Gröbner-Shirshov Basis for Degenerate Ringel-Hall Algebras of Type $\boldsymbol{F}_{4}{ }^{*}$

Zhenzhen $\mathrm{GAO}^{1} \quad$ Abdukadir OBUL ${ }^{2}$

Abstract

In this paper, by using the Frobenius morphism and the multiplication formulas of the generic extension monoid algebra, the authors first give a presentation of the degenerate Ringel-Hall algebra, and then construct the Gröbner-Shirshov basis for degenerate Ringel-Hall algebras of type F_{4}.

Keywords Gröbner-Shirshov basis, Frobenius map, Degenerate Ringel-Hall algebras, Multiplication formulas
2010 MR Subject Classification 16S15, 17B37, 16G20

1 Introduction

Through the works of Buchberger [1], Bergman [2] and Shirshov [3], the Gröbner-Shirshov basis theory has become a powerful tool for the solution of the reduction problem in algebra and provides a computational approach for the study of structures of algebras. The degenerate Ringel-Hall algebra is the specialization of the Ringel-Hall algebra at $q=0$ and in [4] Reineke gave a remarkable basis which closes under multiplication.

In this paper, we first give a presentation of the degenerate Ringel-Hall algebra $\mathfrak{H}_{0}\left(F_{4}\right)$ by using the method of Frobenius morphism (see [5]) and the idea of monoid algebra (see [4]). Then, by using the relations which are computed to give this presentation, we construct a Gröbner-Shirshov basis for the degenerate Ringel-Hall algebra $\mathfrak{H}_{0}\left(F_{4}\right)$.

2 Some Preliminaries

First, we recall some relevant notions and results about the Gröbner-Shirshov basis theory from [6].

Let S be a linearly ordered set, k be a field and $k\langle S\rangle$ the free associative algebra generated by S over k. Let S^{*} be the free monoid generated by S. Order S^{*} by the deg-lex order " $<$ ". Then any polynomial $f \in k\langle S\rangle$ has the leading word \bar{f}. We call f monic if the coefficient of \bar{f} is 1 .

[^0]Let $f, g \in k\langle S\rangle$ be two monic polynomials and $\omega \in S^{*}$. If $\omega=\bar{f} b=a \bar{g}$ for some $a, b \in S^{*}$ such that $\operatorname{deg}(\bar{f})+\operatorname{deg}(\bar{g})<\operatorname{deg}(\omega)$, then $(f, g)_{\omega}=f b-a g$ is called the intersection composition of f and g relative to ω. If $\omega=\bar{f}=a \bar{g} b$ for some $a, b \in S^{*}$, then $(f, g)_{\omega}=f-a g b$ is called the inclusion composition of f and g relative to ω.

Let $R \subset k\langle S\rangle$ be a monic set. A composition $(f, g)_{\omega}$ is called trivial modulo (R, ω) if $(f, g)_{\omega}=\sum \alpha_{i} a_{i} t_{i} b_{i}$, where each $\alpha_{i} \in k, t_{i} \in R, a_{i}, b_{i} \in S^{*}$ and $a_{i} \bar{t}_{i} b_{i}<\omega$.
R is called a Gröbner-Shirshov basis if any composition of polynomials from R is trivial modulo R.

A well order " $<$ " on S^{*} is monomial if for any $u, v \in S^{*}$, we have

$$
u>v \Longrightarrow \omega_{1} u \omega_{2}>\omega_{1} v \omega_{2} \quad \text { for all } \omega_{1}, \omega_{2} \in S^{*}
$$

A standard result about the Gröbner-Shirshov basis theory is the following lemma.
Lemma 2.1 (see [6]) (Composition-Diamond Lemma) Let k be a field, $A=k\langle S \mid R\rangle=$ $k\langle S\rangle / I d(R)$ and " <" be a monomial order on S^{*}, where $\operatorname{Id}(R)$ is the ideal of $k\langle S\rangle$ generated by R. Then the following statements are equivalent:
(a) R is a Gröbner-Shirshov basis;
(b) $f \in I d(R) \Longrightarrow \bar{f}=a \bar{t} b$ for some $t \in R$ and $a, b \in S^{*}$;
(c) $\operatorname{Irr}(R)=\left\{u \in S^{*} \mid u \neq a \bar{t} b, t \in R, a, b \in S^{*}\right\}$ is a k-linear basis of the algebra A.

Next, we recall some relevant notions and results about the Frobenius morphism method from [5].

Let (Q, σ) be a quiver Q with the automorphism σ. The associated valued quiver $\Gamma=\Gamma(Q, \sigma)$ is defined as follows. Its vertex set Γ_{0} and arrow set Γ_{1} are simply the sets of σ-orbits in Q_{0} and Q_{1}, respectively. For $\rho \in Q_{1}$, its tail (resp., head) is the σ-orbit of tails (resp., heads) of arrows in ρ. The valuation of Γ is given by

$$
\begin{aligned}
& d_{i}=\mid\{\text { vertices in } \sigma \text {-orbit } i\} \mid \quad \text { for } i \in \Gamma_{0}, \\
& m_{\rho}=\mid\{\text { arrows in } \sigma \text {-orbit } \rho\} \mid \quad \text { for } \rho \in \Gamma_{1}
\end{aligned}
$$

Let \mathbb{F}_{q} be the finite field of q elements and $\mathcal{K}=\overline{\mathbb{F}}_{q}$ be the algebraic closure of \mathbb{F}_{q}.
Definition 2.1 (see [5, 7]) Let M be a vector-space over \mathcal{K}. An \mathbb{F}_{q}-linear isomorphism $F: M \longrightarrow M$ is called a Frobenius map if it satisfies:
(a) $F(\lambda m)=\lambda^{q} F(m)$ for all $m \in M$ and $\lambda \in \mathcal{K}$;
(b) For any $m \in M, F^{n}(m)=m$ for some $n>0$.

Let C be a \mathcal{K}-algebra with identity 1 . We do not assume generally that C is finitedimensional. A map $F_{C}: C \longrightarrow C$ is called a Frobenius morphism on C if it is a Frobenius map on the \mathcal{K}-space C, and it is also an \mathbb{F}_{q}-algebra isomorphism sending 1 to 1 .

Let $A:=\mathcal{K} Q$ be the path algebra of Q over \mathcal{K}. Then σ induces a Frobenius morphism $F=F_{Q, \sigma}=F_{Q, \sigma, q}: A \longrightarrow A$ given by $\sum_{s} x_{s} p_{s} \longmapsto \sum_{s} x_{s}^{q} \sigma\left(p_{s}\right)$, where $\sum_{s} x_{s} p_{s}$ is a \mathcal{K}-linear combination of paths p_{s} and $\sigma\left(p_{s}\right)=\sigma\left(\rho_{t}\right) \cdots \sigma\left(\rho_{1}\right)$ if $p_{s}=\rho_{t} \cdots \rho_{1}$ for arrows $\rho_{1}, \cdots, \rho_{t} \in Q_{1}$. Then the fixed-point algebra

$$
A(q)=\mathfrak{A}(Q, \sigma ; q):=A^{F}=\{a \in A \mid F(a)=a\}
$$

is an \mathbb{F}_{q}-algebra associated with (Q, σ).

Definition 2.2 (see [5]) Let (Q, σ) be a quiver with the automorphism σ. A representation $V=\left(V_{i}, \phi_{\rho}\right)$ of Q is called F-stable (or equivalently, an F-stable A-module) if there is a Frobenius map $F_{V}: \bigoplus_{i \in Q_{0}} V_{i} \longrightarrow \bigoplus_{i \in Q_{0}} V_{i}$ satisfying $F_{V}\left(V_{i}\right)=V_{\sigma_{i}}$ for all $i \in Q_{0}$ such that $F_{V} \phi_{\rho}=\phi_{\sigma(\rho)} F_{V}$ for each arrow $\rho \in Q_{1}$

For an F-stable representation $V=\left(V_{i}, \phi_{\rho}\right)$, let $\operatorname{dim} V=\sum_{i \in \Gamma_{0}}\left(\operatorname{dim} V_{i}\right) i \in \mathbb{N} \Gamma_{0}$ and $\operatorname{dim} V=$ $\sum_{i \in \Gamma_{0}} \operatorname{dim} V_{i}$ denote the dimension vector and the dimension of V, respectively. An F-stable representation is called indecomposable if it is nonzero and not isomorphic to a direct sum of two nonzero F-stable representations.

Lemma 2.2 (see [8]) There is a one-to-one correspondence between isoclasses of indecomposable $A(q)$-modules and isoclasses of indecomposable F-stable A-modules.

Then, we recall some relevant notions and results about the degenerate Ringel-Hall algebra from [8].

From now on, we assume that (Q, σ) is a Dynkin quiver Q with the automorphism σ. Dlab and Ringel [9-10] have shown that there is a bijection from the isoclasses of indecomposable $A(q)$-modules to the set $\Phi^{+}=\Phi^{+}(Q, \sigma)$ of positive roots in the root system associated with the valued quiver $\Gamma=\Gamma(Q, \sigma)$. For each $\alpha \in \Phi^{+}$, let $M_{q}(\alpha)$ denote the corresponding indecomposable $A(q)$-module, so $\operatorname{dim} M_{q}(\alpha)=\alpha$. By the Krull-Schmidt theorem, every $A(q)$-module M is isomorphic to

$$
M_{q}(\lambda):=\bigoplus_{\alpha \in \Phi^{+}} \lambda(\alpha) M_{q}(\alpha)
$$

for some function $\lambda: \Phi^{+} \longrightarrow \mathbb{N}$. Thus, the isoclasses of $A(q)$-modules are indexed by the set

$$
\mathfrak{B}=\mathfrak{B}(Q, \sigma)=:\left\{\lambda \mid \lambda: \Phi^{+} \longrightarrow \mathbb{N}\right\}=\mathbb{N}^{\Phi^{+}}
$$

which is independent of q. By Lemma 2.2, the isoclasses of F-stable $\mathcal{K} Q$-modules are also indexed by \mathfrak{B}. Clearly, for each $i \in \Gamma_{0}$, there is a complete simple $A(q)$-module S_{i} corresponding to i.

For $M, N_{1}, \cdots, N_{t} \in A(q)-\bmod$, let $F_{N_{1}, \cdots, N_{t}}^{M}$ be the number of filtrations

$$
M=M_{0} \supseteq M_{1} \supseteq \cdots \supseteq M_{t-1} \supseteq M_{t}=0
$$

such that $M_{i-1} / M_{i} \cong N_{i}$ for all $1 \leq i \leq t$ is finite. By [11], $F_{N_{1}, \ldots, N_{t}}^{M}$ is a polynomial in q when q varies. More precisely, for $\lambda, \mu, \nu \in \mathfrak{B}=\mathfrak{B}(Q, \sigma)$, there exists a polynomial $\varphi_{\mu, \nu}^{\lambda}(\mathrm{q}) \in \mathbb{Z}[\mathrm{q}]$ (the polynomial ring over \mathbb{Z} in one indeterminate q) such that $\varphi_{\mu, \nu}^{\lambda}\left(q_{k}\right)=F_{M_{q_{k}(\mu)}, M_{q_{k}(\nu)}}^{M_{q_{k}}(\lambda)}$ holds for any finite field k with q_{k} elements.

The generic Ringel-Hall algebra $\mathfrak{H}=\mathfrak{H}_{\mathrm{q}}(Q, \sigma)$ is the free module over $\mathbb{Z}[\mathrm{q}]$ with the basis $\left\{u_{\lambda} \mid \lambda \in \mathfrak{B}\right\}$ and the multiplication defined by

$$
u_{\mu} u_{\nu}=\sum_{\lambda \in \mathfrak{B}} \varphi_{\mu, \nu}^{\lambda}(\mathrm{q}) u_{\lambda}
$$

It is an $\mathbb{N}^{\left|\Gamma_{0}\right|}$-graded algebra

$$
\mathfrak{H}=\bigoplus_{e \in \mathbb{N}^{\left|\Gamma_{0}\right|}} \mathfrak{H}_{e},
$$

where \mathfrak{H}_{e} is spanned by all $\mu_{\alpha}, \alpha \in \mathfrak{B}_{e}:=\left\{\beta \in \mathfrak{B} \mid \operatorname{dim} M_{q}(\beta)=e\right\}$.
For each $\lambda \in \mathfrak{B}$, set $M_{q}(\lambda)_{\mathcal{K}}:=M_{q}(\lambda) \otimes_{\mathbb{F}_{q}} \mathcal{K}$ which is the F-stable $\mathcal{K} Q$-module corresponding to λ.

Now by specializing q to 0 , we obtain the \mathbb{Z}-algebra $\mathfrak{H}_{0}(Q, \sigma)$, called the degenerate RingelHall algebra associated with $\Gamma=\Gamma(Q, \sigma)$. In other words, $\mathfrak{H}_{0}(Q, \sigma)=\mathfrak{H}_{q}(Q, \sigma) \otimes_{\mathbb{Z}[q]} \mathbb{Z}$, where \mathbb{Z} is viewed as a $\mathbb{Z}[\mathrm{q}]$-module with the action of q by zero. By abuse of notations, we also write $u_{\lambda}=u_{\lambda} \otimes 1$. Thus, the set $\left\{u_{\lambda} \mid \lambda \in \mathfrak{B}\right\}$ is a \mathbb{Z}-basis of $\mathfrak{H}_{0}(Q, \sigma)$. Let $u_{i}=u_{\left[S_{i}\right]} \otimes 1$ in $\mathfrak{H}_{0}(Q, \sigma)$ for $i \in \Gamma_{0}$.

Lemma 2.3 (see [12]) As a \mathbb{Z}-algebra, $\mathfrak{H}_{0}(Q, \sigma)$ is generated by $u_{i}, i \in \Gamma_{0}$.
Finally, we recall some relevant notions and results about monoid algebras from [4].
For $\mathcal{K} Q$-modules M and N, the generic extension $M * N$ of M by N was defined in [13] as the unique (up to isomorphism) element in $\operatorname{Ext}_{\mathcal{K} Q}^{1}(M, N)$ having an endomorphism algebra of the minimal dimension. As shown in [4], the star operation $*$ defines the structure of a monoid on the set $\mathcal{M}_{Q}=\mathcal{M}_{Q, \mathcal{K}}$ of isoclasses of $\mathcal{K} Q$-modules.

Proposition 2.1 (see [7]) If M and N are two F-stable $\mathcal{K} Q$-modules, then $M * N$ is also F-stable.

By this proposition, the set of isoclasses $[M]$ of F-stable $\mathcal{K} Q$-modules, together with the operation $[M] *[N]=[M * N]$, defines a submonoid $\mathcal{M}_{Q, \sigma}$ of \mathcal{M}_{Q} with the unit element [0].

Since all the indecomposable $A(q)$-modules are indexed by the set \mathfrak{B}, we give an enumeration on Φ^{+}defined by $\beta_{1}, \beta_{2}, \cdots, \beta_{N}$ such that for all prime powers q,

$$
\operatorname{Hom}_{A(q)}\left(M_{q}\left(\beta_{s}\right), M_{q}\left(\beta_{t}\right)\right) \neq 0 \quad \text { implies } \quad s \leq t .
$$

Moreover, in this case, $\operatorname{Ext}_{A(q)}^{1}\left(M_{q}\left(\beta_{s}\right), M_{q}\left(\beta_{t}\right)\right) \neq 0$ implies $s>t$. Thus, we give an enumeration on indecomposable $A(q)$-modules and set $M_{q}\left(\beta_{1}\right) \prec M_{q}\left(\beta_{2}\right) \prec \cdots M_{q}\left(\beta_{N}\right)$.

By the definition of the generic extension, if $\operatorname{Ext}_{A(q)}^{1}(M, N)=0$, then $M * N \cong M \oplus N$. Consequently, we have the following known result.

Lemma 2.4 Each element $\left[M_{q}(\lambda)_{\mathcal{K}}\right]$ in $\mathcal{M}_{Q, \sigma}$ with $\lambda \in \mathfrak{B}$ can be written as

$$
\left[M_{q}(\lambda)_{\mathcal{K}}\right]=\left[M_{q}\left(\beta_{1}\right)_{\mathcal{K}}\right]^{* \lambda_{\beta_{1}}} * \cdots *\left[M_{q}\left(\beta_{N}\right)_{\mathcal{K}}\right]^{* \lambda_{\beta_{N}}} .
$$

Moreover, these elements form a \mathbb{Z}-basis of $\mathbb{Z} \mathcal{M}_{Q, \sigma}$.
For a dimension vector $d=\sum_{i \in \Gamma_{0}} d_{i} i \in \mathbb{N} \Gamma_{0}$, we consider the affine space

$$
R_{d}=\prod_{\alpha: i \rightarrow j} \operatorname{Hom}_{\mathcal{K}}\left(\mathcal{K}^{d_{i}}, \mathcal{K}^{d_{j}}\right) .
$$

Then the group $G_{d}:=\prod_{i \in \Gamma_{0}} \mathrm{GL}_{d_{i}}(\mathcal{K})$ acts on R_{d} by conjugation, i.e., by

$$
\left(g_{i}\right) \cdot\left(x_{\rho}\right)_{\rho}=\left(g_{j} x_{\rho} g_{i}^{-1}\right)_{\rho: i \rightarrow j} .
$$

The orbits of G_{d} correspond bijectively to the isoclasses of representations of Γ of the dimension vector d. Denote by \mathcal{O}_{M} the orbit corresponding to the isoclass [M]. Since there are only finitely many G_{d}-orbits in R_{d}, there exists a dense one, whose corresponding representation is denoted by E_{d}.

Lemma 2.5 (see [14]) Let i_{1}, \cdots, i_{n} be an enumeration of Γ_{0} such that $k<l$ if there is an arrow from i_{k} to i_{l}. Then for all $d=\sum_{k=1}^{n} d_{k} \alpha_{i_{k}} \in \Phi^{+}$, we have $\left[E_{d}\right]=\left[S_{i_{1}}\right]^{* d_{i}} * \cdots *\left[S_{i_{n}}\right]^{* d_{n}}$ in $\mathcal{M}_{Q, \sigma}$.

Like the Ringel-Hall algebras, there is a natural grading on the monoid algebra $\mathbb{Z} \mathcal{M}_{Q, \sigma}$ in terms of dimension vectors:

$$
\mathbb{Z} \mathcal{M}_{Q, \sigma}=\bigoplus_{e \in \mathbb{N}\left|\Gamma_{0}\right|} \mathbb{Z} \mathcal{M}_{e}
$$

where $\mathbb{Z} \mathcal{M}_{e}$ is spanned by all $\left[M_{q}(\alpha)_{\mathcal{K}}\right], \alpha \in \mathfrak{B}_{e}$.

3 Presentation of Degenerate Ringel-Hall Algebra $\mathfrak{H}_{0}\left(\boldsymbol{F}_{4}\right)$

In the following, we consider the quiver:

where σ is the automorphism of E_{6} such that $\sigma(1)=1, \sigma(2)=2, \sigma(3)=5, \sigma(4)=6, \sigma(5)=$ $3, \sigma(6)=4, \sigma(\alpha)=\alpha, \sigma(\beta)=\gamma, \sigma(\gamma)=\beta, \sigma(\delta)=\mu, \sigma(\mu)=\delta$. Then the associated valued quiver F_{4} with the valuation $\varepsilon_{1}=1, \varepsilon_{2}=1, \varepsilon_{3}=2, \varepsilon_{4}=2$ has the form:

Then we have $\mathfrak{H}_{0}\left(F_{4}\right)=\mathfrak{H}_{0}\left(E_{6}, \sigma\right)$. It is easy to see that the following relations hold in $\mathfrak{H}_{0}\left(F_{4}\right)$ (for $1 \leq i, j \leq 4$):

$$
\begin{array}{lll}
\text { (F1) } u_{i} u_{j}=u_{j} u_{i} & \text { for }|i-j| \geq 2, & \text { (F2) } u_{i}^{2} u_{i+1}=u_{i} u_{i+1} u_{i} \quad \text { for } i \in\{1,3\}, \\
\text { (F3) } u_{i} u_{i+1}^{2}=u_{i+1} u_{i} u_{i+1} & \text { for } i \in\{1,3\}, & \text { (F4) } u_{3} u_{2} u_{3}=u_{2} u_{3}^{2} \\
\text { (F5) } u_{2} u_{3} u_{2}^{2} u_{3}=u_{2}^{3} u_{3}^{2}, & & \text { (F6) } u_{2}^{2} u_{3} u_{2}=u_{2}^{3} u_{3}
\end{array}
$$

Now consider the corresponding monoid algebra $\mathbb{Z} \mathcal{M}_{E_{6}, \sigma}$. By [14], the following relations hold in $\mathbb{Z} \mathcal{M}_{E_{6}, \sigma}$:

$$
\begin{array}{ll}
(\mathcal{F} 1)\left[S_{i}\right] *\left[S_{j}\right]=\left[S_{j}\right] *\left[S_{i}\right] & \text { for }|i-j| \geq 2, \\
(\mathcal{F} 2)\left[S_{i}\right]^{* 2}\left[S_{i+1}\right]=\left[S_{i}\right] *\left[S_{i+1}\right] *\left[S_{i}\right] & \text { for } i \in\{1,3\}, \\
(\mathcal{F} 3)\left[S_{i}\right]\left[S_{i+1}\right]^{* 2}=\left[S_{i+1}\right] *\left[S_{i}\right] *\left[S_{i+1}\right] & \text { for } i \in\{1,3\}, \\
(\mathcal{F} 4)\left[S_{3}\right] *\left[S_{2}\right] *\left[S_{3}\right]=\left[S_{2}\right] *\left[S_{3}\right]^{* 2}, & \\
(\mathcal{F} 5)\left[S_{2}\right] *\left[S_{3}\right] *\left[S_{2}\right]^{* 2} *\left[S_{3}\right]=\left[S_{2}\right]^{* 3} *\left[S_{3}\right]^{* 2}, & \\
(\mathcal{F} 6)\left[S_{2}\right]^{* 2} *\left[S_{3}\right] *\left[S_{2}\right]=\left[S_{2}\right]^{* 3} *\left[S_{3}\right] . &
\end{array}
$$

In the following, we prove that the set $\left\{\left[S_{1}\right],\left[S_{2}\right],\left[S_{3}\right],\left[S_{4}\right]\right\}$ and the relations $(\mathcal{F} 1)-(\mathcal{F} 6)$ between them give a presentation of the monoid algebra $\mathbb{Z} \mathcal{M}_{E_{6}, \sigma}$.

Proposition 3.1 The monoid algebra $\mathbb{Z} \mathcal{M}_{E_{6}, \sigma}$ has a presentation with generators $\left[S_{i}\right](1 \leq$ $i \leq 4)$ and relations $(\mathcal{F} 1)-(\mathcal{F} 6)$.

Proof For convenience, set $\mathbb{Z} \mathcal{M}=\mathbb{Z} \mathcal{M}_{E_{6}, \sigma}$. Let \mathcal{S} be the free \mathbb{Z}-algebra with generators $s_{i}(1 \leq i \leq 4)$. Consider the ideal \mathfrak{J} generated by the following elements for $1 \leq i, j \leq 4$,

$$
\begin{array}{lll}
\left(F^{\prime} 1\right) s_{i} s_{j}-s_{j} s_{i} & \text { for }|i-j| \geq 2, & \left(F^{\prime} 2\right) s_{i}^{2} s_{i+1}-s_{i} s_{i+1} s_{i} \quad \text { for } i \in\{1,3\}, \\
\left(F^{\prime} 3\right) s_{i} s_{i+1}^{2}-s_{i+1} s_{i} s_{i+1} & \text { for } i \in\{1,3\}, & \left(F^{\prime} 4\right) s_{3} s_{2} s_{3}-s_{2} s_{3}^{2} \\
\left(F^{\prime} 5\right) s_{2} s_{3} s_{2}^{2} s_{3}-s_{2}^{3} s_{3}^{2} & & \left(F^{\prime} 6\right) s_{2}^{2} s_{3} s_{2}-s_{2}^{3} s_{3}
\end{array}
$$

Then, there is a surjective monoid algebra homomorphism $\eta: \mathcal{S} \longrightarrow \mathbb{Z} \mathcal{M}$ given by $s_{i} \longmapsto\left[S_{i}\right]$ with $1 \leq i \leq 4$. Because we have $\mathcal{F} i=0(1 \leq i \leq 6)$ in $\mathbb{Z} \mathcal{M}$, the map η induces a surjective algebra homomorphism $\bar{\eta}: \mathcal{S} / \mathfrak{J} \longrightarrow \mathbb{Z} \mathcal{M}$ given by $s_{i}+\mathfrak{J} \longmapsto\left[S_{i}\right](1 \leq i \leq 4)$. To complete the proof, it suffices to show that $\bar{\eta}$ is injective.

Set $f_{i}=s_{i}+\mathfrak{J}(1 \leq i \leq 4)$. Given a $\mathcal{K} F_{4}$-module M with the dimension vector $\operatorname{dim} M:=$ (a, b, c, d), we define a monomial in $\mathcal{S} / \mathfrak{J}$ by

$$
\mathfrak{n}(M)=f_{1}^{a} f_{2}^{b} f_{3}^{c} f_{4}^{d}
$$

It is known that the Auslander-Reiten quiver for $\mathcal{K} E_{6}$ is as follows:

where each $P_{i}(1 \leq i \leq 6)$ is the indecomposable projective $\mathcal{K} E_{6}$-module corresponding to the vertex i and τ is the Auslander-Reiten translation.

Using the Frobenius morphism $F=F_{E_{6}, \sigma}=F_{E_{6}, \sigma, q}$ introduced in Section 3, it is easy to see that P_{1} and P_{2} are F-stable and all other P_{i} have F-period 2 with $P_{3}^{[1]}=P_{5}, P_{4}^{[1]}=P_{6}$. By folding the Auslander-Reiten quiver of $\mathcal{K} E_{6}$, we obtain the Auslander-Reiten quiver of $A(q)=\left(\mathcal{K} E_{6}\right)^{F} \cong \mathcal{K} F_{4}:$

where $M_{i j}$ denotes the indecomposable $\mathcal{K} F_{4}$-modules, $1 \leq i \leq 6$ and $1 \leq j \leq 4$. Here $M_{11}=$ $P_{1}^{F}, M_{12}=P_{2}^{F}, M_{13}=\left(P_{3} \oplus P_{5}\right)^{F}, M_{14}=\left(P_{4} \oplus P_{6}\right)^{F}$ and $\tau=\tau_{A^{F}}$ is the Auslander-Reiten translation of $A(q)$ (see [7] for details). Moreover, the dimension vectors of $M_{i j}(1 \leq i \leq 6,1 \leq$ $j \leq 4)$ and the associated monomials in $\mathcal{S} / \mathfrak{J}$ are given by

$$
\begin{aligned}
& \operatorname{dim} M_{14}=(0,0,0,1) \text { and } \mathfrak{n}\left(M_{14}\right)=f_{4}, \\
& \operatorname{dim} M_{13}=(0,0,1,1) \text { and } \mathfrak{n}\left(M_{13}\right)=f_{3} f_{4}, \\
& \operatorname{dim} M_{12}=(0,1,1,1) \text { and } \mathfrak{n}\left(M_{12}\right)=f_{2} f_{3} f_{4}, \\
& \operatorname{dim} M_{11}=(1,1,1,1) \text { and } \mathfrak{n}\left(M_{11}\right)=f_{1} f_{2} f_{3} f_{4}, \\
& \operatorname{dim} M_{21}=(0,1,1,0) \text { and } \mathfrak{n}\left(M_{21}\right)=f_{2} f_{3} \\
& \operatorname{dim} M_{22}=(1,2,2,1) \text { and } \mathfrak{n}\left(M_{22}\right)=f_{1} f_{2}^{2} f_{3}^{2} f_{4}, \\
& \operatorname{dim} M_{23}=(0,2,2,1) \text { and } \mathfrak{n}\left(M_{23}\right)=f_{2}^{2} f_{3}^{2} f_{4}, \\
& \operatorname{dim} M_{24}=(0,0,1,0) \text { and } \mathfrak{n}\left(M_{24}\right)=f_{3}, \\
& \operatorname{dim} M_{31}=(1,2,1,1) \text { and } \mathfrak{n}\left(M_{31}\right)=f_{1} f_{2}^{2} f_{3} f_{4} \text {, } \\
& \operatorname{dim} M_{32}=(1,3,2,1) \text { and } \mathfrak{n}\left(M_{32}\right)=f_{1} f_{2}^{3} f_{3}^{2} f_{4} \text {, } \\
& \operatorname{dim} M_{33}=(2,4,3,2) \text { and } \mathfrak{n}\left(M_{33}\right)=f_{1}^{2} f_{2}^{4} f_{3}^{3} f_{4}^{2} \text {, } \\
& \operatorname{dim} M_{34}=(0,2,1,1) \text { and } \mathfrak{n}\left(M_{34}\right)=f_{2}^{2} f_{3} f_{4}, \\
& \operatorname{dim} M_{41}=(1,1,1,0) \text { and } \mathfrak{n}\left(M_{41}\right)=f_{1} f_{2} f_{3}, \\
& \operatorname{dim} M_{42}=(2,3,2,1) \text { and } \mathfrak{n}\left(M_{42}\right)=f_{1}^{2} f_{2}^{3} f_{3}^{2} f_{4} \text {, } \\
& \operatorname{dim} M_{43}=(2,4,3,1) \text { and } \mathfrak{n}\left(M_{43}\right)=f_{1}^{2} f_{2}^{4} f_{3}^{3} f_{4}, \\
& \operatorname{dim} M_{44}=(2,2,2,1) \text { and } \mathfrak{n}\left(M_{44}\right)=f_{1}^{2} f_{2}^{2} f_{3}^{2} f_{4}, \\
& \operatorname{dim} M_{51}=(0,1,0,0) \text { and } \mathfrak{n}\left(M_{51}\right)=f_{2}, \\
& \operatorname{dim} M_{52}=(1,2,1,0) \text { and } \mathfrak{n}\left(M_{52}\right)=f_{1} f_{2}^{2} f_{3} \text {, } \\
& \operatorname{dim} M_{53}=(2,4,2,1) \text { and } \mathfrak{n}\left(M_{53}\right)=f_{1}^{2} f_{2}^{4} f_{3}^{2} f_{4} \text {, } \\
& \operatorname{dim} M_{54}=(0,2,1,0) \text { and } \mathfrak{n}\left(M_{54}\right)=f_{2}^{2} f_{3}, \\
& \operatorname{dim} M_{61}=(1,0,0,0) \text { and } \mathfrak{n}\left(M_{61}\right)=f_{1}, \\
& \operatorname{dim} M_{62}=(1,1,0,0) \text { and } \mathfrak{n}\left(M_{62}\right)=f_{1} f_{2}, \\
& \operatorname{dim} M_{63}=(2,2,1,0) \text { and } \mathfrak{n}\left(M_{63}\right)=f_{1}^{2} f_{2}^{2} f_{3}, \\
& \operatorname{dim} M_{64}=(2,2,1,1) \text { and } \mathfrak{n}\left(M_{64}\right)=f_{1}^{2} f_{2}^{2} f_{3} f_{4} .
\end{aligned}
$$

Now we give an enumeration of the indecomposable $A(q)$-modules in figure (IV):

$$
\text { (*) } \quad M_{i 4} \prec M_{i 3} \prec M_{i 2} \prec M_{i 1} \prec M_{i+1,4} \prec M_{i+1,3} \prec M_{i+1,2} \prec M_{i+1,1} .
$$

Now, by using the relations $\left(F^{\prime} 1\right)-\left(F^{\prime} 6\right)$, we compute the relations between $\mathfrak{n}\left(M_{i j}\right)(1 \leq i \leq$ $6,1 \leq j \leq 4)$ in $\mathcal{S} / \mathfrak{J}$:

$$
\begin{aligned}
& \mathfrak{n}\left(M_{13}\right) \mathfrak{n}\left(M_{14}\right)=f_{3} f_{4} f_{4}=f_{4} f_{3} f_{4}=\mathfrak{n}\left(M_{14}\right) \mathfrak{n}\left(M_{13}\right) \\
& \mathfrak{n}\left(M_{21}\right) \mathfrak{n}\left(M_{14}\right)=f_{2} f_{3} f_{4}=\mathfrak{n}\left(M_{12}\right) \\
& \mathfrak{n}\left(M_{22}\right) \mathfrak{n}\left(M_{13}\right)=f_{1} f_{2}^{2} f_{3}^{2} f_{4} f_{3} f_{4}
\end{aligned}
$$

$$
\begin{aligned}
& =f_{1} f_{2}^{2} f_{3} f_{4} f_{3} f_{3} f_{4} \quad\left(\text { by }\left(F^{\prime} 2\right)\right) \\
& =f_{1} f_{2}^{2} f_{3} f_{4} f_{3} f_{4} f_{3} \quad\left(\text { by }\left(F^{\prime} 2\right)\right) \\
& =f_{2} f_{1} f_{2} f_{3} f_{4} f_{3} f_{4} f_{3} \quad\left(\text { by }\left(F^{\prime} 3\right)\right) \\
& =f_{2} f_{1} f_{2} f_{3}^{2} f_{4} f_{4} f_{3} \quad\left(\text { by }\left(F^{\prime} 2\right)\right) \\
& =f_{2} f_{1} f_{3} f_{2} f_{3} f_{4}^{2} f_{3} \quad\left(\text { by }\left(F^{\prime} 4\right)\right) \\
& =f_{2} f_{3} f_{1} f_{2} f_{3} f_{4}^{2} f_{3} \quad\left(\text { by }\left(F^{\prime} 1\right)\right) \\
& =f_{2} f_{3} f_{1} f_{2} f_{4} f_{3} f_{4} f_{3} \quad\left(\text { by }\left(F^{\prime} 3\right)\right) \\
& =f_{2} f_{3} f_{4} f_{1} f_{2} f_{3} f_{4} f_{3} \quad\left(\text { by }\left(F^{\prime} 1\right)\right) \\
& =\mathfrak{n}\left(M_{12}\right) \mathfrak{n}\left(M_{11}\right) \mathfrak{n}\left(M_{24}\right) .
\end{aligned}
$$

In this way, we get the following set B of relations:

