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Abstract Let K be an algebraic number field of finite degree over the rational field Q,
and aK(n) the number of integral ideals in K with norm n. When K is a Galois extension
over Q, many authors contribute to the integral power sums of aK(n),∑

n≤x

aK(n)l, l = 1, 2, 3, · · · .

This paper is interested in the distribution of integral ideals concerning different number
fields. The author is able to establish asymptotic formulae for the convolution sum∑

n≤x

aK1(nj)laK2(n
j)l, j = 1, 2, l = 2, 3, · · · ,

where K1 and K2 are two different quadratic fields.
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1 Introduction

Dirichlet series plays an important role in number theory. Given two Dirichlet series

∞∑
n=1

ann−s,

∞∑
n=1

bnn−s,

the convolution ∞∑
n=1

anbnn−s

of these two series is a classical object studied by many authors, especially in the theory of

automorphic forms. In connection with the multidimensional arithmetic of Hecke E. (see [7, 11]),

Linnik Yu. V. in [13] suggested to consider the scalar product of Hecke’s L-function associated

with Größencharakters and asked whether this function can be analytically continued to the

whole complex plane. This is the well-known Linnik problem. In this paper, we will consider

the generalizations of the special cases of the problem connected to the Linnik problem.
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Let K be an algebraic number field of finite degree d over the rational field Q. Denote the

number of integral ideals in K with norm n by aK(n). Then the Dedekind zeta-function ζK(s)

is defined by, for σ > 1,

ζK(s) =
∑

a

1
N(a)s

=
∞∑

n=1

aK(n)n−s, s = σ + it,

where a varies over the integral ideals of K, and N(a) denotes its norm. Obviously, the Dedekind

zeta function can be seen as the convolution of Riemann zeta function ζ(s) and itself.

Chandraseknaran and Good [1] showed that aK(n) is a multiplicative function, and satisfies

aK(n) ≤ τ(n)d, (1.1)

where τ(k) is the divisor function, and d = [K : Q].

The number of integral ideals appeals to many authors. It was already known to Weber [21]

that

∑
n≤x

aK(n) = cKx + O(x1− 1
d ), (1.2)

where cK is the residue of ζK(s) at its simple pole s = 1. The estimate on the error term in

(1.1) was improved by Landau [12] to

∑
n≤x

aK(n) = cKx + O(x1− 2
d+1+ε).

For quadratic fields, Huxley and Watt [8] established that

∑
n≤x

aK(n) = cKx + O(x
23
73 (log x)

315
146 ).

For cubic fields, Müller [17] proved that

∑
n≤x

aK(n) = cKx + O(x
43
96 +ε).

For any algebraic number field of degree d ≥ 3, Nowak [18] made important contributions, and

showed that

∑
n≤x

aK(n) = cKx +

{
O(x1− 2

d + 8
d(5d+2) (log x)

10
5d+2 ) for 3 ≤ d ≤ 6,

O(x1− 2
d + 3

2d2 (log x)
2
d ) for d ≥ 7.

The second moment of aK(n) was first considered in [2], where it was shown that if K is a

Galois extension of Q of degree d, then

∑
n≤x

aK(n)2 ∼ c′Kx(log x)d−1, as x → ∞, (1.3)

for a suitable constant c′K .
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Later, Chandraseknaran and Good [1] showed that if K is a Galois extension of Q of degree

d, then for any ε > 0 and any integer l ≥ 2, we have

∑
n≤x

aK(n)l = xPK(log x) + O(x1− 2
dl +ε), (1.4)

where PK denotes a suitable polynomial of degree dl−1 − 1.

In 2010, Lü and Wang [14] improved their result. If K is a Galois extension of Q of degree

d, then for any ε > 0 and any integer l ≥ 2, we have

∑
n≤x

aK(n)l = xPK(log x) + O(x1− 3
dl+6

+ε),

where PK denotes a suitable polynomial of degree dl−1−1. Furthermore, for Abelian extensions

K, some stronger results have also been established.

