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On 2-Adjacency Between Links∗
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Abstract The author discusses 2-adjacency of two-component links and study the rela-
tions between the signs of the crossings to realize 2-adjacency and the coefficients of the
Conway polynomial of two related links. By discussing the coefficient of the lowest m power
in the Homfly polynomial, the author obtains some results and conditions on whether the
trivial link is 2-adjacent to a nontrivial link, whether there are two links 2-adjacent to
each other, etc. Finally, this paper shows that the Whitehead link is not 2-adjacent to the
trivial link, and gives some examples to explain that for any given two-component link,
there are infinitely many links 2-adjacent to it. In particular, there are infinitely many
links 2-adjacent to it with the same Conway polynomial.

Keywords 2-Adjacency, Link, Conway polynomial, Jones polynomial,
Homfly polynomial

2000 MR Subject Classification 57M25

1 Introduction

Since the concept of n-adjacency (see [1, 7]) was introduced as a specialization of Gusarov’s
notion of n-triviality (see [4]) and a generalization of being unknotting number one (see [12,
17], they coincide for n = 1), a lot of research about n-adjacency of knots (in particular for
n = 2) has been done (see [1, 8, 18–21, 23–24]). Furthermore, this concept can be naturally
extended to 2-adjacency between two links (see [23–25]). That is, a link L is called 2-adjacent
to a link W , if L admits a projection D containing two crossings c1, c2 such that switching any
0 < s ≤ 2 of them yields a projection of W (see [1, 18, 23–24]).

In this paper, we are only concerned with 2-adjacency of two-component links. We study
the relations between the signs of the crossings to realize 2-adjacency and the coefficients of the
Conway polynomial of two related links. We give an expression of the Jones polynomial of the
link obtained by opening two related crossings. We also study their Homfly polynomials and
obtain some results and conditions on whether the trivial link is 2-adjacent to a nontrivial link,
whether there are two links 2-adjacent to each other, etc. (see Sections 4–5). Finally, we show
the Whitehead link not 2-adjacent to the trivial link, etc., and give some examples to explain
that for any given link, there are infinitely many links 2-adjacent to it. In particular, there are
infinitely many links 2-adjacent to it, which have the same Conway polynomial.

Unless otherwise stated, throughout this paper, our convention will be the following:
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Let a two-component link L = L1 ∪L2 be 2-adjacent to W = W1 ∪W2, c1, c2 the crossings
to realize 2-adjacency, c1 the crossing of L1, and α (resp. β) the sign of c1 (resp. c2). Switching
c1 changes L1 to W1, so L2 = W2.

In this paper, we always assume a basic familiarity with Conway polynomial (defined by
a skein relation, see [9, p. 19]), the Jones polynomial (see [11, p. 103]), Homfly polynomial
(see [14]) and their properties. The reader may refer to [3, 9, 11, 13–14] for a more detailed
exposition.

2 Conway Polynomial and 2-Adjacency of a Link

Proposition 2.1 (see [5–6, 9, 15]) Let L = L1 ∪ L2 ∪ · · · ∪ Ln be an oriented link with n

components, and ljk = lk(Lj, Lk) for j �= k.
(1) ∇(L) = zn−1(an−1 + an+1z

2 + · · · + an−1+2mz2m);
(2) if n = 1, then a0 = 1; if n = 2, then a1 = lk(L1, L2); if n = 3, then

a2 = l12l13 + l12l23 + l13l23;

if n = 4, then

a3(L) = −l12l13l14 − l12l23l14 − l13l23l14 − l12l13l24 − l13l14l24 − l12l23l24

− l13l23l24 − l14l23l24 − l12l13l34 − l12l14l34 − l12l23l34 − l13l23l34

− l14l23l34 − l12l24l34 − l13l24l34 − l14l24l34;

(3) if L+ is an oriented knot and c is a positive crossing of L, then

a2(L+) − a2(L−) = lk(L0).

Here L− and L0 are obtained by switching and opening c respectively, and aj(X) indicates the
coefficient of zj in the Conway polynomial of a link X.

