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Abstract Let f be a holomorphic Hecke eigenform of weight k for the modular group
Γ = SL2(Z) and let λf (n) be the n-th normalized Fourier coefficient. In this paper, by a
new estimate of the second integral moment of the symmetric square L-function related to
f , the estimate ∑

n≤x

λf (n2) � x
1
2 k

1
2 (log(x + k))6

is established, which improves the previous result.

Keywords Fourier coefficients, Cusp forms, Symmetric square L-function
2000 MR Subject Classification 11F30, 11F11, 11F66

1 Introduction

Let Hk(Γ) be the space of Hecke-eigen cusp forms of even integral weight k for Γ = SL(2, Z).
Suppose that f(z) has the following Fourier expansion at the cusp ∞:

f(z) =
∞∑

n=1

λf (n)n
k−1
2 e(nz),

where e(x) := e2πix and the n-th normalized Fourier coefficient λf (n) of f is the eigenvalue under
the Hecke operator Tn. Then from the theory of Hecke operators, the following is nowadays
widely known:

(i) λf (n) is real and satisfies the multiplicative property

λf (m)λf (n) =
∑

d|(m,n)

λf

(mn

d2

)
(1.1)

for all integers m ≥ 1 and n ≥ 1.
(ii) For all n ≥ 1,

|λf (n)| ≤ d(n), (1.2)
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where d(n) is the divisor function. This is the well-known Petersson-Ramanujan conjecture
which was proved by Deligne [2] in 1974. As a corollary, he proved that for any ε > 0,

∑
n≤x

λf (n) �f x
1
3+ε.

Later, many authors considered the summation and the Sato-Tate conjecture implies that

∑
n≤x

λf (n) �f
x

1
3

(log x)ρ

with ρ ≈ 0.151.
Let

S(x) =
∑
n≤x

λf (n2).

It was Ivić [7] who first considered oscillations of the Fourier coefficients over squares. Based
on the prime number theorem, he successfully showed that

S(x) �f x exp(−A(log x)
3
5 (log log x)−

1
5 ).

In 2006, Fomenko [4] improved Ivić’s result by proving

S(x) �f x
1
2 log3 x.

In 2006, Sankaranarayanan [13] proved that

S(x) � x
3
4 (log x)

19
2 log log x (1.3)

uniformly for k � x
1
3 (log x)

22
3 , where the implied constant is absolute. Later, Lü [10] showed

that, in fact, for k � 2,

S(x) � x
1
2 k

3
4 (log x)

19
5 log log x + x

3
5 (log x)

42
5 (log log x)

4
5 , (1.4)

where the implied constant is absolute. