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Abstract This paper is concerned with stochastic H2/H∞ control problem for Poisson
jump-diffusion systems with (x, u, v)-dependent noise, which are driven by Brownian mo-
tion and Poisson random jumps. A stochastic bounded real lemma (SBRL for short) for
Poisson jump-diffusion systems is firstly established, which stands out on its own as a very
interesting theoretical problem. Further, sufficient and necessary conditions for the exis-
tence of a state feedback H2/H∞ control are given based on four coupled matrix Riccati
equations. Finally, a discrete approximation algorithm and an example are presented.
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1 Introduction

In many realistic situations, the noise for a dynamic system may be Wiener- or Poisson-type.
Poisson noises cause the random discontinuity of the system dynamic, whereas Wiener noises
cause the continuous perturbation of the system dynamic. Poisson processes should be also
considered when a dynamic system is exposed to sudden, infrequent, highly localized changes
that occur in a short period of time such as earthquakes, large random weather fluctuations, or
occasional mass mortalities. Poisson processes quite frequently arise in engineering, manufac-
turing, economics, and biosystem applications. For example, in financial market, the stock price
is classically described by geometric Brownian motion, however, in practice, the price of stocks
can be made a sudden shift by the exogenous disturbance such as wars, decisions of large banks
or the corporation, national policy, block transaction etc. In order to describe such phenomena,
Poisson jumps is usually inserted in and thus the control system is governed by independent
Brownian motion and Poisson random jumps, which is called Poisson jump-diffusion systems
(see [18, 24]). The optimal control problem with random jumps was first considered by Boel
and Varaiya [1]. In their case, the control system is disturbed by random jumps and the optimal
solution is a discontinuous stochastic process. From then on, many scholars began to study the
jump-diffusion system and its applications, for further reference, we refer to [8, 17, 20] and their
references. Those results mostly concentrate on optimal control and its application in financial
markets or their corresponding theories.

H∞ control and H2/H∞ control are important robust control design methods in modern
control theory. H∞ control requires a controller to eliminate the external disturbance below a
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given disturbance attenuation level, while H2/H∞ control demands one to minimize an average
output energy while guaranteeing a prescribed disturbance attenuation level. Before 1998, most
works are focused on deterministic H∞ and H2/H∞ control for the systems governed by an
ordinary differential equation (see [4, 13–14, 19]). In recent years, quite a lot of research interests
have been devoted to stochastic Itô systems. For example, in Hinrichsen and Pritchard [10], H∞
control for general linear stochastic Itô systems was firstly discussed very extensively. Moreover,
a very useful lemma called “stochastic bounded real lemma (SBRL for short)” was given therein
using linear matrix inequalities. Then Zhang and Chen [26] investigated H∞ control of nonlinear
stochastic systems with multiplicative noise, where a Hamilton-Jacobi equation (HJE for short)
associated with nonlinear stochastic H∞ control was derived. As for the H2/H∞ control,
Chen and Zhang [2] studied the mixed H2/H∞ control with state-dependent noise, and then
a further discussion on the case of nonlinear stochastic Itô systems with state, control input
and external disturbance-dependent noise ((x, u, v)-dependent noise for short) was given in
[27], both of which extended the deterministic H2/H∞ control results of [14] to the stochastic
setting. More recently, Wang [23] discussed the H2/H∞ control with state-dependent noise
and random coefficients, where the sufficient and necessary conditions for the existence of the
H2/H∞ control are given by a pair of coupled backward stochastic Riccati equations. This
result extended the work of Chen and Zhang [2] to the case of random coefficients.

In addition, stochastic H∞ and H2/H∞ control for discrete or continuous time Itô sys-
tems with Markovian jumping parameters also have attracted many researchers’ attention.
For instance, in a recent monograph (see [7]), H∞ control has been elaborately addressed for
discrete-time Markov jump systems with multiplicative noise. The state and output feedback
H∞ control of nonlinear stochastic Markov jump systems with state and disturbance dependent
noise has been tackled in [15] based on coupled Hamilton-Jacobi inequalities. Hou et al. [11]
studied the infinite horizon H2/H∞ control problem for a broad class of discrete-time Markov
jump systems with (x, u, v)-dependent noise. For other relevant developments in this regard,
interested readers can refer to the monographs as Dragan and Morozan [5–6], Todorov and
Fragoso [21–22], etc.

As mentioned above, most works on stochastic H∞ and H2/H∞ control are constrict in Itô
stochastic systems or Markovian jump systems, but Poisson noise was not considered in these
papers. While in engineering practice, the dynamic systems, such as electric power systems,
aircraft flight control systems and manufacturing systems, may experience dramatic changes
when suffering sudden external impact as power failure, atmospheric turbulence in extreme
weather and machine breakage or repair. In this situation, it is very nature to utilize the Poisson
jump-diffusion process to describe such phenomena (see [3, 16]). Lin [16] studied the H∞ control
problem for a class of Poisson jump-diffusion stochastic linear systems with constant coefficients.
Chen [3] investigated the H∞ robust control designs for nonlinear stochastic systems with
external disturbance and Poisson noise, where a fuzzy approach to solve the Hamilton-Jacobi
inequality (HJI for short) was employed. However, to the best of our knowledge, there are
rare literature concerning stochastic H2/H∞ control for jump-diffusion systems. The objective
of this paper is to develop an H2/H∞ control theory for Poisson jump-diffusion systems with
(x, u, v)-dependent noise and time-varying coefficients, and sufficient and necessary conditions
are derived for the existence of a state feedback H2/H∞ control in terms of four coupled matrix-
valued Riccati equations. To some extent, the results of this paper can be viewed as an extension
of that of [2] to the case of (x, u, v)-dependent noise and random jumps.

The rest of this paper is organized as follows. In Section 2, we present two useful lemmas
and describe some basic theories on stochastic H∞ and H2/H∞ control. In Section 3, inspired
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by the ideas in [10], we develop the stochastic bounded real lemma for Poisson jump-diffusion
system, which enables us to obtain necessary and sufficient conditions for the existence of a
stabilizing controller which keeps the effect of the perturbation on the to-be-controlled output
below a given disturbance attenuation level. Based on this result, we then derive necessary and
sufficient conditions for the existence of stochastic H2/H∞ control in Section 4. Concluding
remarks are presented in Section 5.

2 Problem Formulation and Preliminaries

2.1 Notations

We make use of the following notations in this paper.
M ′ is the transpose of the vector or matrix M . |M | denotes the square root of the

summarized squares of all the components of the vector or matrix M . 〈M1, M2〉 is the in-
ner product of two vectors M1 and M2. M−1 is the inverse of a nonsingular square matrix
M . R

m stands for the m-dimensional Euclidean space. C(τ, T ; H) is the space of H-valued
continuous functions on [τ, T ] endowed with the maximum norm. S2

F (τ, T ; H) is the space
of H-valued Ft-adapted càdlàg processes f on [τ, T ] satisfying ‖f‖ = E sup

τ�t�T
|ft|2 < ∞.

L2
F (τ, T ; H) is the space of H-valued Ft-adapted square-integrable stochastic processes f on

[τ, T ] satisfying ‖f‖ =
[
E
∫ T

τ |ft|2dt
] 1

2 . Lν,2(E ; H) is the space of H-valued measurable func-

tions f defined on the measurable space (E , B(E ), ν) satisfying ‖f‖ =
√∫

E |f(θ)|2ν(dθ).

Lν,2
F ([0, T ]× E ; H) is the space of Lν,2(E ; H)-valued and Ft-predictable processes f satisfy-

ing ‖f‖ =
√

E
∫∫

E×(0,T ] |ft(θ)|2ν(dθ)dt. Uk[τ, T ] is the space of Rk-valued and Ft-predictable

processes f on [τ, T ] satisfying E
∫ T

τ |ft|2dt < ∞.
Sometimes we may write f for a deterministic function ft, omitting the variable t, whenever

no confusion arises. Under this convention, when f � (>) 0 means ft � (>) 0 for all t ∈ [0, T ].

2.2 Two useful lemmas

Throughout this paper, let T be a fixed strictly positive real number and (Ω,F , {Ft}0�t�T ,
P ) be a complete filtered probability space on which is defined one-dimensional standard Brow-
nian motion {Wt}0�t�T . Denote by B(Ξ) the Borel-σ-algebra of any topological space Ξ. Let
(E , B(E ), ν) be a measurable space with ν(E ) < ∞ and η : Ω × Dη → E be an Ft-adapted
stationary Poisson point process with characteristic measure ν, where Dη is a countable subset
of (0,∞). Then the counting measure induced by η is

μ((0, t] × M) = �{s ∈ Dη; s � t, ηs ∈ M}, ∀t � 0, M ∈ B(E ).

And μ̃(dθ, dt) := μ(dθ, dt) − ν(dθ)dt is a compensated Poisson random martingale measure
which is assumed to be independent of Brownian motion. Assume that {Ft}0�t�T is P -
completed natural filtration generated by {Wt, 0 � t � T } and

{ ∫∫
A×(0,t] μ̃(dθ, dr), 0 � t �

T, A ∈ B(E )
}
.

Now we state some basic results on stochastic differential equation (SDE for short) driven
by both martingale and Poisson jumps which will be frequently used in this paper. One is the
Itô’s formula of this type process (see [9]), the other is the solution’s existence and uniqueness
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of stochastic differential equation driven by Brownian motion and Poisson random jumps (see
[12]).

Lemma 2.1 Let Mt be a square integral continuous martingale and At be a continuous
adapted process with finite variance. g = (g1, · · · , gn), here gi(s, x, θ), i = 1, · · · , n is {Ft}t�0

locally square integrable, and x0 is an F0-measurable variable. xt satisfies the following Itô type
stochastic process:

xt = x0 + Mt + At +
∫∫

E×(0,t]

g(s, xs−, θ)μ̃(dθ, ds).

Then for every F (t, x) ∈ C1,2(R+, Rn), we have

dF (t, xt) = Ft(t, xt)dt +
n∑

i=1

Fxi(t, xt)dM i
t +

n∑
i=1

Fxi(t, xt)dAi
t +

1
2

n∑
i,j=1

Fxixj d〈M i, M j〉t

+
∫

E

[
F (t, xt + g(t, xt, θ)) − F (t, xt) −

n∑
i=1

Fxi(t, xt)gi(t, xt, θ)
]
ν(dθ)

+
∫

E

[F (t, xt + g(t, xt−, θ)) − F (t, xt)]μ̃(dθ, dt). (2.1)

Here, 〈·, ·〉 denotes the quadratic variation process of the semi-martingale, and F (t, x)∈C1,2(R+,

R
n) denotes function F (t, x) being twice continuously differentiable in x ∈ R

n and once in
t ∈ R+. Fx and Fxx denote the gradient row vector and Hessian matrix with elements of second
partial derivatives of n-dimensional function F (t, x), respectively.

Lemma 2.2 Let x0 be an F0-measurable random variable and b : [0, T ]×Ω×R
n → R

n, σ :
[0, T ]× Ω × R

n → R
n, π : [0, T ]× Ω × E × R

n → R
n are given mappings satisfying

(i) b(·, 0) ∈ L2
F (0, T ; Rn); σ(·, 0) ∈ L2

F (0, T ; Rn); π(·, ·, 0) ∈ Lν,2
F ([0, T ]× E ; Rn);

(ii) for some positive constant C > 0, and for all (t, x, x) ∈ [0, T ]× R
n × R

n, there exists

|b(t, x) − b(t, x)|2 + |σ(t, x) − σ(t, x)|2

+
∫

E

|π(t, θ, x) − π(t, θ, x)|2ν(dθ) � C|x − x|2.

Then the stochastic differential equation with jumps

xt = x0 +
∫ t

0

b(s, xs)ds +
∫ t

0

σ(s, xs)dWs +
∫∫

E×(0,t]

π(s, θ, xs−)μ̃(dθ, ds)

has a unique solution x ∈ S2
F (0, T ; Rn). Moreover, a priori estimate holds:

E sup
0�t�T

|xt|2 � K
[
E|x0|2 + E

∫ T

0

|b(t, 0)|2dt + E

∫ T

0

|σ(t, 0)|2dt

+ E

∫∫
E×(0,T ]

|π(t, θ, 0)|2ν(dθ)dt
]
, (2.2)

where K is a positive constant depending only on Lipschitz constant C and T .
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2.3 Problem formulation

Consider the following stochastic time-varying linear system governed by Brownian motion
Wt and Poisson random martingale measure μ̃(dθ, dt):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dxt = (Atxt + B1
t vt + B2

t ut)dt + (A0
t xt + B01

t vt + B02
t ut)dWt

+
∫

E

[Et(θ)xt− + F 1
t (θ)vt + F 2

t (θ)ut]μ̃(dθ, dt),

zt =

⎛⎝Ctxt

D1
t vt

D2
t ut

⎞⎠ , (D2
t )′D2

t = I

(2.3)

with x0 = x0. We assume the coefficient matrices A, A0 : [0, T ] → R
n×n, B1, B01 : [0, T ] →

R
n×m, B2, B02 : [0, T ] → R

n×s, C : [0, T ] → Rq×n, D1 : [0, T ] → R
l×m, D2 : [0, T ] → R

p×s, E :
[0, T ] → Lν,2(E ; Rn×n), F 1 : [0, T ] → Lν,2(E ; Rn×m), F 2 : [0, T ] → Lν,2(E ; Rn×s) are matrix-
valued continuous functions. Then from Lemma 2.2 for all (u, v, x0) ∈ Us[0, T ]×Um[0, T ]×R

n,
there exists a unique solution x = x(·, u, v, x0) ∈ S2

F (0, T ; Rn) to the state equation of system
(2.3).

We view v as an external disturbance which adversely affects the to-be-controlled output
z ∈ R

q+l+p (whose desired value is represented by 0). The disturbing effect is to be ameliorated
via control input u ∈ Us[0, T ]. The effect of the disturbance on the to-be-controlled output z of
the system (2.3) is then described by the perturbation operator Lcl : Um[0, T ] → Uq+l+p[0, T ]
being defined as Lcl(v) = (Ctx(·, u, v, 0), D1

t vt, D
2
t ut)′, which (for zero initial state) maps finite

energy disturbance signals v into the corresponding finite energy output signals z of the closed
loop system. The size of this linear operator is measured by the induced norm. The larger this
norm is, the larger is the effect of the unknown disturbance v on the to-be-controlled output z

in the worst case. Then the H∞ control problem is to determine whether or not for each γ > 0

there exists a stabilizing controller u∗ achieving ‖Lu∗‖ < γ, where Lu∗ : U�[′, T ] → U
�+�+√

[′, T ]
can be defined as Lu∗(v) = (Ctx(·, u∗

t , v, 0), D1
t vt, D

2
t u

∗
t )′. Obviously, there may be more than

one solution satisfying the required condition. We want the control not only to guarantee
robust stability, but also to minimize the output energy when the worst case disturbance is
implemented to the system, this is the so-called H2/H∞ control problem. That is, we wish to:

(1) Find a feedback control u∗ ∈ Us[0, T ] such that the norm of the perturbation operator
of the system (2.3) is less than some given disturbance attenuation level γ > 0, i.e., ‖Lu∗‖ < γ;

(2) We require the control u∗ to minimize the output energy z when the worst case distur-
bance v∗ ∈ Um[0, T ] is applied to the system (2.3).

As we will show, this problem may be formulated as an LQ nonzero sum game. The two
cost functionals we use are defined as follows:

J1(u, v) = E

∫ T

0

[γ2|vt|2 − |zt|2]dt, (2.4)

J2(u, v) = E

∫ T

0

|zt|2dt. (2.5)

The first one is associated with an H∞ robustness, while the second one reflects an H2 optimality
requirement. The aim is to find equilibrium strategies u∗ and v∗ defined by

J1(u∗, v∗) � J1(u∗, v), ∀v ∈ Um[0, T ],
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J2(u∗, v∗) � J2(u, v∗), ∀u ∈ Us[0, T ].

If J1(u∗, v∗) � 0 with x0 = 0, certainly ‖z‖2 � γ2‖v‖2 for all v ∈ Um[0, T ], which ensures that
‖Lu∗‖ � γ. The second Nash inequality shows that u∗ minimizes output energy z when the
external disturbance is at its worst and given by v∗. For example, in flight control system, the
worst case disturbance means the extreme whether as atmospheric turbulence, while the corre-
sponding control input means the control effort which minimizes the energy loss and sensitivity
to the worst case atmospheric disturbances. Clearly, if the Nash equilibria (u∗, v∗) exist, then
u∗ is our desired H2/H∞ controller, and v∗ is the corresponding worst case disturbance. Then
the H2/H∞ control problem can be converted into finding the Nash equilibria (u∗, v∗). We
approach this problem as linear quadratic (LQ for short) optimal control problem and obtain
the solution by studying the associated stochastic Riccati equation.

In the following, we will give sufficient and necessary conditions for the existence of linear
state feedback pairs (u∗, v∗). To this end, we will make some preliminaries in the next section.

3 Stochastic Bounded Real Lemma for Jump-Diffusion Systems

In this section we shall develop a version of stochastic bounded real lemma (SBRL for short),
which states necessary and sufficient conditions for a given stochastic system with jumps to be
stable with ‖L‖ < γ. It is of independent interest, because it allows one to determine ‖L‖
which measures the influence of the disturbances in the worst case scenario. To this end, we
consider the following linear stochastic system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dxt = (Atxt + Btvt)dt + (A0
t xt + B0

t vt)dWt +
∫

E

(Et(θ)xt− + Ft(θ)vt)μ̃(dθ, dt),

xτ = ξ,

zt =
(

Ctxt

Dtvt

)
,

(3.1)

where (τ, ξ) ∈ [0, T ] × R
n are the initial time and initial state, respectively. We denote

v ∈ Um[τ, T ] as the external disturbance and z ∈ Uq+l[0, T ] the controlled output. All the co-
efficients A, A0 : [0, T ] → R

n×n, B, B0 : [0, T ] → R
n×m, C : [0, T ] → R

q×n, D : [0, T ] → R
l×m,

E : [0, T ] → Lν,2(E ; Rn×n), F : [0, T ] → Lν,2(E ; Rn×m) are matrix-valued continuous functions.
For all (v, ξ) ∈ Um[τ, T ] × R

n, there exists a unique solution x = x(·, v; τ, ξ) ∈ S2
F(τ, T ; Rn)

to the state equation of system (3.1). We use z defined in (3.1) rather than the more natural
zt = Ctxt + Dtvt only to avoid the appearance of cross terms when computing z′tzt. Note that
we assume the Brownian motion to be one-dimensional just for simplicity, there is no essential
difficulty in the analysis below for the multidimensional cases.

Definition 3.1 The system (3.1) with initial state zero is said to be externally stable or L2

input-output stable if there exists a constant γ � 0 such that

‖z‖ � γ‖v‖, v ∈ Um[0, T ]. (3.2)

Definition 3.2 Suppose that the system (3.1) is externally stable. The operator L: Um[0, T ]
→ Uq+l[0, T ] defined by

(Lv)(t) =
(

Ctx(t, v; 0, 0)
Dtvt

)
, (t, v) ∈ [0, T ] × Um[0, T ]
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is called the perturbation operator of (3.1). Its norm is defined as the minimal γ � 0 such that
(3.2) is satisfied, i.e.,

‖L‖ = sup
v∈Um[0,T ]
v 
=0, x0=0

‖(Lv)‖
‖v‖ = sup

v∈Um[0,T ]
v 
=0, x0=0

{
E
∫ T

0
(x′

tC
′
tCtxt + v′tD

′
tDtvt)dt

} 1
2

{E
∫ T

0
v′tvtdt} 1

2

.

‖L‖ is a measure of the worst effect that the stochastic disturbance v may have on the to-be-
controlled output z of the system. Therefore it is important to find a way of determining the
norm ‖L‖. The stochastic bounded real lemma which we will derive in this section provides a
method for computing ‖L‖.

We proceed by associating a finite time quadratic cost functional with the problem param-
eterized by the initial data (τ, ξ) ∈ [0, T ]× R

n, v ∈ Um[τ, T ] and z ∈ Uq+l[τ, T ]:

J(v; τ, ξ) = E

∫ T

τ

[γ2|vt|2 − |zt|2]dt

= E

∫ T

τ

[〈(γ2I − D′
tDt)vt, vt〉 − 〈C′

tCtxt, xt〉]dt, (3.3)

where x denotes the solution of (3.1). Note that for a given γ > 0, the cost functional J(v; 0, 0)
is nonnegative for all v ∈ Um[0, T ] if and only if ‖L‖ � γ. Therefore, the problem of minimizing
this functional will lead us a method for estimating ‖L‖. We will analyze the linear quadratic
(LQ for short) stochastic optimal control problem: Minimize the functional J(v; τ, ξ) over
v ∈ U�[τ, T ] subject to (3.1). In our development in this section, we will employ the usual
convention in LQ theory and refer to the disturbance v as a “control”.

The above LQ problem is indefinite as the control weighting matrix in the cost is positive
definite, while the state weighting matrix is negative semi-definite, which leads to the following
indefinite stochastic Riccati equation (SRE for short):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ṗt = −
[
A′

tPt + PtAt + (A0
t )

′PtA
0
t

+
∫

E

E′
t(θ)PtEt(θ)ν(dθ) − C′

tCt − Φt(Pt)′Λ
γ
t (Pt)−1Φt(Pt)

]
,

PT = 0,

Λγ
t (Pt) > 0

(3.4)

with

Φ(P ) := PB + (A0)′PB0 +
∫

E

E′(θ)PF (θ)ν(dθ),

Λγ(P ) := γ2I − D′D + (B0)′PB0 +
∫

E

F ′(θ)PF (θ)ν(dθ).
(3.5)

The global solvability of SRE (3.4) is hard to prove due to the following reasons: First, it is a
highly nonlinear ordinary differential equation (ODE for short), especially in view of the matrix
inverse term (Λγ(P ))−1, the existence and uniqueness theorem of solution of linear ODE is not
valid. Second, the indefiniteness of coefficient matrices makes possible the singularity of the
term Λγ(P ) when one tries to use the typical approximation scheme to construct a solution.
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Third, the final positive definiteness constraint in (3.4) is the part of the equation and must be
satisfied by any solution. Finally, (3.4) is a matrix equation, thus certain terms do not commute
which adds substantial difficulty to the analysis. Hence, a new way to obtain its solution should
be found.

In the following, we will prove the so-called stochastic bounded real lemma, which plays an
essential role in this paper.

Theorem 3.1 (Stochastic Bounded Real Lemma) Given γ > 0, ‖L‖ < γ if and only if the
stochastic Riccati equation (3.4) parameterized by γ has a unique negative semi-definite solution
P � 0.

The next proposition proves the above theorem in one direction, i.e., establishes a relation
between ‖L‖ < γ and the existence of some P � 0 such that the stochastic Riccati equation
(3.4) is solvable.

Proposition 3.1 Suppose that SRE (3.4) is solvable for some pair (γ, P ) with γ > 0 and
P being negative definite and uniformly bounded, then LQ problem is solvable with the optimal
control vt = Ψtxt−, t ∈ (0, T ] and ‖L‖ < γ, where Ψt = −Λγ

t (Pt)−1Φ(Pt).

Proof Suppose that SRE (3.4) has a solution, and let x be the solution of (3.1) with
xτ = ξ. Applying Itô’s formula (2.1) to 〈Ptxt, xt〉, together with considering (3.3) and using
the completion of squares, we have

J(v; τ, ξ) = J(v; τ, ξ) + E
{∫ T

τ

d(x′
tPtxt) − x′

T PT xT + x′
τPτxτ

}
= ξ′Pτ ξ + E

{∫ T

τ

〈Λγ
t (Pt)(vt − Ψtxt), vt − Ψtxt〉dt

}
� ξ′Pτ ξ, (3.6)

where Ψt = −Λγ
t (Pt)−1Φ(Pt). It follows immediately that the optimal feedback control would

be vt = Ψtxt− if the corresponding solution to the system equation exists. In this case, the
optimal cost is min

v∈Um[τ,T ]
J(v; τ, ξ) = ξ′Pτ ξ. In fact, when vt = Ψtxt−, the system (3.1) reduces

to ⎧⎨⎩dxt = (At + BtΨt)xtdt + (A0
t + B0

t Ψt)xtdWt +
∫

E

(Et(θ) + Ft(θ)Ψt)xt−μ̃(dθ, dt),

xτ = ξ.
(3.7)

In view of the third positive definiteness constraint in (3.4), there exists a sufficient small ε > 0
such that Λγ

t (Pt) � εI for all t ∈ [τ, T ]. Moreover, since P is negative definite and uniformly
bounded, all the coefficients of (3.7) are continuous and uniformly bounded. Therefore linear
SDE (3.7) indeed has a unique solution x ∈ S2

F (τ, T ; Rn), thus, v = Ψx ∈ Um[τ, T ]. Here and
in the following, v = Ψx denotes {vt = Ψtxt−}t∈(τ,T ], where Ψ ∈ C(τ, T ; Rm×n).

From (3.6), we derive that J(v; 0, x0) � (x0)′P0x
0. In particular, if x0 = 0, then J(v; 0, 0) �

0, which is equivalent to ‖L‖ � γ. To show ‖L‖ < γ, we define an operator

Γ : Um[0, T ] 
→ Um[0, T ],

Γvt = ṽt
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with its realization⎧⎨⎩dxt = (Atxt + Btvt)dt + (A0
t xt + B0

t vt)dWt +
∫

E

(Et(θ)xt− + Ft(θ)vt)μ̃(dθ, dt),

x0 = 0

and

ṽt = vt + Λγ
t (Pt)−1Φt(Pt)xt−.

According to the estimate for SDE (2.2), we conclude that the operator Γ is well defined,
moreover, it is a bounded linear operator. Then Γ−1 exists, which is determined by⎧⎪⎪⎨⎪⎪⎩

dxt = {[At − BtΛ
γ
t (Pt)−1Φt(Pt)]xt + Btṽt}dt + {[A0

t − B0
t Λγ

t (Pt)−1Φt(Pt)]xt + B0
t ṽt}dWt

+
∫

E

{[Et(θ) − Ft(θ)Λ
γ
t (Pt)−1Φt(Pt)]xt− + Ft(θ)ṽt}μ̃(dθ, dt),

x0 = 0

and

ṽt = −Λγ
t (Pt)−1Φt(Pt)xt− + ṽt.

Based on the inverse operator theorem in functional analysis, ‖Γ−1‖ is bounded. There exists
a positive constant c = ε

‖Γ−1‖2 such that

J(v; 0, 0) = E

∫ T

0

(vt − Ψtxt)′Λ
γ
t (Pt)(vt − Ψtxt)dt

= E

∫ T

0

(Γvt)′Λ
γ
t (Pt)(Γvt)dt � ε‖Γvt‖2 � c‖vt‖2 > 0,

which is equivalent to ‖L‖ < γ. This proposition is proved.
The preceding proposition implies that for any given γ > 0, as long as the SRE (3.4) is

solvable, the worst effect of the unknown disturbance v on the to-be-controlled output z can be
controlled below γ.

In order to prove the second part of the SBRL, Theorem 3.1, we proceed by parts, first
establishing some intermediate results.

Using the notation in (3.5), we set

M(P ) �
(

A′P + PA + (A0)′PA0 +
∫

E E′(θ)PE(θ)ν(dθ) − C′C Φ(P )
Φ′(P ) Λγ(P )

)
. (3.8)

The next result provides an alternative form of writing up the functional defined in (3.3).
This new way of expressing the cost allows us to solve the aforementioned minimization problem
in a rather straightforward manner.

Lemma 3.1 Suppose that P : [τ, T ] 
→ R
n is continuously differentiable. Then for every

ξ ∈ R
n, v ∈ U�[τ, T ],

J(v; τ, ξ) = 〈ξ, Pτ ξ〉 − E〈xT , PT xT 〉

+
∫ T

τ

E
(
〈xt, Ṗtxt〉 +

〈[ xt

vt

]
, Mt(Pt)

[ xt

vt

]〉)
dt,

where M(P ) is defined by (3.8) and x is the solution to the state equation of system (3.1).
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Proof Applying Itô’s formula (2.1) to 〈xt, Ptxt〉, and noting that

J(v; τ, ξ) = J(v; τ, ξ) + E
{∫ T

τ

d(x′
tPtxt) − x′

T PT xT + x′
τPτxτ

}
,

we can easily obtain the result.

Lemma 3.2 Suppose that ϕ ∈ C(τ, T ; Rm×n) and P γ,ϕ satisfy the linear differential matrix
equation

Ẋt +
(

I
ϕt

)′
⎛⎝A′

tXt + XtAt + (A0
t )

′XtA
0
t +

∫
E

E′
t(θ)XtEt(θ)ν(dθ) − C′

tCt Φt(Xt)

Φt(Xt)′ Λγ
t (Xt)

⎞⎠(
I
ϕt

)
= 0

(3.9)

with P γ,ϕ
T = 0. Then if v ∈ Um[τ, T ], we have

J(v + ϕxϕ; τ, ξ) = 〈ξ, P γ,ϕ
τ ξ〉 +

∫ T

τ

E[〈vt, Ntx
ϕ
t 〉 + 〈Ntx

ϕ
t , vt〉 + 〈vt, Λ

γ
t (P γ,ϕ

t )vt〉]dt, (3.10)

where xϕ = x(·, v + ϕxϕ; τ, ξ) is the solution of⎧⎪⎪⎨⎪⎪⎩
dxt = [(At + Btϕt)xt + Btvt]dt + [(A0

t + B0
t ϕt)xt + B0

t vt]dWt

+
∫

E

[(Et(θ) + Ft(θ)ϕt)xt− + Ft(θ)vt]μ̃(dθ, dt),

xτ = ξ

(3.11)

and Nt = Φ′
t(P

γ,ϕ
t ) + Λγ

t (P γ,ϕ
t )ϕt. In particular, if v = 0, then

J(ϕxϕ; τ, ξ) = 〈ξ, P γ,ϕ
τ ξ〉. (3.12)

Proof As P γ,ϕ satisfies ⎧⎪⎨⎪⎩Ẋt +

(
I

ϕt

)′
Mt(Xt)

(
I

ϕt

)
= 0,

XT = 0,

applying Lemma 3.1 with P = P γ,ϕ and v + ϕxϕ for v, we obtain

J(v + ϕxϕ; τ, ξ) = 〈ξ, P γ,ϕ
τ ξ〉 + E

∫ T

τ

(
〈xϕ

t , Ṗ γ,ϕ
t xϕ

t 〉

+
〈[ xϕ

t

vt + ϕtx
ϕ
t

]
, Mt(Pt)

[ xϕ
t

vt + ϕtx
ϕ
t

]〉)
dt

= 〈ξ, P γ,ϕ
τ ξ〉 + E

∫ T

τ

[〈vt, Ntx
ϕ
t 〉

+ 〈Ntx
ϕ
t , vt〉 + 〈vt, Λ

γ
t (P γ,ϕ

t )vt〉]dt.

Hence, (3.10) holds. Setting v = 0 in (3.10), we obtain (3.12). The lemma is proved.
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In the proof of last lemma, we should notice that as all the coefficients of (3.11) are continu-
ous and uniformly bounded, from Lemma 2.2, there exists a unique solution xϕ ∈ S2

F (τ, T ; Rm)
to the equation. Hence, ϕxϕ ∈ L2

F (τ, T ; Rm). Therefore, v + ϕxϕ ∈ Um[τ, T ] holds true.
The following lemma establishes a lower bound for the cost functional, which depends only

on the norm of the initial state.

Lemma 3.3 Suppose ‖L‖ < γ. Then there exists μ > 0, such that for any (τ, ξ) ∈ [0, T ]×R
n

and any v ∈ Um[τ, T ], we have J(v; τ, ξ) � −μ|ξ|2.

Proof Denote by X the solution of (3.9) with ϕ ≡ 0 and final value XT = 0, i.e., X solves

Ẋt + A′
tXt + XtAt + (A0

t )
′XtA

0
t +

∫
E

E′
t(θ)XtEt(θ)ν(dθ) − C′

tCt = 0. (3.13)

By linearity, the solution x(t, v; τ, ξ) of (3.1) satisfies

x(t, v; τ, ξ) = x(t, v; τ, 0) + x(t, 0; τ, ξ).

Applying (3.10) with ϕ = 0, we get

J(v; τ, ξ) − J(v; τ, 0) = ξ′Xτξ + E

∫ T

τ

[〈vt, Ntx(t, 0; τ, ξ)〉 + 〈x(t, 0; τ, ξ), Ntvt〉] dt,

where Nt = Φ′
t(Xt). Let 0 < ε2 � γ2 − ‖L‖2, then

J(v; 0, 0) = γ2‖v‖2 − ‖Lv‖2 � (γ2 − ‖L‖2)‖v‖2 � ε2‖v‖2, ∀v ∈ Um[0, T ].

We can easily deduce that J(v; τ, 0) � ε2‖v‖2 for all v ∈ Um[τ, T ]. Hence

J(v; τ, ξ) � ξ′Xτξ + E

∫ T

τ

[ε2〈vt, vt〉 + 〈vt, Ntx(t, 0; τ, ξ)〉 + 〈Ntx(t, 0; τ, ξ), vt〉]dt

= ξ′Xτξ + E

∫ T

τ

[|εvt + ε−1Ntx(t, 0; τ, ξ)|2 − |ε−1Ntx(t, 0; τ, ξ)|2]dt

� ξ′Xτξ − E

∫ T

τ

|ε−1Ntx(t, 0; τ, ξ)|2dt. (3.14)

According to the estimate for SDE (2.2), there exists c0 > 0 such that

E

∫ T

τ

|x(t, 0; τ, ξ)|2dt � c0|ξ|2.

Hence, by (3.12) there exist constants c1, c2 > 0 such that

0 � 〈ξ, Xτξ〉 = J(0; τ, ξ) = −E

∫ T

τ

〈C′
tCtx(t, 0; τ, ξ), x(t, 0; τ, ξ)〉dt � −c1|ξ|2

and

‖Nt‖ =
∥∥∥XtB + (A0

t )
′XtB

0
t +

∫
E

E′
t(θ)XtFt(θ)ν(dθ)

∥∥∥ � c2, t ∈ [0, T ].

Thus, by (3.14),

J(v; τ, ξ) � −c1|ξ|2 − c2
2ε

−2c0|ξ|2.

This lemma is proved.
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Lemma 3.4 Suppose that ‖L‖ < γ, ϕ ∈ C(τ, T ; Rm×n), and P γ,ϕ satisfies (3.9) with
P γ,ϕ

T = 0. Then

Λγ
t (P γ,ϕ

t ) � (γ2 − ‖L‖2)I, t ∈ [τ, T ]. (3.15)

Proof We will first prove that Λγ
t (P γ,ϕ

t ) � 0. Suppose that this is false and there exists
t̂ ∈ [τ, T ], ṽ ∈ R

m, ‖ṽ‖ = 1 such that 〈ṽ, Λγ
t (P γ,ϕ

t )ṽ〉 � −η for some η > 0. Assume t̂ < T .
Then, for δ > 0 sufficiently small,

〈ṽ, Λγ
t (P γ,ϕ

t )ṽ〉 � −1
2
η, t ∈ [t̃, t̂ + δ] ⊂ [τ, , T ].

Define

vt =
{

0, t ∈ [τ, t̂) ∪ (t̂ + δ, T ],
ṽ, t ∈ [t̂, t̂ + δ].

Let τ = 0, ξ = 0. Then by a prior estimate (2.2), we have

E sup
0�t�t̂

|xϕ
t |2 � K

[
E

∫ t̂

0

|Btvt|2dt + E

∫ t̂

0

|B0
t vt|2dt + E

∫∫
E×(0,t̂]

|Ft(θ)vt|2ν(dθ)dt
]

= 0,

i.e., E sup
0�t�t̂

|xϕ
t |2 = 0. Particularly, E|xϕ

t̃
|2 = 0, then Exϕ

t̃
= 0. Now applying Lemma 3.2 to

the aforementioned v, we have

J(v + ϕxϕ; 0, 0) =
∫ T

0

E[〈vt, Ntx
ϕ
t 〉 + 〈Ntx

ϕ
t , vt〉 + 〈vt, Λ

γ
t (P γ,ϕ

t )vt〉]dt

�
∫ t̃+δ

t̃

(
2|N ′

tṽ||Exϕ
t | −

1
2
η
)
dt.

Choosing δ > 0 sufficiently small, the integrand becomes negative, since Exϕ

t̃
is right continuous

and Exϕ

t̃
= 0. While by Lemma 3.3, we have

J(v + ϕxϕ; 0, 0) � 0.

This yields a contradiction whence Λγ
t (P γ,ϕ

t ) � 0. If t̂ = T , a similar proof applies, replacing
the interval [t̂, t̂ + δ] by [T − δ, T ].

Now let ε be any positive number such that ‖L‖2 < γ2 − ε2. Applying the previous step
with γ̃ = (γ2 − ε2)

1
2 instead of γ we obtain, for the corresponding solution P γ̃,ϕ

t of (3.9) (with
γ̃ instead of γ), Λγ̃

t (P γ̃,ϕ
t ) � 0. By (3.12), we obtain, for any τ ∈ [0, T ) and ξ ∈ R

n,

〈ξ, P γ,ϕ
τ ξ〉 = J(ϕxϕ; τ, ξ)

= E

∫ T

τ

[〈(γ2I − D′
tDt)ϕtx

ϕ
t , ϕtx

ϕ
t 〉 − 〈C′

tCtx
ϕ
t , xϕ

t 〉]dt

� E

∫ T

τ

[〈(γ̃2I − D′
tDt)ϕtx

ϕ
t , ϕtx

ϕ
t 〉 − 〈C′

tCtx
ϕ
t , xϕ

t 〉]dt

= 〈ξ, P γ̃,ϕ
τ ξ〉.
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It follows that if γ > γ̃, then P γ,ϕ
τ � P γ̃,ϕ

τ . Therefore

Λγ
t (P γ,ϕ

t ) = γ2I − D′
tDt + (B0

t )′P γ,ϕ
t B0

t +
∫

E

F ′
t (θ)P

γ,ϕ
t Ft(θ)ν(dθ)

> γ̃2I − D′
tDt + (B0

t )′P γ̃,ϕ
t B0

t +
∫

E

F ′
t (θ)P

γ̃,ϕ
t Ft(θ)ν(dθ)

= Λγ̃
t (P γ̃,ϕ

t ) � 0,

i.e., Λγ
t (P γ,ϕ

t ) � ε2I for all t ∈ [0, T ]. Since this holds for arbitrary ε2 < γ2 − ‖L‖2, (3.15)
follows. The proof is complete.

We will now study the matrix differential equation (3.4). The function

f(P ) = A′
tP + PAt + (A0

t )
′PA0

t +
∫

E

E′
t(θ)PEt(θ)ν(dθ) − C′

tCt − Φt(P )′Λγ
t (P )−1Φt(P )

is continuously differentiable on its domain of definition Df = {P : det(Λγ(P )) �= 0}. From the
existence and uniqueness theorem of local solution to ordinary differential equation (ODE for
short), there exists a unique solution to (3.4) on [T − δ, T ] for sufficiently small δ > 0.

We are now in a position to prove the second part of Theorem 3.1, that is, if ‖L‖ < γ, SRE
(3.4) has a global solution on [0, T ].

Proof of Theorem 3.1 It only remains to prove the converse of Proposition 3.2. Assume
‖L‖ < γ, then γ2I − D′

tDt � ε2I holds for every t ∈ [0, T ]. And as PT = 0, it follows that for
sufficiently small δ > 0,

Λγ
t (Pt) = γ2I − D′

tDt + (B0
t )′PtB

0
t +

∫
E

F ′
t (θ)PtFt(θ)ν(dθ) � ε2δ, t ∈ [T − δ, T ],

where εδ is a positive constant depending on δ. Then P is continuously differentiable on [T−δ, T ]
and the Riccati equation (3.4) has a unique solution P on [T − δ, T ]. Setting ϕ replaced by
Ψ = −Λγ(P )−1Φ′(P ) ∈ C(T − δ, T ; Rn×m) on the left hand side of (3.9), we obtain

Ṗt +
(

I
Ψt

)′
Mt(Pt)

(
I
Ψt

)
= Ṗt + A′

tPt + PtAt + (A0
t )

′PtA
0
t +

∫
E

E′
t(θ)PtEt(θ)ν(dθ) − C′

tCt − Φt(Pt)′Λ
γ
t (Pt)−1Φt(Pt)

= 0, t ∈ [T − δ, T ].

The last equality holds because of the local solvability of (3.4). Hence P satisfies (3.9) on
[T − δ, T ] with Ψ = ϕ, i.e., P γ,ϕ

t = Pt, t ∈ [T − δ, T ]. Moreover, with this choice of Ψt,

Nt = Φ′
t(Pt) + Λγ

t (Pt)Ψt = 0, t ∈ [T − δ, T ],

and so Lemma 3.2 implies that,

J(v + Ψx; τ, ξ) = 〈ξ, Pτ ξ〉 +
∫ T

τ

E[〈vt, Λ
γ
t (Pt)vt〉]dt, τ ∈ [T − δ, T ].

But by Lemma 3.4,

Λγ
t (Pt) = Λγ

t (P γ,Ψ
t ) � (γ2 − ‖L‖2)I > 0, t ∈ [T − δ, T ].
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Hence, for all t ∈ [T − δ, T ], the optimal feedback control is

vt = Ψtx
Ψ
t−, Ψt = −Λγ

t (Pt)−1Φ′
t(Pt)

with xΨ satisfying⎧⎨⎩dxt = (At + BtΨt)xtdt + (A0
t + B0

t Ψt)xtdWt +
∫

E

(Et(θ) + Ft(θ)Ψt)xt−μ̃(dθ, dt),

xτ = ξ,

and the optimal cost is

min
v∈Um[τ,T ]

J(v; τ, ξ) = 〈ξ, Pτ ξ〉. (3.16)

As a consequence, we obtain

〈ξ, Pτ ξ〉 = J(Ψx; τ, ξ) � J(0; τ, ξ) = E

∫ T

τ

〈−C′
tCtxt, xt〉dt � 0, τ ∈ [T − δ, T ].

On the other hand, by Lemma 3.3,

〈ξ, Pτ ξ〉 = J(Ψx; τ, ξ) � −μ|ξ|2, τ ∈ [T − δ, T ].

Hence,

−μI � Pτ � 0, τ ∈ [T − δ, T ].

Now, suppose that there exists a solution of (3.4) backwards in time on a maximal interval
(σ, T ] ⊂ [0, T ], and as t ↓ σ, Pt becomes unbounded, i.e., (3.4) exhibits the phenomenon of
a finite escape time. We shall show that the existence of a finite escape time will lead to
a contraction. In fact, by the discussion above, the following estimates hold in the interval
[σ + σε, T ] with σε > 0 sufficiently small:

−μI � Pτ � 0, Λγ
t (Pt) � (γ2 − ‖L‖2)I. (3.17)

As the constant μ is independent of the left interval endpoint σ + σε, letting σε ↓ 0, we obtain
−μI � Pτ � 0 on (σ, T ]. Hence, the solution Pt of (3.4) cannot escape to ∞ as t ↓ σ. It follows
that there exists a boundary point P 0, det(Λγ(P 0)) = 0 of the domain Df which is a limit
point of Pt as t ↓ σ. But this contradicts the fact that by (3.17), Λγ

t (Pt) � (γ2 − ‖L‖2)I as
t ↓ σ. Thus, the maximal solution interval is [0, T ]. The uniqueness of the solution follows from
(3.16).

The proof of Theorem 3.1 is completed.

So far, we have shown the stochastic bounded real lemma for Poisson jump-diffusion system,
that is, ‖L‖ < γ is equivalent to that the SRE (3.4) has a unique negative semi-definite solution.
Theoretically, by virtue of this theorem, the infimum of all these given disturbance attenuation
levels γ > 0 such that the corresponding SRE (3.4) has a unique solution, can be used as an
estimate of ‖L‖.
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4 Stochastic H2/H∞ Control for Jump-Diffusion Systems

In this section, we shall give necessary and sufficient conditions for the solvability of the
stochastic H2/H∞ control problem in terms of four cross-coupled Riccati equations.

Consider the stochastic linear system (2.3), the finite horizon stochastic H2/H∞ control
problem can be stated as follows.

Definition 4.1 Given a disturbance attenuation level γ > 0, to find, if possible, a state
feedback control u∗ ∈ Us[0, T ], such that with the constraint (2.3), we have that

(1)

‖Lu∗‖ := sup
v∈Um[0,T ]
v 
=0, x0=0

‖z‖
‖v‖

= sup
v∈Um[0,T ]
v 
=0, x0=0

{
E
∫ T

0 (x′
tC

′
tCtxt + u∗

t
′u∗

t + v′t(D
1
t )′D1

t vt)dt
} 1

2

{E
∫ T

0
v′tvtdt} 1

2

< γ;

(2) when the worst case disturbance v∗ ∈ Um[0, T ], if it exists, is applied to the system (2.3),
u∗ minimizes the output energy

J2(u, v∗) = E

∫ T

0

(x′
tC

′
tCtxt + u′

tut + (v∗t )′(D1
t )

′D1
t v

∗
t )dt.

Here, the so-called worst case disturbance v∗ means that for any v ∈ Um[0, T ] and any
x0 ∈ R

n,

v∗ = arg min
v

J1(u∗, v) = arg min
v

E

∫ T

0

(γ2v′tvt − z′tzt)dt.

If the previous (u∗, v∗) exists, then the finite horizon H2/H∞ control has a pair of solutions
(u∗, v∗).

The following lemma, which is necessary in the derivation that follows, is given without
proof and its proof can be analogous to that of Theorem 7.2 of [25].

Lemma 4.1 Riccati equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ẋt + A′

tXt + XtAt + (A0
t )

′XtA
0
t + C′

tCt +
∫

E

E′
t(θ)XtEt(θ)ν(dθ)

−Δt(Xt)′Θt(Xt)
−1Δt(Xt) = 0,

Θt(Xt) > 0,

XT = 0

(4.1)

with

Δ(X) � XB + (A0)′XB02 +
∫

E

E′(θ)XF 2(θ)ν(dθ),

Θ(X) � I + (B02)′XB02 +
∫

E

(F 2(θ))′XF 2(θ)ν(dθ)

admits a unique solution X. Moreover, X is semi-positive definite and uniformly bounded.
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Remark 4.1 In view of the relationship between the Riccati equation (4.1) and the linear
quadratic (LQ for short) optimal control problem, where the dynamic system is driven by:⎧⎨⎩dxt = (Atxt + B2

t ut)dt + (A0
t xt + B02

t ut)dWt +
∫

E

[Et(θ)xt− + F 2
t (θ)ut]μ̃(dθ, dt)

xτ = ξ,

and the corresponding cost functional is

J2(u; τ, ξ) = E

∫ T

τ

(|Cx|2 + |u|2)dt = E

∫ T

τ

(x′
tC

′
tCtxt + u′

tut)dt,

we immediately obtain that the optimal feedback control is

ut = Σtxt−, Σt = −Θt(Xt)
−1Δt(Xt), t ∈ [τ, T ]

with xt satisfying⎧⎨⎩dxt = (At + B2
t Σt)xtdt + (A0

t + B02
t Σt)xtdWt +

∫
E

[Et(θ) + F 2
t (θ)Σt]xt−μ̃(dθ, dt),

xτ = ξ,

and the optimal cost is min
u∈Us[τ,T ]

J2(u; τ, ξ) = ξ′Xτξ, where X is the solution to (4.1).

In the following, we shall give sufficient and necessary conditions for the existence of the
linear state feedback pair (u∗, v∗), which generalize the result of Chen and Zhang [2] to the case
of stochastic systems with Poisson random jumps and (x, u, v)-dependent noise.

For convenience, we introduce the following notation:

Υ1(P1) =: γ2I − (D1)′D1 + (B01)′P1B
01 +

∫
E

(F 1(θ))′P1F
1(θ)ν(dθ),

Υ2(P2) =: I + (B02)′P2B
02 +

∫
E

(F 2(θ))′P2F
2(θ)ν(dθ),

Π1(P1, K2) =: P1B
1 + (A0 + B02K2)′P1B

01 +
∫

E

(E(θ) + F 2(θ)K2)′P1F
1(θ)ν(dθ),

Π2(P2, K1) =: P2B
2 + (A0 + B01K1)′P2B

02 +
∫

E

(E(θ) + F 1(θ)K1)′P2F
2(θ)ν(dθ).

Theorem 4.1 For stochastic system (2.3), if the following four coupled matrix Riccati
equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ṗ1 + (A + B2K2)′P1 + P1(A + B2K2) + (A0 + B02K2)′P1(A0 + B02K2)

−C′C − K ′
2K2 +

∫
E

(E(θ) + F 2(θ)K2)′P1(E(θ) + F 2(θ)K2)ν(dθ)

−Π1(P1, K2)′Υ1(P1)−1Π1(P1, K2) = 0,

Υ1(P1) > 0,

P1,T = 0,

(4.2)

K1 = −Υ1(P1)−1Π1(P1, K2), (4.3)
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Ṗ2 + (A + B1K1)′P2 + P2(A + B1K1) + (A0 + B01K1)′P2(A0 + B01K1)

+C′C + K ′
1(D

1)′D1K1 +
∫

E

(E(θ) + F 1(θ)K1)′P2(E(θ) + F 1(θ)K1)ν(dθ)

−Π2(P2, K1)Υ2(P2)−1Π2(P2, K1) = 0,

Υ2(P2) > 0,

P2,T = 0,

(4.4)

K2 = −Υ2(P2)−1Π2(P2, K1) (4.5)

have solutions (P1, P2, K1, K2) with P1 � 0 and P2 � 0, then the H2/H∞ control problem
admits a pair of solutions (u∗, v∗) satisfying

u∗
t = K2,txt−, v∗t = K1,txt−, t ∈ (0, T ]. (4.6)

Moreover, setting x0 = 0 and u = u∗, ‖Lu∗‖ < γ for any v ∈ Um[0, T ].

Proof Suppose that the coupled matrix Riccati equations (4.2)–(4.5) are solvable. Let
us consider the cost functional J1(u, v) first. Applying Itô’s formula (2.1) and completion of
squares, we have

J1(u, v) = E

∫ T

0

[(γ2v′tvt − z′tzt)dt + dx′
tP1,txt] + (x0)′P1,0x

0 − x′
T P1,T xT

= (x0)′P1,0x
0 + E

∫ T

0

{
〈Υ1(P1)(v − v∗), v − v∗〉 − u′u + x′P1B

2(u − K2x)

+ (u − K2x)′B2P1x + (u∗)′u∗ + (A0x + B02u)′P1(A0x + B02u)

+
∫

E

(E(θ)x + F 2(θ)u)′P1(E(θ)x + F 2(θ)u)ν(dθ)

− x′(A0 + B02K2)′P1(A0 + B02K2)x

− x′
∫

E

(E(θ) + F 2(θ)K2)′P1(E(θ) + F 2(θ)K2)ν(dθ)x

+ v′
[
(B01)′P1B

02 +
∫

E

F 1(θ)P1F
2(θ)ν(dθ)

]
(u − K2x)

+ (u − K2x)′
[
(B01)′P1B

02 +
∫

E

F 1(θ)P1F
2(θ)ν(dθ)

]
v
}

dt,

where u∗ and v∗ are determined by (4.6). Setting u = u∗ = K2x, we obtain

J1(u∗, v) = (x0)′P1,0x
0 + E

∫ T

0

〈Υ1(P1)(v − v∗), v − v∗〉dt.

Therefore, J1(u∗, v∗) � J1(u∗, v) and J1(u∗, v∗) = (x0)′P1,0x
0, which implies that v∗ is the worst

case disturbance corresponding to u∗. A similar method as Proposition 3.1 yields ‖Lu∗‖ < γ.
Similarly,

J2(u, v) = (x0)′P2,0x
0 + E

∫ T

0

{
〈Υ2(P2)(u − u∗), u − u∗〉 − x′K ′

1(D
1)′D1K1x + v′(D1)′D1v

+ x′P2B
1(v − K1x) + (v − K1x)′(B1)′P2x + (A0x + B01v)′P2(A0x + B01v)

+
∫

E

(E(θ)x + F 1(θ)v)′P2(E(θ)x + F 1(θ)v)ν(dθ) − x′(A0 + B01K1)P2(A0
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+ B01K1)x − x′
∫

E

(E(θ) + F 1(θ)K1)′P2(E(θ) + F 1(θ)K1)ν(dθ)x + u′
[
(B01)′P2B

02

+
∫

E

F 1(θ)P2F
2(θ)ν(dθ)

]
(v − K1x) + (v − K1x)′

[
(B01)′P2B

02

+
∫

E

F 1(θ)P2F
2(θ)ν(dθ)

]
u
}
dt, (4.7)

and setting v = v∗ results in J2(u∗, v∗) � J2(u, v∗) and J2(u∗, v∗) = (x0)′P2,0x
0. The above

information implies that the finite horizon H2/H∞ control has a pair of solutions (u∗, v∗) with
u∗ and v∗ defined in (4.6).

We establish the signs of P1,t and P2,t as follows.
(i) A completion of squares argument similar to that which led to (4.7), together with setting

u = u∗ and v = v∗, we finally obtain

x′
tP2,txt = E

∫ T

t

[x′
sC

′
sCsxs + (u∗

s)
′u∗

s + (v∗s )′(D1
s)

′D1
sv

∗
s ]ds � 0

for arbitrary xt. Consequently, P2,t � 0 for all t ∈ [0, T ].
(ii) A similar calculation using J1(·, ·) with u = u∗ and v = 0 gives

x′
tP1,txt = −E

∫ T

t

[x′
sC

′
sCsxs + (u∗

s)
′u∗

s + 〈Υ1(P1)v∗s , v∗s〉]ds � 0.

Thus P1,t � 0 for all t ∈ [0, T ]. The proof is complete.

Theorem 4.2 Assume that the finite horizon H2/H∞ control problem admits a pair of
linear state feedback solutions (u∗

t , v
∗
t ) with v∗t = G1

t xt− and u∗
t = G2

t xt−, where G1
t and G2

t

are continuous matrix-valued functions on [0, T ]. Then the coupled matrix Riccati equations
(4.2)–(4.5) have a unique quaternion solution (P1, P2, G

1, G2) with P1 � 0 and P2 � 0.

Proof If (u∗, v∗) is the solution of the considered H2/H∞ control problem, then we will
prove that the matrix-valued equations (4.2)–(4.5) are solvable.