Moreover, lk(L) denotes the total linking number of L, i.e., lk(L) =
∑

1≤j<k≤n

ljk (see p. 133

in [14]).
For the sake of convenience, let sx indicate switching crossing x, and ox opening x. Accord-

ing to the convention, L admits a diagram D(c1, c2), such that switching the non-empty subset
of {c1, c2} yields a diagram of W respectively. By the definition (see [3, 9, 11]) of Conway
polynomial, we have

∇(D(c1, c2)) −∇(D(sc1, c2)) = αz∇(D(oc1, c2)), (2.1)

∇(D(oc1, c2)) −∇(D(oc1, sc2)) = βz∇(D(oc1, oc2)), (2.2)

∇(D(c1, sc2)) −∇(D(sc1, sc2)) = αz∇(D(oc1, sc2)). (2.3)

Here D(u, v) has the same diagram as D(c1, c2) except that u, v replace c1, c2 respectively and
α (resp. β) is the sign of c1 (resp. c2) (see the above convention). Since D(sc1, c2), D(c1, sc2),
D(sc1, sc2) are W , from the above equalities, we have

∇(L) = αβz2∇(D(oc1, oc2)) + ∇(W ). (2.4)

From the above argument and Proposition 2.1, we obtain the following theorem.
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Theorem 2.1 If the notations and the conditions are as the convention, then lk(L) = lk(W )
and

(1) if a3(L) �= a3(W ), then D(oc1, oc2) is a two-component link;
(2) if a3(L) = a3(W ), then either lk(L) = 0 and D(oc1, oc2) is a link with two components

or D(oc1, oc2) is a link with four components.

From Theorem 2.1, it is easy to see that c1 and c2 are not the crossings between two
components, since lk(L) = lk(W ).

In general, c1, c2 have the following two cases.
Case 1 If c1, c2 are the crossings of L1, then D(oc1, oc2) is a link with two or four compo-

nents.
(a) If D(oc1, oc2) has two components, then lk(L) = lk(D(oc1, oc2)), and αβ can be got

from a3(L) = αβlk(L) + a3(W ).
However, if lk(L) = 0, the identity does not determine αβ. In this case, we need to consider

the following: (i) Switching c2 changes L1 to W2; (ii) switching c2 (resp. c1) changes L1 to W1

and switching c1 (resp. c2) changes W1 to W2. For these two cases, we obtain W2 = L2 = W1.
Hence, L1 is 2-adjacent to W1. It is similar to (2.1)–(2.4) that we have

∇(L1) = αβz2∇(D̂(oc1, oc2)) + ∇(W1), (2.5)

where D̂(oc1, oc2) is obtained from L1 by opening c1, c2 and using Proposition 2.1. Thus, in
both cases, αβ can be got from the identity a2(L1) = αβ + a2(W1).

(b) If D(oc1, oc2) has four components, then a3(L) = a3(W ).
The discussion in (a) has shown that switching c2 changes L1 to W1 and L1 is 2-adjacent

to W1. Moreover, using (2.5) and Proposition 2.1, we know that opening c1, c2 changes L1 to
a three-component link, which is equivalent to a2(L1) = a2(W1).

Suppose that opening c1 (resp. c2) changes L1 to G1 ∪ H (resp. G ∪ G3), and opening c2

(resp. c1) changes H (resp. G) to G2 ∪ G3 (resp. G1 ∪ G2). Denote L2 and lk(Gj , Gk) by
G4 and ljk (1 ≤ j < k ≤ 4) respectively. Since a2(L1) = a2(W1), then lk(G1 ∪ H) = 0 and
lk(G ∪ G3) = 0, i.e., l12 = −l13 = l23. In general, α, β can be determined by the identity
a4(L1) − a4(W1) = −αβ(lk(L̃))2 (see [21]), L̃ = D̂(oc1, oc2) = G1 ∪ G2 ∪ G3 and lk(L̃) = l12.

From the identity 0 = a3(L) − a3(W ) = αa2(G1 ∪ H ∪ L2) and Proposition 2.1, we have

0 = (l12 + l13)lk(L) + l14(l24 + l34).

Similarly, 0 = (l13 + l23)lk(L) + l34(l14 + l24).
So l14(l24 + l34) = 0, l34(l14 + l24) = 0.

Notice that lk(L) = l14 + l24 + l34. If l24 = 0, then lk(L) = l14 or lk(L) = l34. If l24 �= 0,
then lk(L) = l24 (and l14 = l34 = 0) or lk(L) = l34(= l14 = −l24). Therefore, lk(L) is always
equal to the linking number between L2 and one of the other components of D(oc1, oc2) and
lk(D(oc1, oc2)) = l12 + lk(L).

We see that if either L or W has a trivial linking number (e.g. the Whitehead link, etc.), then
lk(L) = 0, |lk(D(oc1, oc2))| =

√|a4(L1) − a4(W1)|, l14 = l24 = l34 = 0, i.e., a3(D(oc1, oc2)) =
0. In general, we have the following theorem.
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Theorem 2.2 If the notations and the conditions are as the convention, c1, c2 are the
crossings of L1, and D(oc1, oc2) has four components, then√

|a4(L1) − a4(W1)| = |lk(D(oc1, oc2)) − lk(L)|,
and a3(D(oc1, oc2)) is (lk(D(oc1, oc2)) − 2lk(L))2lk(L) if all linking numbers of L2 with any
other component of D(oc1, oc2) are not zero, and is |a4(L1) − a4(W1)|lk(L) otherwise.

Proof Since l12 = −l13 = l23, by Proposition 2.1, a3(D(oc1, oc2)) = l212lk(L) − 2l12l14l34 −
l14l24l34. If l24 �= 0 and lk(L) = l34 = l14 = −l24, since l12 = lk(D(oc1, oc2)) − lk(L), then
a3(D(oc1, oc2)) = [l212 − 2l12lk(L)+ (lk(L))2]lk(L) = (lk(D(oc1, oc2))− 2lk(L))2lk(L). The rest
of the proof is obvious.

Case 2 If c1, c2 are the crossings of the different components, i.e., c1 in L1 and c2 in L2,
then D(oc1, oc2) is a four-component link.

It is similar to Case 1 to prove that after switching c2, although L2 may become W1 or W2,
Lj is equal to Wj , j = 1, 2.

Now, let G1∪G2 (resp. G3∪G4) be a link obtained from L1 (resp. L2) by opening c1 (resp.
c2), and ljk = lk(Gj , Gk), 1 ≤ j < k ≤ 4, so lk(L) = l13 + l14 + l23 + l24. From Proposition 2.1
and the identity 0 = a3(L)−a3(W ) = αa2(D(oc1, c2)) = αa2(G1∪G2∪L2) = βa2(L1∪G3∪G4),
we have

l12lk(L) + (l13 + l14)(l23 + l24) = 0, l34lk(L) + (l13 + l23)(l14 + l24) = 0.

For the case of lk(L) = 0 (e.g. either L or W is the trivial link, the Whitehead link, etc.),
by the above two equalities and lk(L) = l13 + l14 + l23 + l24, we have l13 = l14 = l23 = l24 = 0,
so a3(D(oc1, oc2)) = 0.

Therefore, from the above discussion and Theorem 2.1, we obtain the following theorem.

Theorem 2.3 If the notations and the conditions are as the convention, lk(L) = 0 and
D(oc1, oc2) has four components, then a5(L) = a5(W ).

3 Jones Polynomial and 2-Adjacency

Let V (X ; t) indicate Jones polynomial (see [11]) of link X .

Proposition 3.1 (see [9, 11, 13]) Suppose that V (G; t) is the Jones polynomial of a link
G with c = c(G) components.

(1) If c(G) = 1, then V ′(G; 1) = 0, V ′′(G; 1) = −6a2(G).
(2) If c(G) > 1, then V ′(G; 1) = −3(−2)c(G)−2lk(G).
(3) V (G; 1) = (−2)c(G)−1.

It is similar to the discussions of (2.1)–(2.4) that we have the following theorem.

Theorem 3.1 If the notations and the conditions are as the convention, then

V (D(oc1, oc2); t) = αβt1−α−β(V (L; t) − (t2α + t2β − t2(α+β))V (W ; t))(1 − t)−2.

Corollary 3.1 The notations and the conditions are as the convention. D(oc1, oc2) is a link
with four components if and only if a2(L1) = a2(W1); D(oc1, oc2) is a link with two components
if and only if a2(L1) = αβ + a2(W1).
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Proof According to Theorem 3.1, we have

V (D(oc1, oc2); 1) =
αβ(8αβV (W ; 1) + V ′′(L; 1) − V ′′(W ; 1))

2
.

Since V (W ; 1) = −2, lk(L) = lk(W ), a2(L2) = a2(W2), using corrected Murakami’s formula
(see [16, 22]), we have

V (D(oc1, oc2); 1) = −8 + 6αβ(a2(L1) − a2(W1)).

Thus, the results follows from Proposition 3.1.

4 Homfly Polynomial and 2-Adjacency

We use P (G)(l, m) =
∑

pj(l)mj to represent the Homfly polynomial (see [14]) of a link G

(sometimes we replace pj(l) by pj(G) or pj(G)(l)). i always denotes
√−1. Lickorish W. B. R.

and Millett K. C. gave the following proposition.

Proposition 4.1 (see [14]). Let link G have c(G) components and the other notations be
as above. We have the following properties:

(1) If G is a link with c(G) ≥ 2 components, then

lim
l→i

[(−(l + l−1)2−c(G)p3−c(G)(l)] = lk(G)i.

The exponent of the lowest power of m which appears in the Homfly polynomial of L is precisely
1 − c(G). It has a coefficient

p1−c(G)(l) = (−l2)−lk(G)[−(l + l−1)]c(G)−1

c(G)∏
j=1

pj
0(l). (4.1)

(2) If G is a knot, then p2(i) = −a2(G), p0(i) = 1, p′0(i) = 0, p′′0 (i) = 8a2(G).

The notations and the conditions are as the convention. Then it is similar to the above
argument in (2.1)–(2.4) that

m2P (D(oc1, oc2)) = P (W )(l−α−β + lα−β + lβ−α) + lα+βP (L). (4.2)

So we have the following theorem.

Theorem 4.1 If the notations and the conditions are as above, then

m2P (D(oc1, oc2)) =
{

P (W )(2 + l−2α) + l2αP (L), if α = β = ±1;
P (W )(l−2 + 1 + l2) + P (L), if αβ = −1.

Furthermore, by Theorem 2.1 and (4.1), D(oc1, oc2) has two or four components depending
on p−3(D(oc1, oc2)) to be zero or not. So the following corollary is obtained easily.

Corollary 4.1 If the notations and the conditions are as above, and D(oc1, oc2) has two
components, then

(1) α = β = ±1 ⇔ p−1(L) = −p−1(W )(l−4α + 2l−2α);
(2) αβ = −1 ⇔ p−1(L) = −p−1(W )(l−2 + 1 + l2).
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Corollary 4.2 The notations and conditions are as the convention.
(1) If D(oc1, oc2) has two components, then p−1(L)(1) is an odd multiple of 6, or p0(1) of

one component of L can be divisible by 3 and the other is trivial.
(2) If both components of L have trivial p0(l) (e.g. the trivial link, the Whitehead link, the

Hopf link, etc.), then one component of W is the same as one of the components of L and the
other has trivial a2.

Proof (1) It follows from (4.1) and the property that for any knot Q, p0(Q)(1) is an odd
number.

(2) Assume a2(W1) �= 0. From Corollary 3.1, we know that D(oc1, oc2) is a two-component
link, i.e., p−3(D(oc1, oc2)) = 0. Calculating p−1(L), by (4.1)–(4.2), we have

(−l2)−lk(L)(l + l−1) = p−1(W )(l−2(α+β) + l−2β + l−2α).

It is impossible.

Corollary 4.3 The notations and conditions are as the convention. If a3(L) �= a3(W ),
then 2-adjacency is one-way at most.

Proof Since a3(L) �= a3(W ), by Theorem 2.1, D(oc1, oc2) is a two-component link. Fur-
thermore, by Corollary 3.1, a2(L1) = αβ + a2(W1).

If W is also 2-adjacent to L, we can prove similarly that a2(W1)−a2(L1) = sign(c1)sign(c2),
where c1, c2 are the crossings to realize 2-adjacency, W1 is 2-adjacent to L1 and D(oc1, oc2) has
two components. Hence, sign(c1)sign(c2) = −αβ.

(1) If αβ = 1, then by Corollary 4.1, p−1(L) = −p−1(W )(l−4α + 2l−2α) and p−1(W ) =
−p−1(L)(l−2 + 1 + l2), i.e.,

p−1(L) = p−1(L)(l−4α + 2l−2α)(l−2 + 1 + l2).

