma(6) = 4$, $\sigma(\alpha) = \alpha$, $\sigma(\beta) = \gamma$, $\sigma(\gamma) = \beta$, $\sigma(\delta) = \mu$, $\sigma(\mu) = \delta$. Then the associated valued quiver F_4 with the valuation $\varepsilon_1 = 1$, $\varepsilon_2 = 1$, $\varepsilon_3 = 2$, $\varepsilon_4 = 2$ has the form:



Then we have $\mathfrak{H}_0(F_4) = \mathfrak{H}_0(E_6, \sigma)$. It is easy to see that the following relations hold in $\mathfrak{H}_0(F_4)$ (for $1 \leq i, j \leq 4$):

(F1)
$$u_i u_j = u_j u_i$$
 for $|i - j| \ge 2$, (F2) $u_i^2 u_{i+1} = u_i u_{i+1} u_i$ for $i \in \{1, 3\}$,
(F3) $u_i u_{i+1}^2 = u_{i+1} u_i u_{i+1}$ for $i \in \{1, 3\}$, (F4) $u_3 u_2 u_3 = u_2 u_3^2$,
(F5) $u_2 u_3 u_2^2 u_3 = u_2^3 u_3^2$, (F6) $u_2^2 u_3 u_2 = u_2^3 u_3$.

Now consider the corresponding monoid algebra $\mathbb{Z}\mathcal{M}_{E_6,\sigma}$. By [14], the following relations hold in $\mathbb{Z}\mathcal{M}_{E_6,\sigma}$:

$$\begin{aligned} & (\mathcal{F}1) \ [S_i] * [S_j] = [S_j] * [S_i] & \text{for } |i-j| \geq 2, \\ & (\mathcal{F}2) \ [S_i]^{*2} [S_{i+1}] = [S_i] * [S_{i+1}] * [S_i] & \text{for } i \in \{1,3\}, \\ & (\mathcal{F}3) \ [S_i] [S_{i+1}]^{*2} = [S_{i+1}] * [S_i] * [S_{i+1}] & \text{for } i \in \{1,3\}, \\ & (\mathcal{F}4) \ [S_3] * [S_2] * [S_3] = [S_2] * [S_3]^{*2}, \\ & (\mathcal{F}5) \ [S_2] * [S_3] * [S_2]^{*2} * [S_3] = [S_2]^{*3} * [S_3]^{*2}, \\ & (\mathcal{F}6) \ [S_2]^{*2} * [S_3] * [S_2] = [S_2]^{*3} * [S_3]. \end{aligned}$$

In the following, we prove that the set $\{[S_1], [S_2], [S_3], [S_4]\}$ and the relations $(\mathcal{F}1)$ - $(\mathcal{F}6)$ between them give a presentation of the monoid algebra $\mathbb{ZM}_{E_6,\sigma}$.

Proposition 3.1 The monoid algebra $\mathbb{ZM}_{E_6,\sigma}$ has a presentation with generators $[S_i]$ $(1 \le i \le 4)$ and relations (\mathcal{F}_1) – (\mathcal{F}_6) .

Proof For convenience, set $\mathbb{Z}\mathcal{M} = \mathbb{Z}\mathcal{M}_{E_6,\sigma}$. Let \mathcal{S} be the free \mathbb{Z} -algebra with generators s_i $(1 \leq i \leq 4)$. Consider the ideal \mathfrak{J} generated by the following elements for $1 \leq i, j \leq 4$,

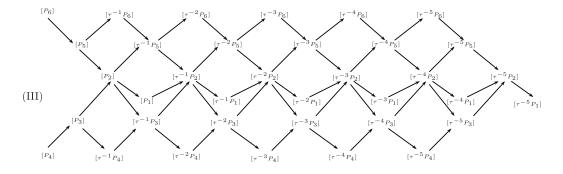
$$\begin{array}{ll} (F'1) \ s_i s_j - s_j s_i & \text{for } |i-j| \geq 2, \quad (F'2) \ s_i^2 s_{i+1} - s_i s_{i+1} s_i & \text{for } i \in \{1,3\}, \\ (F'3) \ s_i s_{i+1}^2 - s_{i+1} s_i s_{i+1} & \text{for } i \in \{1,3\}, \quad (F'4) \ s_3 s_2 s_3 - s_2 s_3^2, \\ (F'5) \ s_2 s_3 s_2^2 s_3 - s_2^3 s_3^2, & (F'6) \ s_2^2 s_3 s_2 - s_2^3 s_3. \end{array}$$

Then, there is a surjective monoid algebra homomorphism $\eta : S \longrightarrow \mathbb{Z}M$ given by $s_i \longmapsto [S_i]$ with $1 \leq i \leq 4$. Because we have $\mathcal{F}i = 0$ $(1 \leq i \leq 6)$ in $\mathbb{Z}M$, the map η induces a surjective algebra homomorphism $\overline{\eta} : S/\mathfrak{J} \longrightarrow \mathbb{Z}M$ given by $s_i + \mathfrak{J} \longmapsto [S_i]$ $(1 \leq i \leq 4)$. To complete the proof, it suffices to show that $\overline{\eta}$ is injective.

