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Approximate Representation of Bergman Submodules∗
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Abstract In the present paper, the author shows that if a homogeneous submodule M
of the Bergman module L2

a(Bd) satisfies

PM −
∑

i

MziPMM∗
zi ≤ c

N + 1
PM

for some number c > 0, then there is a sequence {fj} of multipliers and a positive number c′

such that c′PM ≤ ∑
j

Mfj M∗
fj

≤ PM, i.e., M is approximately representable. The author

also proves that approximately representable homogeneous submodules are p-essentially
normal for p > d.
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1 Introduction

In his papers [2–3], Arveson raised the conjecture whether or not every homogeneous sub-
module of the Drury-Arveson module is essentially normal. More precisely, let M be a homo-
geneous submodule of the Drury-Arveson module H2

d over the unit ball Bd, and Ri := Mzi|M
be the restriction of the coordinate operator on M, and then the conjecture asks whether the
commutators [R∗

i , Ri] should be compact for i = 1, · · · , d. If the answer is yes and moreover,
these commutators are in the Schatten-von Neumann class Lp, then M is called p-essentially
normal. As can be seen in [2–3], this problem has deeply linked to C∗-extension theory, index
theory, algebraic geometry and other branches of mathematics.

There is much literature on this topic. Guo [16] proved that in the case d = 2, each
homogeneous submodule is p-essentially normal for p > 2. In their remarkable paper, Guo
and Wang [17] gave the proof of p-essential normality of principal homogeneous submodules for
p > d, and as a consequence, they proved p-essential normality of homogeneous submodules for
p > 3 in the case d = 3. They also proved that quasi-homogeneous submodules of the Bergman
module L2

a(B2) are p-essentially normal for p > 2 (see [18]). Shalit [24] proved that submodules
possessing the stable division property are essentially normal. Douglas and Wang [6] proved the
p-essential normality of submodules of the Bergman module generated by a single polynomial
for p > d. Fang and Xia [14] extended the approach of Douglas and Wang and proved the

Manuscript received March 26, 2014. Revised March 29, 2015.
1School of Mathematics, Shandong University, Jinan 250100, China.
E-mail: chong.zhao0418@gmail.com

∗This work was supported by the National Natural Science Foundation of China (Nos. 11271075,
11371096), Shandong Province Natural Science Foundation (No. ZR2014AQ009) and the Fundamen-
tal Research Funds of Shandong University (No. 2015GN017).



222 C. Zhao

p-essential normality of submodules generated by a single polynomial of the Hardy module
and beyond, when p > d. Guo and Zhao [19] proved p-essential normality of principal quasi-
homogeneous submodules for p > d, and that of quasi-homogeneous submodules in the case
d = 3. Douglas and Wang [7] and Kennedy [20] made discussions on essential normality of
sums of essentially normal submodules. Recently, Englǐs and Eschmeier [11] proved essential
normality of homogeneous submodules spanned by a radical ideal of good zero variety. Other
related discussions on this topic can be found in Eschmeier [12], Douglas and Sarkar [5] and
Kennedy and Shalit [21].

In [1], Arveson found that for submodules M of the Drury-Arveson module H2
d , the projec-

tion onto M can be represented as

PM = (SOT)
∑

k

Mϕk
M∗

ϕk
, (1.1)

where each ϕk is an analytic multiplier of H2
d . McCullough [22] generalized this result to

submodules of Hilbert modules determined by complete Nevanlinna-Pick kernels, and proved
that for submodules M ⊂ H, the projections onto M have the form (1.1). For a polynomial q ∈
C[z1, · · · , zd], we use Tq to denote the analytic Toeplitz operator of symbol q. The author and
Yu [25] proved that for bounded operators T ∈ B(L2

a(Bd)) of the form (1.1), the commutator
[T, Tzi] belongs to the Schatten-von Neumann p-class Lp for p > d and i = 1, · · · , d. Therefore,
if the projection onto a submodule M ⊂ L2

a(Bd) can be represented by the form (1.1), then M
is p-essentially normal for p > d. The following question arises.