1. $\mathfrak{n}\left(M_{i+1,1}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 2}\right)$,
2. $\mathfrak{n}\left(M_{i+1,4}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 3}\right)$,
3. $\mathfrak{n}\left(M_{i+3,1}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 1}\right)$,
4. $\mathfrak{n}\left(M_{i+3,3}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i+2,3}\right)$,
5. $\mathfrak{n}\left(M_{i+4,2}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i+2,1}\right)$,
6. $\mathfrak{n}\left(M_{i+4,4}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i+2,4}\right)$,
7. $\mathfrak{n}\left(M_{63}\right) \mathfrak{n}\left(M_{14}\right)=\mathfrak{n}\left(M_{64}\right)$,
8. $\mathfrak{n}\left(M_{i+4,1}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 2}\right)$,
9. $\mathfrak{n}\left(M_{i+4,2}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i+1,2}\right)$,
10. $\mathfrak{n}\left(M_{i+4,3}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i+2,3}\right)$,
11. $\mathfrak{n}\left(M_{i+4,4}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i+1,3}\right)$,
12. $\mathfrak{n}\left(M_{62}\right) \mathfrak{n}\left(M_{13}\right)=\mathfrak{n}\left(M_{11}\right)$,
13. $\mathfrak{n}\left(M_{63}\right) \mathfrak{n}\left(M_{13}\right)=\mathfrak{n}\left(M_{44}\right)$,
14. $\mathfrak{n}\left(M_{i+1,1}\right) \mathfrak{n}\left(M_{i 2}\right)=\mathfrak{n}\left(M_{i+1,3}\right)$,
15. $\mathfrak{n}\left(M_{i+3,1}\right) \mathfrak{n}\left(M_{i 2}\right)=\mathfrak{n}\left(M_{i+1,2}\right)$,
16. $\mathfrak{n}\left(M_{i+3,2}\right) \mathfrak{n}\left(M_{i 2}\right)=\mathfrak{n}\left(M_{i+2,3}\right)$,
17. $\mathfrak{n}\left(M_{i+4,1}\right) \mathfrak{n}\left(M_{i 2}\right)=\mathfrak{n}\left(M_{i+2,4}\right)$,
18. $\mathfrak{n}\left(M_{i+4,2}\right) \mathfrak{n}\left(M_{i 2}\right)=\mathfrak{n}\left(M_{i+2,2}\right)$,
19. $\mathfrak{n}\left(M_{61}\right) \mathfrak{n}\left(M_{12}\right)=\mathfrak{n}\left(M_{11}\right)$,
20. $\mathfrak{n}\left(M_{62}\right) \mathfrak{n}\left(M_{12}\right)=\mathfrak{n}\left(M_{31}\right)$,
21. $\mathfrak{n}\left(M_{i+1,1}\right) \mathfrak{n}\left(M_{i 1}\right)=\mathfrak{n}\left(M_{i+1,2}\right)$,
22. $\mathfrak{n}\left(M_{63}\right) \mathfrak{n}\left(M_{12}\right)=\mathfrak{n}\left(M_{42}\right)$,
23. $\mathfrak{n}\left(M_{i+2,2}\right) \mathfrak{n}\left(M_{i 1}\right)=\mathfrak{n}\left(M_{i+2,3}\right)$,
24. $\mathfrak{n}\left(M_{i+3,1}\right) \mathfrak{n}\left(M_{i 1}\right)=\mathfrak{n}\left(M_{i+3,4}\right)$,
25. $\mathfrak{n}\left(M_{i+4,1}\right) \mathfrak{n}\left(M_{i 1}\right)=\mathfrak{n}\left(M_{i+2,1}\right)$,
26. $\mathfrak{n}\left(M_{i+4,2}\right) \mathfrak{n}\left(M_{i 1}\right)=\mathfrak{n}\left(M_{i+3,2}\right)$,
27. $\mathfrak{n}\left(M_{i+4,4}\right) \mathfrak{n}\left(M_{i 1}\right)=\mathfrak{n}\left(M_{i+2,2}\right)$,
28. $\mathfrak{n}\left(M_{62}\right) \mathfrak{n}\left(M_{11}\right)=\mathfrak{n}\left(M_{64}\right)$,
29. $\mathfrak{n}\left(M_{i 3}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 4}\right) \mathfrak{n}\left(M_{i 3}\right)$,
30. $\mathfrak{n}\left(M_{i 2}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 4}\right) \mathfrak{n}\left(M_{i 2}\right)$,
31. $\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 4}\right) \mathfrak{n}\left(M_{i 1}\right)$,
32. $\mathfrak{n}\left(M_{i+1,2}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 2}\right) \mathfrak{n}\left(M_{i 1}\right)$,
33. $\mathfrak{n}\left(M_{i+1,3}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 2}\right) \mathfrak{n}\left(M_{i 2}\right)$,
34. $\mathfrak{n}\left(M_{i+2,1}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 4}\right) \mathfrak{n}\left(M_{i+2,1}\right)$,
35. $\mathfrak{n}\left(M_{i+2,2}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+2,4}\right)$,
36. $\mathfrak{n}\left(M_{i+2,4}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 4}\right) \mathfrak{n}\left(M_{i+2,4}\right)$,
37. $\mathfrak{n}\left(M_{i+3,2}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+2,1}\right)$,
38. $\mathfrak{n}\left(M_{i+3,4}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i 1}\right)$,
39. $\mathfrak{n}\left(M_{i+4,1}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 4}\right) \mathfrak{n}\left(M_{i+4,1}\right)$,
40. $\mathfrak{n}\left(M_{i+4,3}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i+2,1}\right) \mathfrak{n}\left(M_{i+2,1}\right)$,
41. $\mathfrak{n}\left(M_{61}\right) \mathfrak{n}\left(M_{14}\right)=\mathfrak{n}\left(M_{14}\right) \mathfrak{n}\left(M_{61}\right)$,
42. $\mathfrak{n}\left(M_{62}\right) \mathfrak{n}\left(M_{14}\right)=\mathfrak{n}\left(M_{14}\right) \mathfrak{n}\left(M_{62}\right)$,
43. $\mathfrak{n}\left(M_{64}\right) \mathfrak{n}\left(M_{14}\right)=\mathfrak{n}\left(M_{14}\right) \mathfrak{n}\left(M_{64}\right)$,
44. $\mathfrak{n}\left(M_{i 2}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 3}\right) \mathfrak{n}\left(M_{i 2}\right)$,
45. $\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 3}\right) \mathfrak{n}\left(M_{i 1}\right)$,
46. $\mathfrak{n}\left(M_{i+1,1}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 2}\right) \mathfrak{n}\left(M_{i+1,4}\right)$,
47. $\mathfrak{n}\left(M_{i+1,4}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 3}\right) \mathfrak{n}\left(M_{i+1,4}\right)$,
48. $\mathfrak{n}\left(M_{i+2,1}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 2}\right) \mathfrak{n}\left(M_{i 1}\right)$,
49. $\mathfrak{n}\left(M_{i+2,2}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+1,3}\right)$,
50. $\mathfrak{n}\left(M_{i+2,4}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 2}\right) \mathfrak{n}\left(M_{i 2}\right)$,
51. $\mathfrak{n}\left(M_{i+3,1}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+1,4}\right)$,
$52 . \mathfrak{n}\left(M_{i+3,2}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+1,2}\right)$,
52. $\mathfrak{n}\left(M_{i+3,3}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i+1,2}\right) \mathfrak{n}\left(M_{i+1,2}\right)$,
53. $\mathfrak{n}\left(M_{64}\right) \mathfrak{n}\left(M_{13}\right)=\mathfrak{n}\left(M_{11}\right) \mathfrak{n}\left(M_{11}\right)$,
54. $\mathfrak{n}\left(M_{i+1,2}\right) \mathfrak{n}\left(M_{i 2}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+1,3}\right)$,
55. $\mathfrak{n}\left(M_{i+1,4}\right) \mathfrak{n}\left(M_{i 2}\right)=\mathfrak{n}\left(M_{i 2}\right) \mathfrak{n}\left(M_{i+1,4}\right)$,
56. $\mathfrak{n}\left(M_{i+2,2}\right) \mathfrak{n}\left(M_{i 2}\right)=\mathfrak{n}\left(M_{i+1,2}\right) \mathfrak{n}\left(M_{i+2,4}\right)$,
57. $\mathfrak{n}\left(M_{i+3,3}\right) \mathfrak{n}\left(M_{i 2}\right)=\mathfrak{n}\left(M_{i+1,1}\right) \mathfrak{n}\left(M_{i+2,3}\right)$,
58. $\mathfrak{n}\left(M_{i+4,3}\right) \mathfrak{n}\left(M_{i 2}\right)=\mathfrak{n}\left(M_{i+2,2}\right) \mathfrak{n}\left(M_{i+2,1}\right)$,
59. $\mathfrak{n}\left(M_{64}\right) \mathfrak{n}\left(M_{12}\right)=\mathfrak{n}\left(M_{11}\right) \mathfrak{n}\left(M_{31}\right)$,
60. $\mathfrak{n}\left(M_{i+1,3}\right) \mathfrak{n}\left(M_{i 1}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+1,3}\right)$,
61. $\mathfrak{n}\left(M_{i+2,1}\right) \mathfrak{n}\left(M_{i 1}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+2,1}\right)$,
62. $\mathfrak{n}\left(M_{i+2,4}\right) \mathfrak{n}\left(M_{i 1}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+2,4}\right)$,
63. $\mathfrak{n}\left(M_{i+3,3}\right) \mathfrak{n}\left(M_{i 1}\right)=\mathfrak{n}\left(M_{i+2,2}\right) \mathfrak{n}\left(M_{i+3,4}\right)$,
64. $\mathfrak{n}\left(M_{i+4,3}\right) \mathfrak{n}\left(M_{i 1}\right)=\mathfrak{n}\left(M_{i+2,1}\right) \mathfrak{n}\left(M_{i+3,2}\right)$,
65. $\mathfrak{n}\left(M_{63}\right) \mathfrak{n}\left(M_{11}\right)=\mathfrak{n}\left(M_{41}\right) \mathfrak{n}\left(M_{64}\right)$,
66. $\mathfrak{n}\left(M_{i+2,3}\right) \mathfrak{n}\left(M_{i 4}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+2,4}\right)$,
67. $\mathfrak{n}\left(M_{i+1,2}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 2}\right) \mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+1,4}\right)$,
68. $\mathfrak{n}\left(M_{i+1,3}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 2}\right) \mathfrak{n}\left(M_{i 2}\right) \mathfrak{n}\left(M_{i+1,4}\right)$,
69. $\mathfrak{n}\left(M_{i+2,3}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+1,3}\right)$,
70. $\mathfrak{n}\left(M_{i+3,4}\right) \mathfrak{n}\left(M_{i 3}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+1,4}\right)$,
71. $\mathfrak{n}\left(M_{i+2,3}\right) \mathfrak{n}\left(M_{i 2}\right)=\mathfrak{n}\left(M_{i 1}\right) \mathfrak{n}\left(M_{i+1,2}\right) \mathfrak{n}\left(M_{i+2,4}\right)$,
where each first subscript belongs to the set $\{1,2,3,4,5,6\}$.
Remark 3.1 By comparing the set B with the minimal Gröbner-Shirshov basis given in [15], we found that the right-hand side of each one in B is just the minimal term (we forget the coefficient) of the right-hand side of the corresponding one in the minimal Gröbner-Shirshov basis in [15]. But at the moment, we do not know the reason.

Now we are ready to prove the injectivity of

$$
\bar{\eta}: \mathcal{S} / \mathfrak{J} \longrightarrow \mathbb{Z} \mathcal{M}, \quad s_{i}+\mathfrak{J} \longmapsto\left[S_{i}\right], \quad 1 \leq i \leq 4 .
$$

For convenience, we set

$$
\begin{aligned}
& V_{1}=M_{14}, V_{2}=M_{13}, V_{3}=M_{12}, V_{4}=M_{11}, V_{5}=M_{24}, V_{6}=M_{23}, V_{7}=M_{22}, V_{8}=M_{21}, \\
& V_{9}=M_{34}, V_{10}=M_{33}, V_{11}=M_{32}, V_{12}=M_{31}, V_{13}=M_{44}, V_{14}=M_{43}, V_{15}=M_{42}, V_{16}=M_{41}, \\
& V_{17}=M_{54}, V_{18}=M_{53}, V_{19}=M_{52}, V_{20}=M_{51}, V_{21}=M_{64}, V_{22}=M_{63}, V_{23}=M_{62}, V_{24}=M_{61} .
\end{aligned}
$$

Then by the order $(*)$, we have $V_{1} \prec \cdots \prec V_{24}$. Given a monomial $\omega=f_{i_{1}} \cdots f_{i_{m}}\left(1 \leq i_{1} \leq\right.$ $i_{m} \leq 4$), we have

$$
\omega=f_{i_{1}} \cdots f_{i_{m}}=\mathfrak{n}\left(S_{i_{1}}\right) \cdots \mathfrak{n}\left(S_{i_{m}}\right) .
$$

Applying the relations in B repeatedly, we can get $\omega=\mathfrak{n}\left(V_{1}\right)^{n_{1}} \cdots \mathfrak{n}\left(V_{\mu}\right)^{n_{24}}$ for some n_{1}, \cdots, n_{24} ≥ 0. Hence, all the monomials $\mathfrak{n}\left(V_{1}\right)^{n_{1}} \cdots \mathfrak{n}\left(V_{\mu}\right)^{n_{24}}$ with $n_{1}, \cdots, n_{24} \geq 0$ span $\mathcal{S} / \mathfrak{J}$.