Set $f_i = s_i + \mathfrak{J}$ $(1 \le i \le 4)$. Given a $\mathcal{K}F_4$ -module M with the dimension vector $\dim M := (a, b, c, d)$, we define a monomial in \mathcal{S}/\mathfrak{J} by

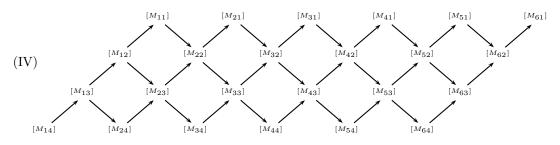
$$\mathfrak{n}(M) = f_1^a f_2^b f_3^c f_4^d.$$

It is known that the Auslander-Reiten quiver for $\mathcal{K}E_6$ is as follows:



where each P_i $(1 \le i \le 6)$ is the indecomposable projective $\mathcal{K}E_6$ -module corresponding to the vertex *i* and τ is the Auslander-Reiten translation.

Using the Frobenius morphism $F = F_{E_6,\sigma} = F_{E_6,\sigma,q}$ introduced in Section 3, it is easy to see that P_1 and P_2 are *F*-stable and all other P_i have F-period 2 with $P_3^{[1]} = P_5, P_4^{[1]} = P_6$. By folding the Auslander-Reiten quiver of $\mathcal{K}E_6$, we obtain the Auslander-Reiten quiver of $A(q) = (\mathcal{K}E_6)^F \cong \mathcal{K}F_4$:



where M_{ij} denotes the indecomposable $\mathcal{K}F_4$ -modules, $1 \leq i \leq 6$ and $1 \leq j \leq 4$. Here $M_{11} = P_1^F, M_{12} = P_2^F, M_{13} = (P_3 \oplus P_5)^F, M_{14} = (P_4 \oplus P_6)^F$ and $\tau = \tau_{AF}$ is the Auslander-Reiten translation of A(q) (see [7] for details). Moreover, the dimension vectors of M_{ij} ($1 \leq i \leq 6, 1 \leq j \leq 4$) and the associated monomials in \mathcal{S}/\mathfrak{J} are given by

$$\begin{aligned} \dim M_{14} &= (0, 0, 0, 1) \text{ and } \mathfrak{n}(M_{14}) = f_4, \\ \dim M_{13} &= (0, 0, 1, 1) \text{ and } \mathfrak{n}(M_{13}) = f_3f_4, \\ \dim M_{12} &= (0, 1, 1, 1) \text{ and } \mathfrak{n}(M_{12}) = f_2f_3f_4, \\ \dim M_{11} &= (1, 1, 1, 1) \text{ and } \mathfrak{n}(M_{11}) = f_1f_2f_3f_4, \\ \dim M_{21} &= (0, 1, 1, 0) \text{ and } \mathfrak{n}(M_{21}) = f_2f_3 \\ \dim M_{22} &= (1, 2, 2, 1) \text{ and } \mathfrak{n}(M_{22}) = f_1f_2^2f_3^2f_4, \\ \dim M_{23} &= (0, 2, 2, 1) \text{ and } \mathfrak{n}(M_{23}) = f_2^2f_3^2f_4, \\ \dim M_{24} &= (0, 0, 1, 0) \text{ and } \mathfrak{n}(M_{24}) = f_3, \\ \dim M_{31} &= (1, 2, 1, 1) \text{ and } \mathfrak{n}(M_{31}) = f_1f_2^2f_3f_4^2, \\ \dim M_{32} &= (1, 3, 2, 1) \text{ and } \mathfrak{n}(M_{32}) = f_1f_3^2f_3^2f_4^2, \\ \dim M_{33} &= (2, 4, 3, 2) \text{ and } \mathfrak{n}(M_{33}) = f_1^2f_2^4f_3^3f_4^2, \\ \dim M_{34} &= (0, 2, 1, 1) \text{ and } \mathfrak{n}(M_{34}) = f_2^2f_3f_4, \\ \dim M_{41} &= (1, 1, 1, 0) \text{ and } \mathfrak{n}(M_{41}) = f_1f_2f_3, \\ \dim M_{42} &= (2, 3, 2, 1) \text{ and } \mathfrak{n}(M_{42}) = f_1^2f_2^2f_3^2f_4, \\ \dim M_{43} &= (2, 4, 3, 1) \text{ and } \mathfrak{n}(M_{43}) = f_1^2f_2^2f_3^2f_4, \\ \dim M_{44} &= (2, 2, 2, 1) \text{ and } \mathfrak{n}(M_{43}) = f_1^2f_2^2f_3^2f_4, \\ \dim M_{51} &= (0, 1, 0, 0) \text{ and } \mathfrak{n}(M_{51}) = f_2, \\ \dim M_{52} &= (1, 2, 1, 0) \text{ and } \mathfrak{n}(M_{53}) = f_1^2f_2^2f_3^2f_4, \\ \dim M_{54} &= (0, 2, 1, 0) \text{ and } \mathfrak{n}(M_{51}) = f_1, \\ \dim M_{54} &= (0, 2, 1, 0) \text{ and } \mathfrak{n}(M_{54}) = f_1^2f_2^2f_3, \\ \dim M_{54} &= (1, 0, 0, 0) \text{ and } \mathfrak{n}(M_{54}) = f_2^2f_3, \\ \dim M_{61} &= (1, 0, 0, 0) \text{ and } \mathfrak{n}(M_{61}) = f_1, \\ \dim M_{62} &= (1, 1, 0, 0) \text{ and } \mathfrak{n}(M_{63}) = f_1^2f_2^2f_3, \\ \dim M_{63} &= (2, 2, 1, 0) \text{ and } \mathfrak{n}(M_{63}) = f_1^2f_2^2f_3, \\ \dim M_{64} &= (2, 2, 1, 1) \text{ and } \mathfrak{n}(M_{64}) = f_1^2f_2^2f_3, \\ \dim M_{64} &= (2, 2, 1, 1) \text{ and } \mathfrak{n}(M_{64}) = f_1^2f_2^2f_3, \\ \dim M_{64} &= (2, 2, 1, 1) \text{ and } \mathfrak{n}(M_{64}) = f_1^2f_2^2f_3, \\ \dim M_{64} &= (2, 2, 1, 1) \text{ and } \mathfrak{n}(M_{64}) = f_1^2f_2^2f_3f_4. \end{aligned}$$

Now we give an enumeration of the indecomposable A(q)-modules in figure (IV):

$$(*) \qquad M_{i4} \prec M_{i3} \prec M_{i2} \prec M_{i1} \prec M_{i+1,4} \prec M_{i+1,3} \prec M_{i+1,2} \prec M_{i+1,1}.$$

Now, by using the relations (F'1)-(F'6), we compute the relations between $\mathfrak{n}(M_{ij})$ $(1 \le i \le 6, 1 \le j \le 4)$ in S/\mathfrak{J} :

$$\begin{split} \mathfrak{n}(M_{13})\mathfrak{n}(M_{14}) &= f_3f_4f_4 = f_4f_3f_4 = \mathfrak{n}(M_{14})\mathfrak{n}(M_{13});\\ \mathfrak{n}(M_{21})\mathfrak{n}(M_{14}) &= f_2f_3f_4 = \mathfrak{n}(M_{12});\\ \mathfrak{n}(M_{22})\mathfrak{n}(M_{13}) &= f_1f_2^2f_3^2f_4f_3f_4 \end{split}$$

$$= f_1 f_2^2 f_3 f_4 f_3 f_3 f_4 \quad (by (F'2))$$

$$= f_1 f_2^2 f_3 f_4 f_3 f_4 f_3 \quad (by (F'2))$$

$$= f_2 f_1 f_2 f_3 f_4 f_3 f_4 f_3 \quad (by (F'3))$$

$$= f_2 f_1 f_2 f_3^2 f_4 f_4 f_3 \quad (by (F'2))$$

$$= f_2 f_3 f_1 f_2 f_3 f_4^2 f_3 \quad (by (F'4))$$

$$= f_2 f_3 f_1 f_2 f_3 f_4^2 f_3 \quad (by (F'1))$$

$$= f_2 f_3 f_4 f_1 f_2 f_3 f_4 f_3 \quad (by (F'3))$$

$$= f_2 f_3 f_4 f_1 f_2 f_3 f_4 f_3 \quad (by (F'1))$$

$$= \mathfrak{n}(M_{12})\mathfrak{n}(M_{11})\mathfrak{n}(M_{24}).$$

In this way, we get the following set B of relations:

1. $\mathfrak{n}(M_{i+1,1})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i2}),$ 3. $\mathfrak{n}(M_{i+3,1})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i1}),$ 5. $\mathfrak{n}(M_{i+4,2})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i+2,1}),$ 7. $\mathfrak{n}(M_{63})\mathfrak{n}(M_{14}) = \mathfrak{n}(M_{64}),$ 9. $\mathfrak{n}(M_{i+4,2})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i+1,2}),$ 11. $\mathfrak{n}(M_{i+4,4})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i+1,3}),$ 13. $\mathfrak{n}(M_{63})\mathfrak{n}(M_{13}) = \mathfrak{n}(M_{44}),$ 15. $\mathfrak{n}(M_{i+3,1})\mathfrak{n}(M_{i2}) = \mathfrak{n}(M_{i+1,2}),$ 17. $\mathfrak{n}(M_{i+4,1})\mathfrak{n}(M_{i2}) = \mathfrak{n}(M_{i+2,4}),$ 19. $\mathfrak{n}(M_{61})\mathfrak{n}(M_{12}) = \mathfrak{n}(M_{11}),$ 21. $\mathfrak{n}(M_{i+1,1})\mathfrak{n}(M_{i1}) = \mathfrak{n}(M_{i+1,2}),$ 23. $\mathfrak{n}(M_{i+2,2})\mathfrak{n}(M_{i1}) = \mathfrak{n}(M_{i+2,3}),$ 25. $\mathfrak{n}(M_{i+4,1})\mathfrak{n}(M_{i1}) = \mathfrak{n}(M_{i+2,1}),$ 27. $\mathfrak{n}(M_{i+4,4})\mathfrak{n}(M_{i1}) = \mathfrak{n}(M_{i+2,2}),$ 29. $\mathfrak{n}(M_{i3})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i4})\mathfrak{n}(M_{i3}),$ 31. $\mathfrak{n}(M_{i1})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i4})\mathfrak{n}(M_{i1}),$ 33. $\mathfrak{n}(M_{i+1,3})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i2})\mathfrak{n}(M_{i2}),$ 35. $\mathfrak{n}(M_{i+2,2})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+2,4}),$ 37. $\mathfrak{n}(M_{i+3,2})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+2,1}),$ 39. $\mathfrak{n}(M_{i+4,1})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i4})\mathfrak{n}(M_{i+4,1}),$ 41. $\mathfrak{n}(M_{61})\mathfrak{n}(M_{14}) = \mathfrak{n}(M_{14})\mathfrak{n}(M_{61}),$ 43. $\mathfrak{n}(M_{64})\mathfrak{n}(M_{14}) = \mathfrak{n}(M_{14})\mathfrak{n}(M_{64}),$ 45. $\mathfrak{n}(M_{i1})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i3})\mathfrak{n}(M_{i1}),$ 47. $\mathfrak{n}(M_{i+1,4})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i3})\mathfrak{n}(M_{i+1,4}),$ 49. $\mathfrak{n}(M_{i+2,2})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+1,3}),$ 51. $\mathfrak{n}(M_{i+3,1})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+1,4}),$

2. $\mathfrak{n}(M_{i+1,4})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i3}),$ 4. $\mathfrak{n}(M_{i+3,3})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i+2,3}),$ 6. $\mathfrak{n}(M_{i+4,4})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i+2,4}),$ 8. $\mathfrak{n}(M_{i+4,1})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i2}),$ 10. $\mathfrak{n}(M_{i+4,3})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i+2,3}),$ 12. $\mathfrak{n}(M_{62})\mathfrak{n}(M_{13}) = \mathfrak{n}(M_{11}),$ 14. $\mathfrak{n}(M_{i+1,1})\mathfrak{n}(M_{i2}) = \mathfrak{n}(M_{i+1,3}),$ 16. $\mathfrak{n}(M_{i+3,2})\mathfrak{n}(M_{i2}) = \mathfrak{n}(M_{i+2,3}),$ 18. $\mathfrak{n}(M_{i+4,2})\mathfrak{n}(M_{i2}) = \mathfrak{n}(M_{i+2,2}),$ 20. $\mathfrak{n}(M_{62})\mathfrak{n}(M_{12}) = \mathfrak{n}(M_{31}),$ 22. $\mathfrak{n}(M_{63})\mathfrak{n}(M_{12}) = \mathfrak{n}(M_{42}),$ 24. $\mathfrak{n}(M_{i+3,1})\mathfrak{n}(M_{i1}) = \mathfrak{n}(M_{i+3,4}),$ 26. $\mathfrak{n}(M_{i+4,2})\mathfrak{n}(M_{i1}) = \mathfrak{n}(M_{i+3,2}),$ 28. $\mathfrak{n}(M_{62})\mathfrak{n}(M_{11}) = \mathfrak{n}(M_{64}),$ 30. $\mathfrak{n}(M_{i2})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i4})\mathfrak{n}(M_{i2}),$ 32. $\mathfrak{n}(M_{i+1,2})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i2})\mathfrak{n}(M_{i1}),$ 34. $\mathfrak{n}(M_{i+2,1})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i4})\mathfrak{n}(M_{i+2,1}),$ 36. $\mathfrak{n}(M_{i+2,4})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i4})\mathfrak{n}(M_{i+2,4}),$ 38. $\mathfrak{n}(M_{i+3,4})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i1}),$ 40. $\mathfrak{n}(M_{i+4,3})\mathfrak{n}(M_{i4}) = \mathfrak{n}(M_{i+2,1})\mathfrak{n}(M_{i+2,1}),$ 42. $\mathfrak{n}(M_{62})\mathfrak{n}(M_{14}) = \mathfrak{n}(M_{14})\mathfrak{n}(M_{62}),$ 44. $\mathfrak{n}(M_{i2})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i3})\mathfrak{n}(M_{i2}),$ 46. $\mathfrak{n}(M_{i+1,1})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i2})\mathfrak{n}(M_{i+1,4}),$ 48. $\mathfrak{n}(M_{i+2,1})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i2})\mathfrak{n}(M_{i1}),$ 50. $\mathfrak{n}(M_{i+2,4})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i2})\mathfrak{n}(M_{i2}),$ 52. $\mathfrak{n}(M_{i+3,2})\mathfrak{n}(M_{i3}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+1,2}),$

$$\begin{aligned} & 53. \ \mathsf{n}(M_{i+3,3}) \mathsf{n}(M_{i3}) = \mathsf{n}(M_{i+1,2}) \mathsf{n}(M_{i+1,2}), & 54. \ \mathsf{n}(M_{61}) \mathsf{n}(M_{13}) = \mathsf{n}(M_{13}) \mathsf{n}(M_{61}), \\ & 55. \ \mathsf{n}(M_{64}) \mathsf{n}(M_{13}) = \mathsf{n}(M_{11}) \mathsf{n}(M_{11}), & 56. \ \mathsf{n}(M_{i1}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i2}) \mathsf{n}(M_{i1}), \\ & 57. \ \mathsf{n}(M_{i+1,2}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i+1,3}), & 58. \ \mathsf{n}(M_{i+1,3}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i2}) \mathsf{n}(M_{i4}), \\ & 59. \ \mathsf{n}(M_{i+1,4}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i2}) \mathsf{n}(M_{i+1,4}), & 60. \ \mathsf{n}(M_{i+2,1}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i4}), \\ & 61. \ \mathsf{n}(M_{i+2,2}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i+1,2}) \mathsf{n}(M_{i+2,4}), & 62. \ \mathsf{n}(M_{i+3,4}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i2}) \mathsf{n}(M_{i4}), \\ & 63. \ \mathsf{n}(M_{i+3,3}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i+1,1}) \mathsf{n}(M_{i+2,3}), & 64. \ \mathsf{n}(M_{i+3,4}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i4}), \\ & 65. \ \mathsf{n}(M_{i+4,3}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i+1,2}) \mathsf{n}(M_{i+2,3}), & 64. \ \mathsf{n}(M_{i+3,4}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i4}), \\ & 65. \ \mathsf{n}(M_{i+4,3}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{1i+1,3}) \mathsf{n}(M_{i+2,3}), & 64. \ \mathsf{n}(M_{i+3,4}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i4}), \\ & 65. \ \mathsf{n}(M_{i+4,3}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{1i}) \mathsf{n}(M_{i+2,3}), & 66. \ \mathsf{n}(M_{i+4,4}) \mathsf{n}(M_{i2}) = \mathsf{n}(M_{i1,1}) \mathsf{n}(M_{i4}), \\ & 69. \ \mathsf{n}(M_{i+1,3}) \mathsf{n}(M_{i1}) = \mathsf{n}(M_{11}) \mathsf{n}(M_{i+1,3}), & 70. \ \mathsf{n}(M_{i+1,4}) \mathsf{n}(M_{i1}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i4}), \\ & 69. \ \mathsf{n}(M_{i+2,4}) \mathsf{n}(M_{i1}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i+2,4}), & 70. \ \mathsf{n}(M_{i+3,4}) \mathsf{n}(M_{i1}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i4}), \\ & 71. \ \mathsf{n}(M_{i+2,4}) \mathsf{n}(M_{i1}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i+2,4}), & 70. \ \mathsf{n}(M_{i+3,4}) \mathsf{n}(M_{i1}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i+3,4}), \\ & 75. \ \mathsf{n}(M_{i+3,3}) \mathsf{n}(M_{i1}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i+3,4}), & 76. \ \mathsf{n}(M_{i+3,4}) \mathsf{n}(M_{i1}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i4}), \\ & 71. \ \mathsf{n}(M_{i+2,3}) \mathsf{n}(M_{i1}) = \mathsf{n}(M_{i1}) \mathsf{n}(M_{i+3,4}), \\ & 70. \ \mathsf{n}(M_{64}) \mathsf{n}(M_{11}) = \mathsf{n}(M_{11}) \mathsf{n}(M_{64}), \\ & 80. \ \mathsf{n}(M_{64}) \mathsf{n}(M_{11}) = \mathsf{n}(M_{11}) \mathsf{n}(M_{64}), \\ & 80. \ \mathsf{n}(M_{64}) \mathsf{n}(M_{11}) = \mathsf{n}(M_{11}) \mathsf$$

$$\begin{split} & \mathfrak{n}(M_{61})\mathfrak{n}(M_{13}) = \mathfrak{n}(M_{13})\mathfrak{n}(M_{61}), \\ & \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i2}) = \mathfrak{n}(M_{i2})\mathfrak{n}(M_{i1}), \\ & \mathfrak{n}(M_{i+1,3})\mathfrak{n}(M_{i2}) = \mathfrak{n}(M_{i2})\mathfrak{n}(M_{i+1,3}), \\ & \mathfrak{n}(M_{i+2,1})\mathfrak{n}(M_{i2}) = \mathfrak{n}(M_{i2})\mathfrak{n}(M_{i+2,4}), \\ & \mathfrak{n}(M_{i+2,4})\mathfrak{n}(M_{i2}) = \mathfrak{n}(M_{i2})\mathfrak{n}(M_{i+2,4}), \\ & \mathfrak{n}(M_{i+3,4})\mathfrak{n}(M_{i2}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+1,2}), \\ & \mathfrak{n}(M_{i+4,4})\mathfrak{n}(M_{i2}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+1,2}), \\ & \mathfrak{n}(M_{i+1,2})\mathfrak{n}(M_{i1}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+1,4}), \\ & \mathfrak{n}(M_{i+1,4})\mathfrak{n}(M_{i1}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+1,4}), \\ & \mathfrak{n}(M_{i+2,3})\mathfrak{n}(M_{i1}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+2,3}), \\ & \mathfrak{n}(M_{i+3,4})\mathfrak{n}(M_{i1}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+3,4}), \\ & \mathfrak{n}(M_{i+3,4})\mathfrak{n}(M_{i1}) = \mathfrak{n}(M_{i1})\mathfrak{n}(M_{i+3,4}), \\ & \mathfrak{n}(M_{61})\mathfrak{n}(M_{11}) = \mathfrak{n}(M_{11})\mathfrak{n}(M_{61}), \end{split}$$

where each first subscript belongs to the set $\{1, 2, 3, 4, 5, 6\}$.

Remark 3.1 By comparing the set *B* with the minimal Gröbner-Shirshov basis given in [15], we found that the right-hand side of each one in B is just the minimal term (we forget the coefficient) of the right-hand side of the corresponding one in the minimal Gröbner-Shirshov basis in [15]. But at the moment, we do not know the reason.

Now we are ready to prove the injectivity of

$$\overline{\eta}: \ \mathcal{S}/\mathfrak{J} \longrightarrow \mathbb{Z}\mathcal{M}, \quad s_i + \mathfrak{J} \longmapsto [S_i], \quad 1 \le i \le 4.$$

For convenience, we set

 $V_1 = M_{14}, V_2 = M_{13}, V_3 = M_{12}, V_4 = M_{11}, V_5 = M_{24}, V_6 = M_{23}, V_7 = M_{22}, V_8 = M_{21}, V_{12} = M_{12}, V_{13} = M_{12}, V_{13} = M_{12}, V_{13} = M_{13}, V_{13} = M_$ $V_9 = M_{34}, V_{10} = M_{33}, V_{11} = M_{32}, V_{12} = M_{31}, V_{13} = M_{44}, V_{14} = M_{43}, V_{15} = M_{42}, V_{16} = M_{41}, V_{16} = M_{42}, V_{16} = M_{41}, V_{16}$ $V_{17} = M_{54}, V_{18} = M_{53}, V_{19} = M_{52}, V_{20} = M_{51}, V_{21} = M_{64}, V_{22} = M_{63}, V_{23} = M_{62}, V_{24} = M_{61}.$ Then by the order (*), we have $V_1 \prec \cdots \prec V_{24}$. Given a monomial $\omega = f_{i_1} \cdots f_{i_m}$ $(1 \leq i_1 < i_1 \leq i_1 < i_1$ $i_m \leq 4$), we have

$$\omega = f_{i_1} \cdots f_{i_m} = \mathfrak{n}(S_{i_1}) \cdots \mathfrak{n}(S_{i_m}).$$

Applying the relations in B repeatedly, we can get $\omega = \mathfrak{n}(V_1)^{n_1} \cdots \mathfrak{n}(V_\mu)^{n_{24}}$ for some n_1, \cdots, n_{24} ≥ 0 . Hence, all the monomials $\mathfrak{n}(V_1)^{n_1} \cdots \mathfrak{n}(V_\mu)^{n_{24}}$ with $n_1, \cdots, n_{24} \geq 0$ span \mathcal{S}/\mathfrak{J} .

,

On the other hand, Lemma 2.5 implies that for $n_1, \dots, n_{24} \ge 0$,

$$\overline{\eta}(\mathfrak{n}(V_1)^{n_1}\cdots\mathfrak{n}(V_{24})^{n_{24}})=[V_1]^{*n_1}*\cdots*[V_{24}]^{*n_{24}}$$

By Lemma 2.4, the elements $[V_1]^{*n_1} * \cdots * [V_{24}]^{*n_{24}}$ with $n_1, \cdots, n_{24} \ge 0$ form a basis of $\mathbb{Z}\mathcal{M}_{E_6,\sigma}$. Consequently, the morphism $\overline{\eta}$ is injective.

Hence we have following result.

Proposition 3.2 There are graded Z-algebra isomorphisms

$$\Phi: \mathbb{Z}\mathcal{M}_{E_6,\sigma} \longrightarrow \mathfrak{H}_0(F_4), \quad [S_i] \longmapsto u_i, \quad 1 \le i \le 4.$$

Proof By Lemma 2.3 and Proposition 3.1, there is a surjective \mathbb{Z} -algebra homomorphism $\Phi : \mathbb{Z}\mathcal{M}_{E_6,\sigma} \longrightarrow \mathfrak{H}_0(F_4)$ given by $[S_i] \longmapsto u_i$ with $1 \leq i \leq 4$. Since $\{[M_q(\lambda)_{\mathcal{K}}] \mid \lambda \in \mathfrak{B}\}$ and $\{u_{\lambda} \mid \lambda \in \mathfrak{B}\}$ are bases for $\mathbb{Z}\mathcal{M}_{E_6,\sigma}$ and $\mathfrak{H}_0(F_4)$, respectively, we know that Φ is an isomorphism.

So we have the following theorem.

Theorem 3.1 The generators u_i $(1 \le i \le 4)$ and the relations (F1)–(F6) give a presentation of $\mathfrak{H}_0(F_4)$.

4 Gröbner-Shirshov Basis for $\mathfrak{H}_0(F_4)$

For any monomial $u \in \mathfrak{H}_0(F_4)$, we define the length l(u) of u to be the number of the $u_i \in C$ occuring in u. Now, we define a degree lexicographic order \prec on the monomials in $\mathfrak{H}_0(F_4)$ as follows:

$$u \prec v$$
 if and only if $l(u) < l(v)$ or $l(u) = l(v)$ and $u < v$.

and then it is a monomial order (see [16]).

We have already shown that $\mathfrak{H}_0(F_4)$ is an associative algebra over \mathbb{Z} generated by $C = \{u_1, u_2, u_3, u_4\}$ with the generating relations

$$\mathcal{F}' = \begin{cases} u_1 u_3 = u_3 u_1, & u_1 u_4 = u_4 u_1, & u_2 u_4 = u_4 u_2, \\ u_1 u_2^2 = u_2 u_1 u_2, & u_1^2 u_2 = u_1 u_2 u_1, & u_3 u_4^2 = u_4 u_3 u_4, \\ u_3^2 u_4 = u_3 u_4 u_3, & u_3 u_2 u_3 = u_2 u_3^2, & u_2 u_3 u_2^2 u_3 = u_2^3 u_3^2, \\ u_2^2 u_3 u_2 = u_2^3 u_3. \end{cases}$$

In the following, we apply the algebra isomorphism $\Phi \circ \overline{\eta}$ to the relations 1, 29 and 81 in *B*. (1) We apply $\Phi \circ \overline{\eta}$ to the relations 1:

$$\begin{aligned} &\mathfrak{n}(M_{21})\mathfrak{n}(M_{14}) = \mathfrak{n}(M_{12}), \quad \mathfrak{n}(M_{31})\mathfrak{n}(M_{24}) = \mathfrak{n}(M_{22}), \quad \mathfrak{n}(M_{41})\mathfrak{n}(M_{34}) = \mathfrak{n}(M_{32}), \\ &\mathfrak{n}(M_{51})\mathfrak{n}(M_{44}) = \mathfrak{n}(M_{42}), \quad \mathfrak{n}(M_{61})\mathfrak{n}(M_{54}) = \mathfrak{n}(M_{52}), \end{aligned}$$