Question 1 For which Hilbert modules, the projection onto every submodule can be
represented as an SOT limit like (1.1)?

Englǐs [8, 10] proved that the affirmative answer to this question can only be given to Hilbert
modules of complete Nevanlinna-Pick kernels. For Bergman modules, we prove in Lemma 2.3
that (1.1) does not hold for nontrivial submodules. Therefore, we lower our expectation and
ask the following question.

Question 2 Given a submodule M ⊂ L2
a(Bd), is there a sequence of multipliers {ϕk :

k = 0, 1, · · · } such that there are positive numbers c1, c2 and Schatten-von Neumann p-class
operators K1, K2 relevant to M, making

c1PM + K1 ≤ (SOT)
∑

k

Tϕk
T ∗

ϕk
≤ c2PM + K2? (1.2)

When this happens, we say that M has a p-approximate representation by multipliers {ϕk :
k = 0, 1, · · · }.

If a submodule M ⊂ L2
a(Bd) has a p (> d)-approximate representation, then we can prove

that M is p-essentially normal. Details can be found in Lemma 3.3 and Proposition 3.4. Ac-
tually by a counterexample of the non-essentially-normal submodule given by Gleason, Richter
and Sundberg [15], not all submodules of L2

a(Bd) have p-approximate representations. However,
for homogeneous submodules, the answer to Question 2 seems to be affirmative.

Englǐs [9–10] tried to answer Question 2 and proved that projections onto each submodule
M ⊂ L2

a(Bd) can be written as
PM = T1 − T2,
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where T1 and T2 are operators of the form (1.1), which are not assumed to be bounded.
As in [17], we use N to denote the number operator that maps homogeneous polynomials f

to deg(f)f , and then we can talk about its functional calculus.
In all the computable examples, when I is generated by monomials or by a single homoge-

neous polynomial, or when d = 3, we find that the following condition holds.

Condition 1.1 There is a positive number c relevant to M such that

PM −
d∑

i=1

MziPMM∗
zi

≤ c

N + 1
PM.

This is a sufficient condition for p (> d)-essential normality of homogeneous submodules of
L2

a(Bd), and it is nearly necessary in the sense that it holds for all the known examples. We
prove in the present paper that when a homogeneous Bergman submodule M satisfies Condition
1.1, it does have p (> d)-approximate representations. Therefore, p (> d)-approximate repre-
sentability can be seen as nearly equivalent to p-essential normality of homogeneous Bergman
submodules.

In Section 2, we introduce some terminologies and notations, and make some discussions on
the relation between defect operators and projections onto submodules.

In Section 3, we discuss the relation between p-essential normality and p-approximate rep-
resentability.

2 Preliminaries

Given a multi-index α ∈ Zd
+ and z ∈ Cd, we write

α! = α1! · · ·αd!,

|α| = α1 + · · · + αd,

zα = zα1
1 · · · zαd

d

for abbreviation.
The Drury-Arveson space H2

d is defined as the Hilbert space of analytic functions over the
unit ball Bd ⊂ Cd, generated by the reproducing kernel

Kλ(z) =
1

1 − 〈z, λ〉 , λ ∈ Bd.

In other words, H2
d is the completion of the polynomial ring C[z1, · · · , zd] with respect to the

inner product defined by

〈zα, zα〉 =
α!
|α|! (2.1)

for α ∈ Zn
+, and 〈zα, zβ〉 = 0 whenever α �= β. H2

d equipped with the natural C[z1, · · · , zd]-
module structure defined by multiplication by polynomials is called the Drury-Arveson module,
or the d-shift Hilbert module.

Let dν denote the normalized Lebesgue measure on Bd. The Bergman space L2
a(Bd) is the

completion of C[z1, · · · , zd] with respect to the inner product 〈f, g〉 =
∫

Bd
f(z)g(z)dν(z). One
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can compute that 〈zα, zα〉 = α!d!
(|α|+d)! when α ∈ Zd

+, and zα⊥zβ when α �= β, for which the
details can be seen in [23]. L2

a(Bd) has the reproducing kernel

Kλ(z) =
1

(1 − 〈z, λ〉)d+1
, λ ∈ Bd.