On the other hand, Lemma 2.5 implies that for $n_{1}, \cdots, n_{24} \geq 0$,

$$
\bar{\eta}\left(\mathfrak{n}\left(V_{1}\right)^{n_{1}} \cdots \mathfrak{n}\left(V_{24}\right)^{n_{24}}\right)=\left[V_{1}\right]^{* n_{1}} * \cdots *\left[V_{24}\right]^{* n_{24}} .
$$

By Lemma 2.4, the elements $\left[V_{1}\right]^{* n_{1}} * \cdots *\left[V_{24}\right]^{* n_{24}}$ with $n_{1}, \cdots, n_{24} \geq 0$ form a basis of $\mathbb{Z} \mathcal{M}_{E_{6}, \sigma}$. Consequently, the morphism $\bar{\eta}$ is injective.

Hence we have following result.
Proposition 3.2 There are graded \mathbb{Z}-algebra isomorphisms

$$
\Phi: \mathbb{Z} \mathcal{M}_{E_{6}, \sigma} \longrightarrow \mathfrak{H}_{0}\left(F_{4}\right), \quad\left[S_{i}\right] \longmapsto u_{i}, \quad 1 \leq i \leq 4
$$

Proof By Lemma 2.3 and Proposition 3.1, there is a surjective \mathbb{Z}-algebra homomorphism $\Phi: \mathbb{Z} \mathcal{M}_{E_{6}, \sigma} \longrightarrow \mathfrak{H}_{0}\left(F_{4}\right)$ given by $\left[S_{i}\right] \longmapsto u_{i}$ with $1 \leq i \leq 4$. Since $\left\{\left[M_{q}(\lambda)_{\mathcal{K}}\right] \mid \lambda \in \mathfrak{B}\right\}$ and $\left\{u_{\lambda} \mid \lambda \in \mathfrak{B}\right\}$ are bases for $\mathbb{Z} \mathcal{M}_{E_{6}, \sigma}$ and $\mathfrak{H}_{0}\left(F_{4}\right)$, respectively, we know that Φ is an isomorphism.

So we have the following theorem.
Theorem 3.1 The generators $u_{i}(1 \leq i \leq 4)$ and the relations $(\mathrm{F} 1)-(\mathrm{F} 6)$ give a presentation of $\mathfrak{H}_{0}\left(F_{4}\right)$.

4 Gröbner-Shirshov Basis for $\mathfrak{H}_{0}\left(\boldsymbol{F}_{4}\right)$

For any monomial $u \in \mathfrak{H}_{0}\left(F_{4}\right)$, we define the length $l(u)$ of u to be the number of the $u_{i} \in C$ occuring in u. Now, we define a degree lexicographic order \prec on the monomials in $\mathfrak{H}_{0}\left(F_{4}\right)$ as follows:

$$
u \prec v \quad \text { if and only if } l(u)<l(v) \text { or } l(u)=l(v) \text { and } u<v
$$

and then it is a monomial order (see [16]).
We have already shown that $\mathfrak{H}_{0}\left(F_{4}\right)$ is an associative algebra over \mathbb{Z} generated by $C=$ $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ with the generating relations

$$
\mathcal{F}^{\prime}=\left\{\begin{array}{lll}
u_{1} u_{3}=u_{3} u_{1}, & u_{1} u_{4}=u_{4} u_{1}, & u_{2} u_{4}=u_{4} u_{2} \\
u_{1} u_{2}^{2}=u_{2} u_{1} u_{2}, & u_{1}^{2} u_{2}=u_{1} u_{2} u_{1}, & u_{3} u_{4}^{2}=u_{4} u_{3} u_{4} \\
u_{3}^{2} u_{4}=u_{3} u_{4} u_{3}, & u_{3} u_{2} u_{3}=u_{2} u_{3}^{2}, & u_{2} u_{3} u_{2}^{2} u_{3}=u_{2}^{3} u_{3}^{2} \\
u_{2}^{2} u_{3} u_{2}=u_{2}^{3} u_{3} . &
\end{array}\right.
$$

In the following, we apply the algebra isomorphism $\Phi \circ \bar{\eta}$ to the relations 1,29 and 81 in B.
(1) We apply $\Phi \circ \bar{\eta}$ to the relations 1 :

$$
\begin{array}{ll}
\mathfrak{n}\left(M_{21}\right) \mathfrak{n}\left(M_{14}\right)=\mathfrak{n}\left(M_{12}\right), & \mathfrak{n}\left(M_{31}\right) \mathfrak{n}\left(M_{24}\right)=\mathfrak{n}\left(M_{22}\right), \quad \mathfrak{n}\left(M_{41}\right) \mathfrak{n}\left(M_{34}\right)=\mathfrak{n}\left(M_{32}\right), \\
\mathfrak{n}\left(M_{51}\right) \mathfrak{n}\left(M_{44}\right)=\mathfrak{n}\left(M_{42}\right), & \mathfrak{n}\left(M_{61}\right) \mathfrak{n}\left(M_{54}\right)=\mathfrak{n}\left(M_{52}\right),
\end{array}
$$

So then, we have 3 relations (two identical relations are omitted):

$$
u_{1} u_{2}^{2} u_{3}^{2} u_{4}=u_{1} u_{2}^{2} u_{3} u_{4} u_{3}, \quad u_{1} u_{2}^{3} u_{3}^{2} u_{4}=u_{1} u_{2} u_{3} u_{2}^{2} u_{3} u_{4}, \quad u_{1}^{2} u_{2}^{3} u_{3}^{2} u_{4}=u_{2} u_{1}^{2} u_{2}^{2} u_{3}^{2} u_{4}
$$

(2) We apply $\Phi \circ \bar{\eta}$ to relations 29:

$$
\begin{array}{ll}
\mathfrak{n}\left(M_{13}\right) \mathfrak{n}\left(M_{14}\right)=\mathfrak{n}\left(M_{14}\right) \mathfrak{n}\left(M_{13}\right), & \mathfrak{n}\left(M_{23}\right) \mathfrak{n}\left(M_{24}\right)=\mathfrak{n}\left(M_{24}\right) \mathfrak{n}\left(M_{23}\right), \\
\mathfrak{n}\left(M_{33}\right) \mathfrak{n}\left(M_{34}\right)=\mathfrak{n}\left(M_{34}\right) \mathfrak{n}\left(M_{33}\right), & \mathfrak{n}\left(M_{43}\right) \mathfrak{n}\left(M_{44}\right)=\mathfrak{n}\left(M_{44}\right) \mathfrak{n}\left(M_{43}\right), \\
\mathfrak{n}\left(M_{53}\right) \mathfrak{n}\left(M_{54}\right)=\mathfrak{n}\left(M_{54}\right) \mathfrak{n}\left(M_{53}\right), & \\
\mathfrak{n}\left(M_{63}\right) \mathfrak{n}\left(M_{64}\right)=\mathfrak{n}\left(M_{64}\right) \mathfrak{n}\left(M_{63}\right),
\end{array}
$$

and we have 6 relations:

$$
\begin{array}{ll}
u_{3} u_{4}^{2}=u_{4} u_{3} u_{4}, & u_{2}^{2} u_{3}^{2} u_{4} u_{3}=u_{3} u_{2}^{2} u_{3}^{2} u_{4} \\
u_{1}^{2} u_{2}^{4} u_{3}^{3} u_{4}^{2} u_{2}^{2} u_{3} u_{4}=u_{2}^{2} u_{3} u_{4} u_{1}^{2} u_{2}^{4} u_{3}^{3} u_{4}^{2}, & u_{1}^{2} u_{2}^{4} u_{3}^{3} u_{4} u_{1}^{2} u_{2}^{2} u_{3}^{2} u_{4}=u_{1}^{2} u_{2}^{2} u_{3}^{2} u_{4} u_{1}^{2} u_{2}^{4} u_{3}^{3} u_{4} \\
u_{1}^{2} u_{2}^{4} u_{3}^{2} u_{4} u_{2}^{2} u_{3}=u_{2}^{2} u_{3} u_{1}^{2} u_{2}^{4} u_{3}^{2} u_{4}, & u_{1}^{2} u_{2}^{2} u_{3} u_{1}^{2} u_{2}^{2} u_{3} u_{4}=u_{1}^{2} u_{2}^{2} u_{3} u_{4} u_{1}^{2} u_{2}^{2} u_{3}
\end{array}
$$

(3) We apply $\Phi \circ \bar{\eta}$ to the relations 81 :

$$
\begin{array}{ll}
\mathfrak{n}\left(M_{33}\right) \mathfrak{n}\left(M_{14}\right)=\mathfrak{n}\left(M_{11}\right) \mathfrak{n}\left(M_{11}\right) \mathfrak{n}\left(M_{34}\right), & \\
\mathfrak{n}\left(M_{43}\right) \mathfrak{n}\left(M_{24}\right)=\mathfrak{n}\left(M_{21}\right) \mathfrak{n}\left(M_{21}\right) \mathfrak{n}\left(M_{44}\right), \\
\mathfrak{n}\left(M_{53}\right) \mathfrak{n}\left(M_{34}\right)=\mathfrak{n}\left(M_{31}\right) \mathfrak{n}\left(M_{31}\right) \mathfrak{n}\left(M_{54}\right), & \\
\mathfrak{n}\left(M_{63}\right) \mathfrak{n}\left(M_{44}\right)=\mathfrak{n}\left(M_{41}\right) \mathfrak{n}\left(M_{41}\right) \mathfrak{n}\left(M_{64}\right),
\end{array}
$$

and we have 4 relations:

$$
\begin{array}{ll}
u_{1}^{2} u_{2}^{4} u_{3}^{3} u_{4}^{3}=u_{1} u_{2} u_{3} u_{4} u_{1} u_{2} u_{3} u_{4} u_{2}^{2} u_{3} u_{4}, & u_{1}^{2} u_{2}^{4} u_{3}^{3} u_{4} u_{3}=u_{2} u_{3} u_{2} u_{3} u_{1}^{2} u_{2}^{2} u_{3}^{2} u_{4} \\
u_{1}^{2} u_{2}^{4} u_{3}^{2} u_{4} u_{2}^{2} u_{3} u_{4}=u_{1} u_{2}^{2} u_{3} u_{4} u_{1} u_{2}^{2} u_{3} u_{4} u_{2}^{2} u_{3}, & u_{1}^{2} u_{2}^{2} u_{3} u_{1}^{2} u_{2}^{2} u_{3}^{2} u_{4}=u_{1} u_{2} u_{3} u_{1} u_{2} u_{3} u_{1}^{2} u_{2}^{2} u_{3} u_{4}
\end{array}
$$

By applying the algebra isomorphism $\Phi \circ \bar{\eta}$ to all the relations in B, we get a new set $\mathcal{F}^{\prime \prime}$ of the relations (since there are 247 relations in $\mathcal{F}^{\prime \prime}$, to save space, we do not write them all here).

By computing all possible compositions between the elements of $\mathcal{F}^{\prime} \cup \mathcal{F}^{\prime \prime}$, we get the following non-trivial compositions, that is, the new set $\mathcal{F}^{\prime \prime \prime}$ of the relations in $\mathfrak{H}_{0}\left(F_{4}\right)$:

```
u}\mp@subsup{|}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{},\quad\quad\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}
u}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{=}=\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{},\quad\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}
\mp@subsup{u}{2}{}}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}=\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{},\quad\quad\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{
\mp@subsup{u}{2}{}}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{},\quad\quad\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}=\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{
u}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{},\quad\quad\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}
u}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}
u}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}=\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}
u}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}=\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{},\quad\quad\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}
u}\mp@subsup{2}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{},\quad\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}=\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}
u}\mp@subsup{2}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}
u}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}
u}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}
u}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}
u}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{
\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{1}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{},
u}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}=\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{
u}\mp@subsup{|}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}
\mp@subsup{u}{1}{}}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}
u}\mp@subsup{u}{2}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}=\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{}\mp@subsup{u}{1}{}\mp@subsup{u}{2}{}\mp@subsup{u}{3}{}\mp@subsup{u}{2}{2}\mp@subsup{u}{3}{}\mp@subsup{u}{4}{
```

We set $\mathcal{F}=\mathcal{F}^{\prime} \cup \mathcal{F}^{\prime \prime} \cup \mathcal{F}^{\prime \prime \prime}$. Then by the construction of the set \mathcal{F} of the relations in $\mathfrak{H}_{0}\left(F_{4}\right)$, we get our main result in this paper.

Theorem 4.1 With the notations above, \mathcal{F} is a Gröbner-Shirshov basis for $\mathfrak{H}_{0}\left(F_{4}\right)$.
Acknowledgement We are very grateful to the referees for the useful comments and suggestions.

References

[1] Buchberger, B., An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal, Ph.D. Thesis, University of Innsbruck, 1965.
[2] Bergman, G. M., The diamond lemma for ring theory, Adv. Math., 29, 1978, 178-218.
[3] Shirshov, A. I., Some algorithmic problems for Lie algebras, Siberian Math. J., 3, 1962, 292-296.
[4] Reineke, M., Generic extensions and multiplicative bases of quantum groups at $q=0$, Represent. Theory, 5, 2001, 147-163.
[5] Deng, B. M. and Du, J., Frobenius morphisms and representations of algebras, Trans. Amer., 358(8), 2006, 3591-3622.
[6] Bokut, L. A., Imbeddings into simple associative algebras, Algebra and Logic, 15, 1976, 117-142.
[7] Deng, B. M., Du, J., Parshal, B. and Wang, J. P., Finite Dimensional Algebra and Quantum Groups, Mathematical Surveys and Monographs, Vol. 150, Amer. Math. Soc., Providence, RI, 2008.
[8] Deng, B. M., Du, J. and Xiao, J., Generic extensions and canonical bases for cyclic quivers, Canad. J. Math., 59(6), 2007, 1260-1283.
[9] Dlab, V. and Ringel, C. M., On algebras of finite representation type, J. Algebra, 33, 1975, 306-394.
[10] Dlab, V. and Ringel, C. M., Indecomposable Representations of Graphs and Algebras, Memoirs Amer. Math. Soc., 6(173), 1976, 1-63.
[11] Ringel, C. M., The composition algebra of a cyclic quiver, Proc. London Math. Soc., 66, 1993, 507-537.
[12] Zhao, Z. and Fan, L., Presenting degenerate Ringel-Hall algebras of type B, Sci. China Math., 55(5), 2012, 949-960.
[13] Bongartz, K., On degenerations and extensions of finite dimensional modules, Adv. Math., 121, 1996, 245-287.
[14] Reineke, M., The quantic monoid and degenerate quantized enveloping algebras, arXiv: math/0206095v1.
[15] Qiang, C. X and Obul, A., Skew-commutator relations and Göbner-Shirshov basis of quantum group of type F_{4}, Front. Math. in China, 9(1), 2014, 135-150.
[16] Kang, S. and Lee, K., Gröbner-Shirshov bases for representation theory, J. Korean Math. Soc., 37, 2000, 55-72.

[^0]: Manuscript received July 2, 2014. Revised August 30, 2015.
 ${ }^{1}$ College of Applied Sciences, Beijing University of Technology, Beijing 100124, China.
 E-mail: gaozhenzhen1224@163.com
 ${ }^{2}$ Corresponding author. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China. E-mail: abdu@vip.sina.com
 *This work was supported by the National Natural Science Foundation of China (Nos. 11361056, 112710 43, 11471186).