So then, we have 3 relations (two identical relations are omitted):

$$u_1u_2^2u_3^2u_4 = u_1u_2^2u_3u_4u_3, \quad u_1u_2^3u_3^2u_4 = u_1u_2u_3u_2^2u_3u_4, \quad u_1^2u_2^3u_3^2u_4 = u_2u_1^2u_2^2u_3^2u_4.$$

(2) We apply $\Phi \circ \overline{\eta}$ to relations 29:

$$\begin{split} &\mathfrak{n}(M_{13})\mathfrak{n}(M_{14})=\mathfrak{n}(M_{14})\mathfrak{n}(M_{13}), &\mathfrak{n}(M_{23})\mathfrak{n}(M_{24})=\mathfrak{n}(M_{24})\mathfrak{n}(M_{23}), \\ &\mathfrak{n}(M_{33})\mathfrak{n}(M_{34})=\mathfrak{n}(M_{34})\mathfrak{n}(M_{33}), &\mathfrak{n}(M_{43})\mathfrak{n}(M_{44})=\mathfrak{n}(M_{44})\mathfrak{n}(M_{43}), \\ &\mathfrak{n}(M_{53})\mathfrak{n}(M_{54})=\mathfrak{n}(M_{54})\mathfrak{n}(M_{53}), &\mathfrak{n}(M_{63})\mathfrak{n}(M_{64})=\mathfrak{n}(M_{64})\mathfrak{n}(M_{63}), \end{split}$$

and we have 6 relations:

$$\begin{split} u_3u_4^2 &= u_4u_3u_4, & u_2^2u_3^2u_4u_3 = u_3u_2^2u_3^2u_4, \\ u_1^2u_2^4u_3^3u_4^2u_2^2u_3u_4 &= u_2^2u_3u_4u_1^2u_2^4u_3^3u_4^2, & u_1^2u_2^4u_3^3u_4u_1^2u_2^2u_3^2u_4 = u_1^2u_2^2u_3^2u_4u_1^2u_2^4u_3^3u_4, \\ u_1^2u_2^4u_3^2u_4u_2^2u_3 &= u_2^2u_3u_1^2u_2^4u_3^2u_4, & u_1^2u_2^2u_3u_4u_1^2u_2^2u_3u_4 = u_1^2u_2^2u_3u_4u_1^2u_2^2u_3. \end{split}$$

(3) We apply $\Phi \circ \overline{\eta}$ to the relations 81:

$$\mathfrak{n}(M_{33})\mathfrak{n}(M_{14}) = \mathfrak{n}(M_{11})\mathfrak{n}(M_{11})\mathfrak{n}(M_{34}),$$

$$\mathfrak{n}(M_{53})\mathfrak{n}(M_{34}) = \mathfrak{n}(M_{31})\mathfrak{n}(M_{31})\mathfrak{n}(M_{54}),$$

and we have 4 relations:

 $\mathfrak{n}(M_{43})\mathfrak{n}(M_{24}) = \mathfrak{n}(M_{21})\mathfrak{n}(M_{21})\mathfrak{n}(M_{44}),$ $\mathfrak{n}(M_{63})\mathfrak{n}(M_{44}) = \mathfrak{n}(M_{41})\mathfrak{n}(M_{41})\mathfrak{n}(M_{64}),$

By applying the algebra isomorphism $\Phi \circ \overline{\eta}$ to all the relations in B, we get a new set \mathcal{F}'' of the relations (since there are 247 relations in \mathcal{F}'' , to save space, we do not write them all here).

By computing all possible compositions between the elements of $\mathcal{F}' \cup \mathcal{F}''$, we get the following non-trivial compositions, that is, the new set \mathcal{F}''' of the relations in $\mathfrak{H}_0(F_4)$:

$u_1u_2u_3u_2^2u_3u_4 = u_2u_1u_2u_3u_4u_2u_3,$	$u_1u_2u_3u_4u_2u_1u_2u_3u_4 = u_2u_1u_2u_3u_4u_1u_2u_3u_4,$
$u_2u_3u_1u_2u_3u_4u_2u_3 = u_2u_3u_2u_3u_1u_2u_3u_4,$	$u_1u_2u_3u_4u_2u_3u_1u_2u_3u_4 = u_2u_3u_1u_2u_3u_4u_1u_2u_3u_4,$
$u_2 u_1 u_2 u_3 u_2^2 u_3 = u_2^2 u_3 u_2 u_1 u_2 u_3,$	$u_1u_2u_3u_4u_2u_3u_2^2u_3u_4 = u_2^2u_3u_4u_1u_2u_3u_4u_2u_3,$
$u_2 u_1 u_2^2 u_3 = u_2 u_1 u_2 u_3 u_2,$	$u_2u_1u_2u_3u_1u_2u_3u_4u_2^2u_3 = u_2^2u_3u_2u_1u_2u_3u_1u_2u_3u_4,$
$u_1u_2u_1u_2u_3u_4u_2 = u_2u_1u_2u_1u_2u_3u_4,$	$u_1u_2u_1u_2u_3u_4u_1u_2u_3u_4 = u_1u_2u_3u_4u_1u_2u_1u_2u_3u_4,$
$u_1u_2u_1u_2u_3u_2 = u_2u_1u_2u_1u_2u_3,$	$u_1u_2u_3u_2^2u_3u_4u_2^2u_3u_4 = u_2^2u_3u_4u_1u_2u_3u_2^2u_3u_4,$
$u_1u_2u_1u_2u_3u_1u_2u_3 = u_1u_2u_3u_1u_2u_1u_2u_3,$	$u_1u_2u_3u_1u_2u_3u_1u_2u_3u_4 = u_1u_2u_3u_1u_2u_3u_4u_1u_2u_3,$
$u_1u_2u_1u_2u_1u_2u_3 = u_1u_2u_1u_2u_3u_1u_2,$	$u_1u_2u_3u_1u_2u_3u_4u_2u_3 = u_2u_3u_1u_2u_3u_1u_2u_3u_4,$
$u_2u_3u_2u_3u_2u_3u_4 = u_2u_3u_2u_3u_4u_2u_3,$	$u_1u_2u_1u_2u_3u_4u_1u_2u_3 = u_1u_2u_3u_1u_2u_1u_2u_3u_4,$
$u_2^2 u_3 u_2 u_1 u_2 u_3 u_4 = u_2 u_1 u_2 u_3 u_4 u_2^2 u_3,$	