Recently, Lü and Yang [15] studied the average behavior of the coefficients of Dedekind zeta

function over square numbers. For example, it was proved that for Galois fields of degree d

which is odd, we have

∑
n≤x

aK(n2)l = xPm(log x) + O(x1− 3
md+3+ε),

where m =
(

d+1
2

)l
dl−1, and Pm(t) is a polynomial in t of degree m − 1.

In this paper, we will discuss the special cases of the Linnik problem in different quadratic

fields. Let K1 and K2 be two different quadratic fields. We are interested in convolution sum

∑
n≤x

aK1(n
j)laK2(n

j)l, j = 1, 2; l = 1, 2, 3, · · · .

In this direction, Fomenko [3] proved that

∑
n≤x

aK1(n)aK2(n) = cK1,K2x + O(x
1
2+ε),

where cK1,K2 is a suitable constant.

We are able to prove the following results.

Theorem 1.1 Let

Ki = Q(
√

di) (i = 1, 2)

be the quadratic field of discriminant di. Assume that (d1, d2) = 1. Then for any ε > 0 and

any integer l ≥ 2, we have

∑
n≤x

aK1(n)laK2(n)l = xPK1,K2(log x) + O(x1− 3
4l +ε),

where PK1,K2 denotes a suitable polynomial of degree 4l−1 − 1.
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Theorem 1.2 Let

Ki = Q(
√

di) (i = 1, 2)

be the quadratic field of discriminant di. Assume that (d1, d2) = 1. Then for any ε > 0 and

any integer l ≥ 1, we have

∑
n≤x

aK1(n
2)laK2(n

2)l

= xPK1,K2(log x) +

{
O(x1− 3

10 +ε) for l = 1,

O(x1− 3
9l +ε) for l ≥ 2,

where PK1,K2 denotes a suitable polynomial of degree M2 + 2M , and M = 3l−1
2 .

Remark 1.1 (1) When l = 1, by using our method, the result in Theorem 1.1 coincides

with the result of Feomenko in [3];

(2) Under the GRH (Generalized Riemann hypothesis), we can improve the error term in

the two theorems above as O(x
1
2+ε).

As an application, we can get the distribution of the integral ideals in a quadratic field with

norm of the sum of two squares.

Let K = Q(
√

d) be a quadratic field with the discriminant d. aK(n) is the number of integral

ideals with norm n in K. The distribution of integral ideals is important in algebraic number

theory, and we are interested in the distribution of integral ideals with norm of the sum of two

squares, i.e., we consider the average sum

∑
n2+m2≤x

aK(n2 + m2).

We define the function r(u) to be the number of solutions to n2 + m2 = u in integers

n, m. Then the generating Dirichlet series for r(u) is equal to 4ζK′(s), where ζK′(s) is the zeta

function of the imaginary quadratic field K ′ = Q(
√−1).

On the other hand, we have

∑
n2+m2≤x

aK(n2 + m2) =
∑
u≤x

aK(u)
∑

u=n2+m2

1 =
∑
u≤x

aK(u)r(u).

Now, let K1 = K, K2 = K ′. According to Theorem 1.1, when l = 1, we have the following

corollary.

Corollary 1.1 Let K = Q(
√

d) be a quadratic field with discriminant d, and aK(n) the

number of integral ideals with norm n. Then we have

∑
n2+m2≤x

aK(n2 + m2) = cx + O(x
1
2+ε), (1.5)

where c is a suitable constant.
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2 Proof of Theorem 1.1

For �s 	 1, define

LK1,K2(s) =
∞∑

n=1

aK1(n)laK2(n)l

ns
. (2.1)

In fact, it absolutely converges in the half-plane �s > 1 on noting (1.1). Since aK1(n)laK2(n)l

is a multiplicative arithmetic function, we have

LK1,K2(s) =
∏
p

(
1 +

aK1(p)laK2(p)l

ps
+

aK1(p2)laK2(p2)l

p2s
+ · · ·

)
.