(I) Implementing u∗
t = G2

t xt− in (2.3) with G2 to be determined, we obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dxt = [(At + B2
t G2

t )xt + B1
t vt]dt + [(A0

t + B02
t G2

t )xt + B01
t vt]dWt

+
∫

E

[(Et(θ) + F 2
t (θ)G2

t )xt− + F 1
t (θ)vt]μ̃(dθ, dt),

zt =

⎛⎝(
Ct

D2
t G

2
t

)
xt

D1
t vt

⎞⎠ , (D2
t )

′D2
t = I

with xτ = ξ. Since the finite horizon H2/H∞ control is solvable, by definition 4.1, ‖Lu∗‖ < γ.
Hence, according to Theorem 3.1, Riccati equation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ṗ1 + (A + B2G2)′P1 + P1(A + B2G2) + (A0 + B02G2)′P1(A0 + B02G2)
−C′C − (G2)′G2 +

∫
E
(E + F 2G2)′P1(E + F 2G2)ν(dθ)

−Π1(P1, G
2)′Υ1(P1)−1Π1(P1, G

2) = 0,

Υ1(P1) > 0,

P1,T = 0

(4.8)
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has a unique solution P1 � 0 . Moreover, the optimal control problem

min
v∈Um[0,T ]

J1(u∗, v)

has a unique solution

v∗t = −Υ1(P1)−1Π1(P1, G
2)xt−, t ∈ (0, T ].

Hence

G1 = −Υ1(P1)−1Π1(P1, G
2). (4.9)

(II) Substituting vt = v∗t = G1
t xt− into (2.3) with G1 being defined as (4.9), we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dxt = [(At + B1
t G1

t )xt + B2
t ut]dt + [(A0

t + B01
t G1

t )xt + B02
t ut]dWt

+
∫

E

[(Et(θ) + F 1
t (θ)G1

t )xt− + F 2
t (θ)ut]μ̃(dθ, dt),

zt =

⎛⎝(
Ct

D1
t G

1
t

)
xt

D2
t ut

⎞⎠ , (D2
t )′D2

t = I

(4.10)

with xτ = ξ . Since

min
u∈Us[0,T ]

J2(u, v∗)

is a standard stochastic linear quadratic optimal control problem, according to Remark 4.1,
there exists a unique optimal control

u∗
t = − Υ2(P2)−1Π2(P2, G

1)xt−, t ∈ (0, T ],

where P2 � 0 solves⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṗ2 + (A + B1G1)′P2 + P2(A + B1G1) + (A0 + B01G1)′P2(A0 + B01G1)

+(G1)′(D1)′D1G1 + C′C +
∫

E

(E + F 1G1)′P2(E + F 1G1)ν(dθ)

−Π2(P2, G
1)′Υ2(P2)−1Π2(P2, G

1) = 0,

Υ2(P2) > 0,

P2,T = 0.

(4.11)

Hence

G2 = −Υ2(P2)−1Π2(P2, G
1). (4.12)

Therefore, the coupled matrix-valued equations (4.2)–(4.5) have a unique quaternion solution
(P1, P2, G

1, G2) with P1 � 0 and P2 � 0. The proof is complete.

The last two theorems imply that for the stochastic linear system (2.3), the existence of
a state feedback stochastic H2/H∞ control is equivalent to the solvability of the four coupled
Riccati equations (4.2)–(4.5). As it is generally difficult to solve the aforementioned four coupled
equations, we will present a discretization technique. Set h = T

n for a natural number n > 0,
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and denote ti = ih with i = 0, 1, 2, · · · , n. When n is sufficiently large, or equivalently, when
h is sufficiently small, we may replace Ṗ1,ti+1 and Ṗ2,ti+1 with

P1,ti
−P1,ti+1
−h and

P2,ti
−P2,ti+1
−h in

(4.2) and (4.4), respectively. Then a backward recursive algorithm can be given as follows:
(i) By solving (4.3) and (4.5), it follows K1,T = 0, K2,T = 0 from given terminal condition

P1,T = 0, P2,T = 0.
(ii) Solving (4.2) and (4.4) yields P1,tn−1 = P1,T−h = −hC′

T CT � 0 and P2,tn−1 = P2,T−h =
hC′

T CT � 0.
(iii) Repeating above steps (i)–(ii), P1,ti , P2,ti may be computed if P1,ti+1 � 0 and P2,ti+1 � 0

are available with

γ2I − (D1
ti+1

)′D1
ti+1

+ (B01
ti+1

)′P1,ti+1B
01
ti+1

+
∫

E

(F 1
ti+1

(θ))′P1,ti+1F
1
ti+1

(θ)ν(dθ) > 0,

I + (B02
ti+1

)′P2,ti+1B
02
ti+1

+
∫

E

(F 2
ti+1

(θ))′P2,ti+1F
2
ti+1

(θ)ν(dθ) > 0, i = n, n − 1, · · · , 0.

The above recursions may proceed for even if P1,ti � 0, P2,ti � 0 and

γ2I − (D1
ti

)′D1
ti

+ (B01
ti

)′P1,tiB
01
ti

+
∫

E

(F 1
ti

(θ))′P1,tiF
1
ti

(θ)ν(dθ) > 0,

I + (B02
ti

)′P2,tiB
02
ti

+
∫

E

(F 2
ti

(θ))′P2,tiF
2
ti

(θ)ν(dθ) > 0, i = 1, 2, · · · , n.

Because if the coupled Riccati equations (4.2)–(4.5) admit a quaternion solution (P 1 � 0, P 2 �
0, K1, K2), then P 1,t and P 2,t must be uniformly continuous on [0, T ]. Therefore, we have

lim
h→0

max
ti�t�ti+1,j=1,2

{|P j,t − Pj,ti+1 |, |P j,t − Pj,ti |} = 0.

In particular, for some special systems, we may solve (4.2)–(4.5) analytically, see the following
example.

Example 4.1 Consider the one-dimensional linear stochastic system with jumps as follows:⎧⎪⎪⎨⎪⎪⎩
dxt = (−4xt + vt − 4ut)dt + (2xt + 5ut)dWt +

∫
E

[2xt− − 3ut]μ̃(dθ, dt), x0 = x0,

zt =
(

xt

ut

)
, t ∈ [0, 1].

If we take γ = 1 and ν(E ) = 1, then the coupled Riccati equations (4.2)–(4.5) specialize to{
Ṗ1 − P 2

1 − 1 = 0, P1 � 0, P1,1 = 0,

K1 = −P1

(4.13)

and ⎧⎪⎨⎪⎩
Ṗ2 − 2P1P2 + 1 = 0,

1 + 34P2 > 0, P2 � 0, P2,1 = 0,

K2 = 0.

(4.14)

Solving in turn (4.13)–(4.14), yields

P1,t = tan(t − 1), P2,t = − tan(t − 1)
2

− (t − 1)
2 cos2(t − 1)

, t ∈ [0, 1].
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Therefore, our desired H2/H∞ controller and worst case disturbance are u∗
t = 0 and v∗t =

− tan(t − 1)xt− respectively, where x satisfies⎧⎨⎩dxt = (−4 − tan(t − 1))xtdt + 2xtdWt +
∫

E

2xt−μ̃(dθ, dt),

x0 = x0.

5 Concluding Remarks

This paper has discussed the finite horizon H2/H∞ control problem for Poisson jump-
diffusion systems with (x, u, v)-dependent noise. Necessary and sufficient conditions for the
existence of a state feedback H2/H∞ control have been respectively given in terms of the
solutions of the four coupled matrix Riccati equations. A discretization algorithm for solving the
coupled matrix-valued equations is also presented. It is noteworthy that the stochastic bounded
real lemma is of independent interest and plays a central role in the analysis of the H∞ control
problem (in fact a disturbance attenuation problem) and estimation. Its further applications
will appear in our forthcoming paper. There remain many interesting topics deserving further
explorations. For example, for Poisson jump-diffusion systems with control dependent noise
and random coefficients, the corresponding Riccati equation associated with H∞ robustness
becomes a backward stochastic integral partial differential equation with highly nonlinearity
and possible singularity, whose solvability is a challenging problem and deserves for further
study.
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