L2
a(Bd) also has the natural C[z1, · · · , zd]-module structure defined by multiplication by poly-

nomials.
Given q ∈ C[z1, · · · , zd], we use Mq to denote the multiplication operator of symbol q on H2

d ,
and Tq to denote the analytic Toeplitz operator of symbol q on L2

a(Bd), respectively. A sub-
module is defined as a closed subspace which is invariant under multiplication by polynomials.
Submodules generated by homogeneous polynomials are called homogeneous.

Let M be a submodule of H2
d , and then the quotient module H2

d/M is isometrically isomor-
phic to M⊥, on which the action by polynomial q is defined as Sq = PM⊥Mq|M⊥ . When all
the commutators [S∗

zi
, Szi ] (i = 1, · · · , d) are compact, the module M⊥ is said to be essentially

normal.
On H2

d , one can compute M∗
zi

zα = αi

|α|z
α−ei , where ei denotes the multi-index with 1 on the

i-th coordinate and 0 elsewhere. On the other hand, on L2
a(Bd) we have T ∗

zi
zα = αi

|α|+dzα−ei .
The following lemma from [2–3] and [4] provides us with the basic viewpoint of p-essentially

normal submodules.

Lemma 2.1 Let M be a submodule of H2
d⊗C

r. Then the following statements are equivalent
for p > d:

(1) M is p-essentially normal;
(2) M⊥ is p-essentially normal;
(3) [PM, Mzi] = PMMzi − MziPM are in L2p for 1 ≤ i ≤ d.

This lemma is also valid for the Hardy modules, the Bergman modules, etc.
Assume that M is a submodule of H2

d . By [1],

PM −
d∑

i=1

MziPMM∗
zi

≥ 0,

and therefore one can define the defect operator of M by

Δ(M) :=
(
PM −

d∑
i=1

MziPMM∗
zi

) 1
2
.

Arveson [1] also proved that there is a sequence {ϕj} of multipliers such that

PM =
∑

j

MϕjM
∗
ϕj

,

and each of such sequences satisfies that
∑ |ϕj(λ)|2 tends to 1 as λ tends non-tangentially to

z for almost every z ∈ ∂Bd.
When M is homogeneous, Δ2(M) keeps the degree of polynomials, and hence is diagonal-

izable. Therefore Δ2(M) can be written as
∑
j

fj ⊗ fj where {fj} is a sequence of pairwise

orthogonal eigenvectors, each of which is homogeneous. As a direct observation, the following
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lemma reveals the relationship between PM and Δ2(M), which is a key tool in the study of
Drury-Arveson submodules. Since we did not see a formal statement of it, we write it down
here and give a proof.

Lemma 2.2 Let M ⊂ H2
d be a homogeneous submodule, and {fj} be a sequence of poly-

nomials such that Δ2(M) = (SOT)
∑

fj ⊗ fj, and then we have PM = (SOT)
∑

Mfj M
∗
fj

. In
particular, we can choose {fj} to be pairwise orthogonal eigenvectors of Δ2(M), each of which
is homogeneous.

Proof Given an operator B ∈ B(H2
d ), we define σ(B) =

d∑
i=1

MziBM∗
zi , and then σ is

positive. Since
Δ2(M) = PM − σ(PM),

we have
σn(Δ2(M)) = σn(PM) − σn+1(PM)

for n = 0, 1, · · · . Therefore

(SOT)
∞∑

n=0

σn(Δ2(M)) = PM − (SOT) lim
n

σn+1(PM) = PM.

If we define

AN :=
N∑

j=1

Mfj M
∗
fj

for each N ∈ N, then

AN − σ(AN ) =
N∑

j=1

Mfj

(
I −

d∑
i=1

MzjM
∗
zj

)
M∗

fj

=
N∑

j=1

Mfj (1 ⊗ 1)M∗
fj

=
N∑

j=1

fj ⊗ fj

≤ Δ2(M).

This implies

AN = (SOT)
∞∑

n=0

σn(AN − σ(AN ))

≤ (SOT)
∞∑

n=0

σn(Δ2(M))

= PM

since σ is positive. Hence

A := (SOT)
∞∑

j=1

Mfj M
∗
fj

= (SOT) lim
N

AN ≤ PM,
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and then we have

A − σ(A) = (SOT)
∑

j

Mfj M
∗
fj

−
d∑

i=1

Mzj

(
(SOT)

∑
j

Mfj M
∗
fj

)
M∗

zj

= (SOT)
∑

j

Mfj

(
I −

d∑
i=1

Mzj M
∗
zj

)
M∗

fj

= (SOT)
∑

j

Mfj (1 ⊗ 1)M∗
fj

= (SOT)
∑

j

fj ⊗ fj

= Δ2(M).

Therefore

PM = (SOT)
∞∑

n=0

σn(Δ2(M)) = (SOT)
∞∑

n=0

σn(A − σ(A)) = A,

which completes the proof.

Next we prove that, of the Bergman module L2
a(Bd), only the trivial submodules can be

represented by the form (1.1).

Lemma 2.3 Let M ⊂ L2
a(Bd) be a submodule, and there is a sequence of analytic multipliers

{ϕk} such that
PM = (SOT)

∑
k

Tϕk
T ∗

ϕk
,

so then M = {0} or M = L2
a(Bd).

Proof Let kz = Kz

‖Kz‖ , z ∈ Bd be the normalized reproducing kernel, and then it holds for
each z ∈ Bd that ∑

k

|ϕk(z)|2 =
∑

k

〈T ∗
ϕk

kz , T
∗
ϕk

kz〉 = 〈PMkz, kz〉 ≤ 1.

Take a nonzero f ∈ M, then we have∫
Bd

(∑
k

|ϕk(z)|2
)
|f(z)|2dν(z)

=
∑

k

∫
Bd

|ϕk(z)f(z)|2dν(z)

=
∑

k

‖Tϕk
f‖2

≥
∑

k

‖T ∗
ϕk

f‖2

= 〈PMf, f〉
=

∫
|f(z)|2dν(z).

Hence
∑
k

|ϕk(z)|2 ≡ 1 for z ∈ Bd. Since each ϕk is analytic, |ϕk|2 must be subharmonic, and so

is their summation. Since
∑
k

|ϕk|2 achieves its maximum at the origin, so must be every |ϕk|2.
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By the maximum principle, |ϕk|2 should be constant in Bd. Take the second-order partial
derivative of |ϕk(z)|2 with respect to ∂zi and ∂zi and we get ∂ϕk(z)

∂zi

∂ϕk(z)
∂zi

≡ 0. Therefore for

each k and i, we have ∂ϕk(z)
∂zi

≡ 0, which induces that each ϕk is a constant. This implies
PM = 0 or 1, which completes the proof.

3 p-Essential Normality and Approximate Representability

We use H2
d to denote the d-dimensional Drury-Arveson module generated by the polynomial

ring C[z1, · · · , zd], and H2
d+1 to denote the (d + 1)-dimensional Drury-Arveson module gener-

ated by C[z0, z1, · · · , zd]. From the idea of Fang and Xia [13], for integers n ≥ 0, write Hn for
the closed subspace of H2

d+1 spanned by zn
0 C[z1, · · · , zd], and then we have H2

d+1 =
⊕
n≥0

Hn.

Obviously, H2
d is isometrically isomorphic to H0, the mapping f → zd−1

0 f maps the Hardy mod-
ule H2(∂Bd) isometrically isomorphic to Hd−1, and the mapping f → zd

0f maps the Bergman
module L2

a(Bd) isometrically isomorphic to Hd, etc.
Take a homogeneous ideal I ⊂ C[z1, · · · , zd], and let Mn ⊂ Hn be the closed subspace of

H2
d+1 spanned by zn

0 I (n ≥ 0). Then M =
⊕
n≥0

Mn is the submodule of H2
d+1 spanned by

I ∪ z0I ∪ z2
0I ∪ · · · . It can be seen that M⊥ =

⊕
n

(Hn � Mn).

Lemma 3.1 M is a reduced subspace for Mz0 .

Proof Obviously M is invariant for Mz0 , so we only need to prove that M⊥ is also invariant
for Mz0 . To see this, let f ∈ C[z1, · · · , zd] be homogeneous, such that zn

0 f ∈ Hn � Mn. For
every g ∈ I, it holds that

〈zn+1
0 f, zn+1

0 g〉 = 〈M∗
z0

Mz0(z
n
0 f), zn

0 g〉
=

n + 1
n + 1 + deg(f)

〈zn
0 f, zn

0 g〉
= 0.

Hence zn+1
0 f ∈ Hn+1 � Mn+1. Since Hn � Mn is homogeneous with respect to z1, · · · , zd, we

have Mz0(Hn � Mn) ⊂ Hn+1 � Mn+1. By M⊥ =
⊕
n

(Hn � Mn), we conclude that M⊥ is

invariant for Mz0 .

Proposition 3.1 Let I ⊂ C[z1, · · · , zd] and M ⊂ H2
d+1 be as aforementioned. Then there

is a sequence {fj} ⊂ I of homogeneous polynomials, such that

PM = (SOT)
∑
n,j

(n + deg(fj) − 1)!
n!(deg(fj) − 1)!

Mzn
0 fj M

∗
zn
0 fj

.

Proof Let Δ2(M) = PM−
d∑

i=1

MziPMM∗
zi
−Mz0PMM∗

z0
be the square of the defect operator

of M . Then each Hn reduces Δ2(M), and Δ2(M)|H0 is actually the square of the defect operator
of M0 in the Drury-Arveson module H0. Assume that the homogeneous polynomial g ∈ I is
an eigenvector for Δ2(M) corresponding to eigenvalue λ, and we claim that zn

0 g is also an
eigenvector for Δ2(M) corresponding to eigenvalue deg g

n+deg gλ.
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Denoting m = deg(g) and supposing g =
∑

|α|=m

cαzα, then we have

d∑
i=1

MziPMM∗
zi

g = PMg − Δ2(M)g = (1 − λ)g,

and for 1 ≤ i ≤ d,

M∗
zi

(zn
0 g) =

∑
α

cα
αi

m + n
zn
0 zα−ei

=
m

m + n
zn
0

∑
α

cα
αi

m
zα−ei

=
m

m + n
zn
0 M∗

zi
g.

Therefore

Δ2(M)(zn
0 g) = PM (zn

0 g) −
d∑

i=1

MziPMM∗
zi

(zn
0 g) − Mz0PMM∗

z0
(zn

0 g)

= zn
0 g −

d∑
i=1

MziPM

[ m

m + n
zn
0 M∗

zi
g
]
− n

m + n
zn
0 g

=
m

m + n
zn
0 g − m

m + n

d∑
i=1

MziPMMzn
0
M∗

zi
g

=
m

m + n
zn
0 g − m

m + n
Mzn

0

d∑
i=1

MziPMM∗
zi

g

=
m

m + n
zn
0 g − m

m + n
zn
0 (1 − λ)g

=
m

m + n
λzn

0 g (by lemma 3.1),

and the claim is proved.
Suppose Δ2(M)|H0=

∑
fj ⊗ fj , where the homogeneous polynomials {fj} form a sequence

of pairwise orthogonal eigenvectors for Δ2(M), corresponding to the eigenvalues λj := ‖fj‖2.
Therefore by the claim we have

Δ2(M) = (SOT)
∑
j,n

deg(fj)
n + deg(fj)

(n + deg(fj))!
n! deg(fj)!

zn
0 fj ⊗ zn

0 fj

= (SOT)
∑
j,n

(n + deg(fj) − 1)!
n!(deg(fj) − 1)!

zn
0 fj ⊗ zn

0 fj,

and the proof of the proposition can be completed by Lemma 2.2.

As an application, we have the following result.

Corollary 3.1 Let I ⊂ C[z1, · · · , zd] be a homogeneous ideal such that the submodule M0 ⊂
H2

d generated by I satisfies

d∑
i=1

[(MziPM0)
∗, MziPM0 ] ≤

c

N + 1
PM0
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for some number c > 0. Then the submodule M ⊂ H2
d+1 generated by I ∪ z0I ∪ · · · satisfies

d+1∑
i=1

[(MziPM)∗, MziPM] ≤ c + 1
N + 1

PM,

and therefore is p-essentially normal for p > d + 1.

Proof By the hypothesis we have

d∑
i=1

[(MziPM0)
∗, MziPM0 ]

=
d∑

i=1

(PM0M
∗
zi

MziPM0 − MziPM0M
∗
zi

)

=
N + d

N + 1
PM0 −

d∑
i=1

MziPM0M
∗
zi

=
d − 1
N + 1

PM0 + Δ2(M0)

≤ c

N + 1
PM0 . (3.1)

Therefore c ≥ d − 1 and Δ2(M0) ≤ c−d+1
N+1 PM0 . Let homogeneous polynomials {fj} form a

sequence of pairwise orthogonal eigenvectors of Δ2(M0), such that Δ2(M0) =
∑
j

fj ⊗fj. Then

we have ‖fj‖2 ≤ c−d+1
deg(fj)+1 . Hence

∥∥∥ (n + deg(fj) − 1)!
n!(deg(fj) − 1)!

zn
0 fj ⊗ zn

0 fj

∥∥∥
=

deg(fj)
n + deg(fj)

‖fj‖2

≤ deg(fj)
n + deg(fj)

· c − d + 1
deg(fj) + 1

≤ c − d + 1
n + deg(fj) + 1

,

which gives

Δ2(M) ≤ c − d + 1
N + 1

PM (3.2)

by the proof of Proposition 3.1.
Similar to the computation in (3.1) and by (3.2), we have

d+1∑
i=1

[(MziPM)∗, MziPM] =
d

N + 1
PM + Δ2(M) ≤ c + 1

N + 1
PM.

By [17], homogeneous ideals of C[z1, z2, z3] satisfy the hypothesis of this corollary, and
therefore we have the following corollary by induction.
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Corollary 3.2 If a homogeneous submodule M ⊂ H2
d is generated by polynomials that

depend on at most 3 variables, then M is p-essentially normal for p > d.

Next we prove that Condition 1.1 is sufficient for p (> d)-approximate representability of
homogeneous submodules M ⊂ L2

a(Bd). We need the following lemma, which is believed to be
well known.

Lemma 3.2 Let I be a homogeneous ideal of C[z1, · · · , zd]. Denote by M′,M the submod-
ules of H2

d , L2
a(Bd) generated by I, respectively. Then M′ satisfies Condition 1.1 if and only if

M does.

A generalized version of this lemma can be found in the Ph. D. thesis of K. Wang. We put
a shorter proof in our special case here for completion of the reasoning.

Proof of Lemma 3.2 As before, let M denote the submodule of H2
d+1 generated by

I, z0I, · · · . Suppose

PM0 −
d∑

i=1

MziPM0M
∗
zi

=
∑

j

λjej ⊗ ej ,

where the homogeneous polynomials {ej ∈ I} form an orthonormal basis of H0, and {λj} are
the corresponding eigenvalues. For each j, We have

d∑
i=1

MziPM0M
∗
zi

(ej) = (1 − λj)ej ,

and thus

d∑
i=1

MziPMd
M∗

zi
(zd

0ej) =
deg(ej)

deg(ej) + d

d∑
i=1

MziPMd
Mzd

0
M∗

zi
ej

=
deg(ej)

deg(ej) + d
(1 − λj)zd

0ej ,

which implies

(
PMd

−
d∑

i=1

MziPMd
M∗

zi

)
zd
0ej = zd

0ej − deg(ej)
deg(ej) + d

(1 − λj)zd
0ej

=
(
λj +

d

deg(ej) + d
(1 − λj)

)
zd
0ej.