Obviously, the term aK1 (p)laK2 (p)l

ps determines the analytic properties of LK1,K2(s) in the half-

plane �s > 1
2 .

Let K1K2 = Q(
√

d1,
√

d2) be the composite field. K1 and K2 are two intermediate fields of

the composite field K1K2. Let K3 be another intermediate field of K1K2. Then it is well-known

that

ζ(s)2ζK1K2(s) = ζK1(s)ζK2 (s)ζK3(s).

(see the formula 45 on page 64 in Swinnerton-Dyer [20]). On the other hand, we have

ζKi(s) = ζ(s)L(s, χi), i = 1, 2; ζK3(s) = ζ(s)L(s, χ3), (2.2)

where χ1 and χ2 are two Dirichlet characters, and χ3 = χ1χ2. Hence we have

ζK1K2(s) = ζ(s)L(s, χ1)L(s, χ2)L(s, χ3). (2.3)

By comparing the Euler products over prime numbers of both sides in (2.2)–(2.3), we have

aKi(p) = 1 + χi(p) (i = 1, 2), aK1K2(p) = 1 + χ1(p) + χ2(p) + χ3(p),

where p is prime. Hence for any prime number p, we have

aK1K2(p) = aK1(p)aK2(p).

The composite field K1K2 is a Galois extension of degree 4 over Q. For a Galois extension

K over Q of degree d, Chandraseknaran and Good [1] proved, by the well-known decomposition

law of prime ideals, that except for finitely many prime numbers

aK(p)l = dl−1aK(p),

where l is any positive integer. In particular, we have

aK1(p)laK2(p)l = aK1K2(p)l = 4l−1aK1K2(p).
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By directly checking the Euler products of LK1,K2(s) and ζK1K2(s)4
l−1

in the region �s > 1,

we have

LK1,K2(s) = ζK1K2(s)
4l−1

U(s), (2.4)

where U(s) denotes a Dirichlet series, which is absolutely convergent for σ > 1
2 .

Now we begin to complete the proof of Theorem 1.1. By (2.4) we learn that LK1,K2(s) can

be analytically continued to the half-plane �s > 1
2 , where s = 1 is the only pole of order 4l−1.

Then by (2.1) and Perron’s formula (see Proposition 5.54 in [10]), we have

∑
n≤x

aK1(n)laK2(n)l =
1

2πi

∫ b+iT

b−iT

LK1,K2(s)
xs

s
ds + O

(x1+ε

T

)
, (2.5)

where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later. Here we have used (1.1).

Next we move the integration to the parallel segment with �s = 1
2 + ε. By Cauchy’s residue

theorem, we have ∑
n≤x

aK1(n)laK2(n)l

=
1

2πi

{∫ 1
2 +ε+iT

1
2+ε−iT

+
∫ b+iT

1
2 +ε+iT

+
∫ 1

2+ε−iT

b−iT

}
LK1,K2(s)

xs

s
ds

+ Res
s=1

LK1,K2(s)x + O
(x1+ε

T

)
:= J1 + J2 + J3 + xPK1,K2(log x) + O

(x1+ε

T

)
. (2.6)

For J1, by (2.4) we have (noting that l ≥ 2)

J1 
 x
1
2+ε + x

1
2+ε

∫ T

1

∣∣∣LK1,K2

(1
2

+ ε + it
)∣∣∣t−1dt


 x
1
2+ε + x

1
2+ε

∫ T

1

∣∣∣ζ4l−1

K1K2

(1
2

+ ε + it
)∣∣∣t−1dt


 x
1
2+ε + x

1
2+ε

∫ T

1

∣∣∣ζ4l−1−3
K1K2

(1
2

+ ε + it
)∣∣∣

×
∣∣∣ζ3

(1
2

+ ε + it
) 3∏

j=1

L
(1

2
+ ε + it, χj

)3∣∣∣t−1dt.