 $u_1u_2u_3u_2u_3u_4u_1u_2u_3u_4 = u_1u_2u_3u_4u_1u_2u_3u_2u_3u_4,$

 $u_1u_2u_3u_2u_1u_2u_3 = u_2u_1u_2u_3u_1u_2u_3,$

 $u_2 u_3 u_2 u_3 u_4 u_2 u_3 u_4 = u_2 u_3 u_4 u_2 u_3 u_2 u_3 u_4,$

 $u_1u_2u_3u_4u_2u_3u_2u_3u_4 = u_2u_3u_2u_3u_4u_1u_2u_3u_4,$

 $u_1u_2u_1u_2u_3u_2^2u_3u_4u_1u_2u_3u_4 = u_1u_2^2u_3u_4u_1u_2u_3u_1u_2^2u_3u_4,$

 $u_1u_2u_3u_2^2u_3u_4u_1u_2u_3u_4u_2u_3 = u_2u_3u_1u_2u_3u_2^2u_3u_4u_1u_2u_3u_4,$

 $u_1u_2u_3u_1u_2u_3u_4u_1u_2u_3u_4 = u_1u_2u_3u_4u_1u_2u_3u_1u_2u_3u_4,$

 $u_1u_2u_3u_1u_2u_3u_2^2u_3u_4u_1u_2u_3u_4 = u_1u_2u_3u_1u_2u_3u_4u_1u_2u_3u_2^2u_3u_4,$

 $u_1u_2u_3u_2^2u_3u_4u_1u_2u_3u_2^2u_3u_4u_1u_2u_3u_4 = u_1u_2u_3u_2^2u_3u_4u_1u_2u_3u_4u_1u_2u_3u_2^2u_3u_4.$

We set $\mathcal{F} = \mathcal{F}' \cup \mathcal{F}'' \cup \mathcal{F}'''$. Then by the construction of the set \mathcal{F} of the relations in $\mathfrak{H}_0(F_4)$, we get our main result in this paper.

Theorem 4.1 With the notations above, \mathcal{F} is a Gröbner-Shirshov basis for $\mathfrak{H}_0(F_4)$.

Acknowledgement We are very grateful to the referees for the useful comments and suggestions.

References

- Buchberger, B., An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal, Ph.D. Thesis, University of Innsbruck, 1965.
- [2] Bergman, G. M., The diamond lemma for ring theory, Adv. Math., 29, 1978, 178–218.
- [3] Shirshov, A. I., Some algorithmic problems for Lie algebras, Siberian Math. J., 3, 1962, 292–296.
- [4] Reineke, M., Generic extensions and multiplicative bases of quantum groups at q = 0, Represent. Theory, 5, 2001, 147–163.
- [5] Deng, B. M. and Du, J., Frobenius morphisms and representations of algebras, Trans. Amer., 358(8), 2006, 3591–3622.
- [6] Bokut, L. A., Imbeddings into simple associative algebras, Algebra and Logic, 15, 1976, 117–142.
- [7] Deng, B. M., Du, J., Parshal, B. and Wang, J. P., Finite Dimensional Algebra and Quantum Groups, Mathematical Surveys and Monographs, Vol. 150, Amer. Math. Soc., Providence, RI, 2008.
- [8] Deng, B. M., Du, J. and Xiao, J., Generic extensions and canonical bases for cyclic quivers, Canad. J. Math., 59(6), 2007, 1260–1283.
- [9] Dlab, V. and Ringel, C. M., On algebras of finite representation type, J. Algebra, 33, 1975, 306–394.
- [10] Dlab, V. and Ringel, C. M., Indecomposable Representations of Graphs and Algebras, Memoirs Amer. Math. Soc., 6(173), 1976, 1–63.
- [11] Ringel, C. M., The composition algebra of a cyclic quiver, Proc. London Math. Soc., 66, 1993, 507–537.
- [12] Zhao, Z. and Fan, L., Presenting degenerate Ringel-Hall algebras of type B, Sci. China Math., 55(5), 2012, 949–960.
- [13] Bongartz, K., On degenerations and extensions of finite dimensional modules, Adv. Math., 121, 1996, 245–287.
- [14] Reineke, M., The quantic monoid and degenerate quantized enveloping algebras, arXiv: math/0206095v1.
- [15] Qiang, C. X and Obul, A., Skew-commutator relations and Göbner-Shirshov basis of quantum group of type F₄, Front. Math. in China, 9(1), 2014, 135–150.
- [16] Kang, S. and Lee, K., Gröbner-Shirshov bases for representation theory, J. Korean Math. Soc., 37, 2000, 55–72.