However, it is impossible.
(2) It is similar to prove the case of αβ = −1.

5 2-Adjacency of the Trivial Link

Corollary 5.1 The notations and the conditions are as the convention. If L is the trivial
link and is 2-adjacent to W , then D(oc1, oc2) has four components. Furthermore, if a4(W1) =

0, then lk(D(oc1, oc2)) = 0 and there exists an integer n such that
2∏

j=1

p0(Wj)(1) = 1 +

8n,
4∏

j=1

pj
0(l) = 1 + 6n. In particular, if c1, c2 are in the different components, then each

component of D(oc1, oc2) has trivial p0(l).

Proof If the trivial link is 2-adjacent to W , then according to Corollary 4.2, the trivial
link can not be 2-adjacent to a link with a component whose a2 is not zero. By Corollary 3.1,
D(oc1, oc2) has four components. If c1, c2 are in L1, then we know that L1 is adjacent to W1.
Since a4(W1) = 0, by Theorem 2.2 and its proof, we obtain lk(D(oc1, oc2)) = 0 and all linking
numbers between any two components of D(oc1, oc2) are zero.
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If c1, c2 are in different components, then W1, W2 are trivial. By (4.1)–(4.2),

l−α−β + lα−β + lβ−α + lα+β = (−l2)−lk(D(oc1,oc2))(l + l−1)2
4∏

j=1

pj
0(l), (5.1)

i.e., l−2 + 2 + l2 = (−l2)−lk(D(oc1,oc2)(l + l−1)2
4∏

j=1

pj
0(l), and also,

1 = (−l2)−lk(D(oc1,oc2)
4∏

j=1

pj
0(l).

Hence, pj
0(l) = 1, j = 1, 2, 3, 4, and lk(D(oc1, oc2)) = 0.

Next, taking l = 1, by (4.1)–(4.2), we have 3
2∏

j=1

p0(Wj)(1) + 1 = 4
4∏

j=1

pj
0(1). Assume

k =
2∏

j=1

p0(Wj)(1) −
4∏

j=1

pj
0(1). Obviously,

2∏
j=1

p0(Wj)(1) = 1 + 4k, and
4∏

j=1

pj
0(1) = 1 + 3k.

Furthermore, since pj
0(1) is always an odd number, the conclusion is true.

Corollary 5.2 Let the notations and the conditions be as the convention, L be the triv-
ial link, c1, c2 be the crossings of L1, a4(W1) = 0 and D(oc1, oc2) have four components
K1, K2, K3, K4 (= L2 = W2). Then

(1) p′′′0 (W1)(i) = 0;

(2) p
(4)
0 (W1)(i) = 384

3∑
j=1

a2(Kj);

(3) V ′′(D(oc1, oc2); 1) = 48
3∑

j=1

a2(Kj) − 6;

(4) V (3)(W ; 1) = 3
2 , V (4)(W ; 1) = − 45

8 − 576αβ
3∑

j=1

a2(Kj).

Proof From Corollary 5.1 and its proof, we know that lk(D(oc1, oc2)) = 0 and lk(Kj, Kk) =
0, for any j �= k. Since L is the trivial link and D(oc1, oc2) has four components, by Corollary
3.1, a2(W1) = 0, i.e., p′′0(W1)(i) = 0, and by (4.1)–(4.2),

p0(W1)(l)(l−α−β + lα−β + lβ−α) + lα+β = (l + l−1)2
4∏

j=1

pj
0(l). (5.2)

Thus, the result of (1) (resp. (2)) is easily obtained by calculating the values of the third
(resp. the fourth) derivatives of both sides of (5.2) at l =

√−1 and by using Proposition 4.1. Us-
ing the corrected Murakami’s formula (see [16, 22]) and L’Hospital’s rule, we conclude with the
result (3)–(4) can be obtained by calculating the values of V ′(D(oc1, oc2); 1), V ′′(D(oc1, oc2); 1)
and by using (3), Proposition 3.1, L’Hospital’s rule and corrected Murakami’s formula again.