 x
1
2+ε + x

1
2+ε

∫ T

1

∣∣∣ζ3
(1

2
+ ε + it

) 3∏
j=1

L
(1

2
+ ε + it, χj

)3∣∣∣t 4l−12
6 −1dt,

where we have

ζ
(1

2
+ ε + it

)

 (1 + |t|) 1

6 +ε (2.7)

and ∣∣∣L(1
2

+ ε + it, χ
)∣∣∣ 
 (1 + |t|) 1

6+ε. (2.8)
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These results can be derived from the two following results:

ζ
(1

2
+ it

)

 (1 + |t|) 1

6 log(|t| + 1)

and

L
(1

2
+ it, χ

)

 (1 + |t|) 1

6 log(|t| + 1)

(see Theorems 24.1.1 and 24.2.1 in Pan and Pan [19]) by the Phragmen-Lindelöf principle for

a strip (see Theorem 5.53 in Iwaniec and Kowalski [10]).

Then we have

J1 
 x
1
2+ε + x

1
2+ε log T max

T1≤T

{
T

4l−12
6 −1

1

( ∫ T1

T1
2

∣∣∣ζ(1
2

+ ε + it
)∣∣∣12dt

) 1
4

×
3∏

j=1

( ∫ T1

T1
2

∣∣∣L(1
2

+ ε + it, χj

)∣∣∣12dt
) 1

4
}


 x
1
2+εT

4l

6 −1+ε + x
1
2+ε, (2.9)

where we have used ∫ T1

T1
2

∣∣∣ζ(1
2

+ ε + it
)∣∣∣12dt 
 T 2+ε

1

and ∫ T1

T1
2

∣∣∣L(1
2

+ ε + it, χ
)∣∣∣12dt 
 T 2+ε

1 .

These results can be established by Gabriel’s convexity theorem (see Lemma 8.3 in Ivić [9]),

and the results of Heath-Brown [5] and Meurman [16] respectively, which state that
∫ T1

T1
2

∣∣∣ζ(1
2

+ it
)∣∣∣12dt 
 T 2

1 (log T1)17

and ∫ T1

T1
2

∣∣∣L(1
2

+ it, χ
)∣∣∣12dt 
 T 2+ε

1 .

By (2.7)–(2.8), for the integrals over the horizontal segments we have

J2 + J3 

∫ b

1
2+ε

xσ|ζ4l−1

K1K2
(σ + iT )|T−1dσ


 max
1
2+ε≤σ≤b

xσT
4l

3 (1−σ)+εT−1

= max
1
2+ε≤σ≤b

( x

T
4l

3

)σ

T
4l

3 −1+ε


 x1+ε

T
+ x

1
2+εT

4l

6 −1+ε. (2.10)
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From (2.6), (2.9)–(2.10), we have

∑
n≤x

aK1(n)laK2(n)l = xPK1,K2(log x) + O
(x1+ε

T

)
+ O(x

1
2+εT

4l

6 −1+ε). (2.11)

On taking T = x
3
4l in (2.11), we have

∑
n≤x

aK1(n)laK2(n)l = xPK1,K2(log x) + O(x1− 3
4l +ε).

3 Proof of Theorem 1.2

We firstly recall some useful results. Let K be an algebraic number field of degree n, and

then

ζK

(1
2

+ it
)

 t

n
6 +ε

(see [6]).

By using the Phragmen-Lindelöf principle for a strip, we have that for 1
2 ≤ σ ≤ 1 + ε,

ζK(σ + it) 
 (1 + |t|)n
3 (1−σ)+ε.

From (1.1), we can easily get

aK1(n
2)l ≤ nε, aK2(n

2)l ≤ nε.

Define the series

L2,l(s) =
∞∑

n=1

aK1(n2)laK2(n2)l

ns
, (3.1)

and then it is absolutely convergent in the half plane �s > 1. Since aKi(n) (i = 1, 2) are

multiplicative, so are aK1(n2)laK2(n2)l. We can rewrite L2,l(s) as

L2,l(s) =
∏
p

(
1 +

aK1(p2)laK2(p2)l

ps
+ · · ·

)
, (3.2)

where the product runs over all primes.

For a quadratic field K, Lü and Yang [15] proved the relation

aK(p2)l = 1 + M · aK(p)

holds true for all but finitely many primes, where M = 3l−1
2 , and l is any positive integer. We

can immediately deduce that except for finitely many primes,

aK1(p
2)laK2(p

2)l = 1 + M · aK1(p) + M · aK2(p) + M2 · aK1(p)aK2(p)

= 1 + M · aK1(p) + M · aK2(p) + M2 · aK1K2(p).
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By checking the Euler products of L2,l(s) and ζ(s)ζM
K1

(s)ζM
K2

(s)ζM2

K1K2
(s), we have

L2,l(s) = ζ(s)ζM
K1

(s)ζM
K2

(s)ζM2

K1K2
(s)U1(s), (3.3)

where U1(s) denotes a Dirichlet series, which is absolutely convergent for σ > 1
2 .

From (3.3), L2,l(s) admits a meromorphic continuation to the half-plane �s > 1
2 , and only

has a pole at s = 1 of order (M + 1)2 in this region.

By applying Perron’s formula, we have

∑
n≤x

aK1(n
2)laK2(n

2)l =
1

2πi

∫ b+iT

b−iT

L2,l(s)
xs

s
ds + O

(x1+ε

T

)
, (3.4)

where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later.

We shift the path of integration to the vertical line

�s =
1
2

+ ε.

By Cauchy’s residue theorem, we get

∑
n≤x

aK1(n
2)laK2(n

2)l

=
1

2πi

{∫ 1
2 +ε+iT

1
2+ε−iT

+
∫ b+iT

1
2 +ε+iT

+
∫ 1

2+ε−iT

b−iT

}
L2,l(s)

xs

s
ds

+ Res
s=1

(
L2,l(s)

xs

s

)
+ O

(x1+ε

T

)
:= xPK1,K2(log x) + J1 + J2 + J3 + O

(x1+ε

T

)
, (3.5)

where PK1,K2(t) denotes a suitable polynomial in t of degree M2 + 2M .

Case l = 1

The horizontal segments contribute

J2 + J3 

∫ 1+ε

1
2+ε

xσ|ζ(σ + iT )ζK1(σ + iT )ζK2(σ + iT )ζK1K2(σ + iT )|
T

dσ


 max
1
2+ε≤1+ε

{xσ · T 1+2+2+4
3 (1−σ)−1+ε}


 x1+ε

T
+ x

1
2 +εT

1
2+ε, (3.6)

where we have used that U1(s) is absolutely convergent in the region �s ≥ 1
2 and behaves as

O(1) there.

For J1, we have

J1 
 x
1
2+ε + x

1
2+ε

∫ T

1

∣∣∣L2,l

(1
2

+ ε + it
)∣∣∣t−1dt


 x
1
2+ε + x

1
2+ε

∫ T

1

∣∣∣ζ(1
2

+ ε + it
)
ζK1

(1
2

+ ε + it
)∣∣∣
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×
∣∣∣ζK2

(1
2

+ ε + it
)
ζK1K2

(1
2

+ ε + it
)∣∣∣t−1dt

= x
1
2+ε + x

1
2+ε

∫ T

1

∣∣∣ζ4
(1

2
+ ε + it

)
· L2

(1
2

+ ε + it, χ1

)∣∣∣
×

∣∣∣L2
(1

2
+ ε + it, χ2

)
· L

(1
2

+ ε + it, χ3

)∣∣∣t−1dt


 x
1
2+ε + x

1
2+ε log T max

T1≤T

{
T

1
6−1
1

( ∫ T1

T1
2

ζ12
(1

2
+ ε + it

)
dt

) 1
3

×
2∏

i=1

( ∫ T1

T1
2

L6
(1

2
+ ε + it, χi

)
dt

) 1
3
}


 x
1
2+ε + x

1
2+εT

2
3+ 2

3× 5
4 + 1

6−1+ε

= x
1
2+ε + x

1
2+εT

2
3+ε. (3.7)

Here we have used the following estimation:

∫ T

1

L6
(1

2
+ ε + it, χ

)
dt 
 T

5
4 .

This is derived form the formulae∫ T

1

L4
(1

2
+ ε + it, χ

)
dt 
 T 1+ε,

∫ T

1

L12
(1

2
+ ε + it, χ

)
dt 
 T 2+ε.

According to (3.6)–(3.7), we obtain

∑
n≤x

aK1(n
2)aK2(n

2) = xPK1,K2(log x) + O
(x1+ε

T

)
+ O(x

1
2 +εT

2
3+ε), (3.8)

where PK1,K2(t) is a polynomial in t of degree 3.

Taking T = x
3
10 to formula (3.8), then

∑
n≤x

aK1(n
2)aK2(n

2) = xPK1,K2(log x) + O(x1− 3
10 +ε).

Case l ≥ 2

For J1, by (3.3) we have

J1 
 x
1
2+ε + x

1
2+ε

∫ T

1

∣∣∣L2,l

(1
2

+ ε + it
)∣∣∣t−1dt


 x
1
2+ε + x

1
2+ε

∫ T

1

∣∣∣ζ(1
2

+ ε + it
)
ζM
K1

(1
2

+ ε + it
)

× ζM
K1

(1
2

+ ε + it
)
ζM2

K1K2

(1
2

+ ε + it
)∣∣∣t−1dt


 x
1
2+ε + x

1
2+ε

∫ T

1

∣∣∣ζ(M+1)2
(1

2
+ ε + it

)
LM2+M

(1
2

+ ε + it, χ1

)
× LM2+M

(1
2

+ ε + it, χ2

)
LM2

(1
2

+ ε + it, χ3

)∣∣∣t−1dt



Integral Ideals in Quadratic Number Fields 605


 x
1
2+ε + x

1
2+ε

∫ T

1

∣∣∣ζ3
(1

2
+ ε + it

) 3∏
j=1

L3
(1

2
+ ε + it, χj

)∣∣∣
× t

(2M+1)2−12
6 −1dt


 x
1
2+ε + x

1
2+ε log T max

T1≤T

{
T

(2M+1)2

6 −3
1

(∫ T1

T1
2

ζ12
(1

2
+ ε + it

)) 1
4

×
3∏

j=1

(
L12

(1
2

+ ε + it, χj

)) 1
4
}


 x
1
2+ε + x

1
2+εT

(2M+1)2

6 −1+ε. (3.9)

For the integration over horizontal segments, we have

J2 + J3 

∫ 1+ε

1
2+ε

xσ|ζ(σ + iT )ζM
K1

(σ + iT )ζM
K2

(σ + iT )ζM2

K1K2
(σ + iT )|

T
dσ


 max
1
2+ε≤1+ε

{xσT
1+2M+2M+4M2

3 (1−σ)−1+ε}


 x1+ε

T
+ x

1
2 +εT

(2M+1)2

6 −1+ε. (3.10)

By (3.9) and (3.10), we get

∑
n≤x

aK1(n
2)laK2(n

2)l = xPK1,K2(log x) + O
(x1+ε

T

)
+ O(x

1
2+εT

(2M+1)2

6 −1+ε), (3.11)

where PK1,K2(t) is a polynomial in t with degree M2 + 2M .

Taking T = x
3

(2M+1)2 in the formula (3.11), we obtain

∑
n≤x

aK1(n
2)laK2(n

2)l = xPK1,K2(log x) + O(x1− 3
9l +ε). (3.12)

We complete the proof.

Acknowledgements The author would like to thank Professor Guangshi Lü for his en-
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