Therefore zd
0ej is an eigenvector of PMd

−
d∑

i=1

MziPMd
M∗

zi
, corresponding to the eigenvalue

λj + d
deg(ej)+d (1 − λj). Obviously,

λj ≤ λj +
d

deg(ej) + d
(1 − λj)

≤ λj +
d

deg(ej) + d

≤ λj +
d

deg(ej) + 1
.
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From this we find that λj ≤ c1
deg(ej)+1 , ∀j for some c1 > 0 if and only if λj + d

deg(ej)+d (1−λj) ≤
c2

deg(ej)+1 , ∀j for some c2 > 0. By the isomorphic isomorphisms H2
d → H0 and L2

a(Bd) → Hd,
the lemma is proved.

Proposition 3.2 Let I ⊂ C[z1, · · · , zd] be a nontrivial homogeneous ideal, and M ⊂ L2
a(Bd)

be the submodule generated by I. Assume that Condition 1.1 holds for M, and then it can be
p-approximately represented by homogeneous multipliers for each p > d.

Proof As before, let M ⊂ H2
d+1 be the submodule generated by I ∪ z0I ∪ · · · . Let

homogeneous polynomials {fj} ⊂ I be a sequence of pairwise orthogonal eigenvectors of Δ2(M),
such that Δ2(M)|H0=

∑
fj ⊗ fj , and then by assumption there is a number c > 0 making

‖fj‖2 ≤ c
deg(fj)+1 . By Proposition 3.1, we have

PM =
∑
n,j

(n + deg(fj) − 1)!
n!(deg(fj) − 1)!

Mzn
0 fj M

∗
zn
0 fj

.

On the other hand, for n ∈ N, denote Mn :=
⊕

m≥n

Mm, and then we can compute

PMn+1Δ
2(Mn)PMn+1 = PMn+1Δ

2(M)PMn+1

and

PMnΔ2(Mn)PMn = PMn −
d∑

i=1

PMnMziPMnM∗
zi

PMn

= PMnΔ2(M)PMn + PMnMz0PMn−1M
∗
z0

PMn

= PMnΔ2(M)PMn +
n

N
PMn .

Therefore we have

PMnΔ2(Mn)PMn = PMnΔ2(M)PMn +
n

N
PMn ,

and consequently if we let {ek} ⊂ C[z1, · · · , zd] be any sequence of homogeneous polynomials
that form an orthonormal basis of M0, then

Δ2(Mn) =
∑

k

(n + deg(ek) − 1)!
(n − 1)! deg(ek)!

zn
0 ek ⊗ zn

0 ek

+
∑
m≥n

∑
j

(m + deg(fj) − 1)!
m!(deg(fj) − 1)!

zm
0 fj ⊗ zm

0 fj .

Therefore by Lemma 2.2,

PMn =
∑

k

(n + deg(ek) − 1)!
(n − 1)! deg(ek)!

Mzn
0 ek

M∗
zn
0 ek

+
∑
m≥n

∑
j

(m + deg(fj) − 1)!
m!(deg(fj) − 1)!

Mzm
0 fj M

∗
zm
0 fj

.

For integers m ≥ 0, define

Tm :=
∑

j

(m + deg(fj) − 1)!
m!(deg(fj) − 1)!

Mzm
0 fj M

∗
zm
0 fj

,
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and then we have
n−1∑
m=0

Tm|Mn = PMn −
∑
m≥n

Tm|Mn

=
∑

k

(n + deg(ek) − 1)!
(n − 1)! deg(ek)!

Mzn
0 ek

M∗
zn
0 ek

.

By the hypothesis,

∑
j

(n + deg(fj) − 1)!
n!(deg(fj) − 1)!

zn
0 fj ⊗ zn

0 fj

=
∑

j

(n + deg(fj) − 1)!
n!(deg(fj) − 1)!