It is not difficult for the reader to find infinitely many two-component links, with one trivial
component and the other nontrivial while a2 = 0. For instance, these links can be constructed
by using 814, whose a2 is zero. In fact, there are many knots like 814, such as 1033, 1067, 1082,
10108, 10116, 10118, 10146, etc. In [21], it has been proven that the trivial knot is not 2-adjacent
to them. So by the proof of Corollary 5.1, the trivial link can not be 2-adjacent to the link
constructed by the trivial knot and one of these knots. However, we do not know whether it is
true in general.
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6 Applications and Examples

Using the above results, we give two examples.

Example 6.1 The Whitehead link and the trivial link are not 2-adjacent to each other.

Proof We consider whether the trivial link is 2-adjacent to the Whitehead link. Since
their a3 are not equal, by Theorem 2.1, D(oc1, oc2) is a two-component link. However, from
Corollary 3.1, we know that D(oc1, oc2) has four components. Hence, the trivial link is not
2-adjacent to the Whitehead link.

Similarly, we can prove that the Whitehead link is not 2-adjacent to the trivial link.

Example 6.2 L7a2 and L7n1 (see [2]) are not 2-adjacent to each other.

Proof Choosing the directions of their components such that their linking numbers are 2.
∇(L7a2) = 3z3+2z, P (L7a2) = (l−9+3l−7+2l−5)m−1−(3l−7+4l−5−l−3)m+(2l−5−l−3)m3,
∇(L7n1) = z5+4z3+2z, P (L7n1) = (l−9+3l−7+2l−5)m−1−(4l−7+6l−5)m+(l−7+5l−5)m3−
l−5m5, ∇(L7n1!) = z3 +2z, P (L7n1!) = (2l−3 +3l−1+ l)m−1− (l−3 +4l−1 + l)m+ l−1m3 (here
L7n1! is the mirror image of L7n1 and its linking number is −2). Using (4.1)–(4.2), we know
that D(oc1, oc2) is always a four-component link. However, their a3 are different. By Theorem
2.1, L7a2 is not 2-adjacent to L7n1.

Similarly, we can prove that L7n1 is not 2-adjacent to L7a2.

Figure 1 The links Ln and H

It is easy to check that the link in Figure 1(a) is 2-adjacent to the trivial link and for any
n ∈ N, its Conway polynomial is always zero. If the links in Figure 1 are denoted by Ln and H

respectively, using the relation between bracket polynomial and Jones polynomial (see [10–11]),
we have

〈L〉 = A−1〈Ln−1〉 + A(−A3)n−1〈H �©〉

= A−n〈L0〉 + 〈H �©〉
n−1∑
j=0

A1−j(−A3)n−1−j

= A−n〈L0〉 + A(−A3)n−1 1 − (−A−4)n

1 + A−4
〈H �©〉,

(−A3)−n+6〈Ln〉 = (−A3)−nA−n[(−A3)6〈L0〉]

+ A(−A3)n−1(−A3)−n 1 − (−A−4)n

1 + A−4
(−A3)6〈H �©〉,

V (Ln; t) = (−1)ntnV (L0; t) + (1 − (−t)n)V (H ; t),
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V (L0; t) = −t−
17
2 (1 + t)(−1 + 5t − 14t2 + 28t3 − 44t4 + 57t5 − 64t6 + 64t7

− 55t8 + 42t9 − 26t10 + 13t11 − 5t12 + t13),

V (H ; t) = t−1 3
2 (1 + t)(1 − 3t + 5t2 − 6t3 + 6t4 − 6t5 + 4t6 − 3t7 + t8).

So, the highest-power term of V (Ln; t) is (−1)n+1tn+ 11
2 , i.e., Ln (n = 1, 2, · · · ) are different

from each other. In other words, there exist infinitely many links 2-adjacent to the trivial link
and their Conway polynomials are 0.

Figure 2 The two examples

The two examples in Figure 2 tell us that for any split link (such as K1 ∪ K2 and P1 ∪ P2

in Figure 2), we can find infinitely many links 2-adjacent to it.

 
1 2L L∪

∪
Figure 3 The links 2-adjacent to L1 ∪ L2

Here 1 2L L∪ is a non-split link. Clearly, the example in Figure 3 shows the following fact
that for any non-split link, we can find infinitely many links 2-adjacent to it, which have the
same Conway polynomial and α, β can be chosen as you want.
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