‖fj‖2
(
zn
0

fj

‖fj‖ ⊗ zn
0

fj

‖fj‖
)

≤
∑

j

(n + deg(fj) − 1)!
n!(deg(fj) − 1)!

c

deg(fj) + 1

(
zn
0

fj

‖fj‖ ⊗ zn
0

fj

‖fj‖
)

≤ c
∑

j

(n + deg(fj) − 1)!
n! deg(fj)!

(
zn
0

fj

‖fj‖ ⊗ zn
0

fj

‖fj‖
)

≤ c

n

∑
k

(n + deg(ek) − 1)!
(n − 1)! deg(ek)!

zn
0 ek ⊗ zn

0 ek,

which implies

Tn ≤ c

n

∑
k

(n + deg(ek) − 1)!
(n − 1)! deg(ek)!

Mzn
0 ek

M∗
zn
0 ek

≤ c

n

n−1∑
m=0

Tm.

Thus by induction we can find a number C > 0 such that
d∑

m=0
Tm ≤ CT0, and hence T0|Hd

≥
C−1PMd

. This proves the proposition by the isometric isomorphism between L2
a(Bd) and Hd.

Remark 3.1 Up to now, all known examples of homogeneous submodules M ⊂ L2
a(Bd)

on which Arveson’s conjecture hold satisfy Condition 1.1, including submodules generated by
monomials (see [2, 12]), principal homogeneous submodules, and homogeneous submodules of
L2

a(B3) (see [17]). By Proposition 3.2, these submodules are p (> d)-approximately repre-
sentable. In this sense, we can see p (> d)-approximate representability as a nearly necessary
condition of Arveson’s conjecture. It is reasonable to conjecture that, every homogeneous sub-
module of L2

a(Bd) or H2(∂Bd) should be p (> d)-approximately representable.

In fact, p (> d)-approximate representability is also sufficient for Arveson’s conjecture, and
the remaining part of this section is devoted to proving this. The proof is based on a result of
Zhao and Yu.

Proposition 3.3 (see [25]) Let T
SOT=

∞∑
k=1

Tϕk
T ∗

ϕk
be a bounded operator on the Bergman

module or the Hardy module over Bd, where

{ϕk ∈ H∞(Bd) : k = 1, 2, · · · }
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is a sequence of multipliers. Then the commutator [T, Tzi] belongs to the Schatten-von Neumann
class L2p for p > d, and there is a constant C depending only on p and d such that

‖[T, Tzi]‖2p ≤ C‖T ‖.

To derive p (> d)-essential normality of submodules from this proposition, we need the
following lemma.

Lemma 3.3 If T is a normal operator on the Hilbert space H with closed range, and
C ∈ B(H), then [T, C] ∈ Lp implies [Pran T , C] ∈ Lp, where Pran T is the projection onto ranT .

Proof Set K = ranT, and K⊥ = kerT ∗ = kerT . Since T is normal, we have K = ranT =
(kerT )⊥. The operator T ′ = T |K : K → K is invertible by the inverse mapping theorem. With
respect to the decomposition H = K ⊕ K⊥, T and C can be written as

T =
[

T ′ 0
0 0

]
, C =

[
C1 C2

C3 C4

]
.

Since

[T, C] =
[

T ′C1 − C1T
′ T ′C2

−C3T
′ 0

]
∈ Lp,

both T ′C2 and C3T
′ are in Lp. Since T ′ is invertible, the operators C2 and C3 are also in Lp.

Then the desired result follows from the equality

[Pran T , C] =
[

0 C2

−C3 0

]
.

As a consequence of Proposition 3.3 and Lemma 3.3, we have the following result.

Proposition 3.4 Let M ⊂ L2
a(Bd) be a homogeneous submodule that can be p (> d)-

approximately represented by homogeneous multipliers, and then M is p-essentially normal.

Combining Propositions 3.2 and 3.4, we immediately get the following proposition.

Proposition 3.5 Let I ∈ C[z1, · · · , zd] be a homogeneous ideal, M be the submodule of
L2

a(Bd) generated by I, which can be p (> d)-approximately represented by homogeneous multi-
pliers, then the submodule M′ ⊂ H2

d generated by I is p-essentially normal.
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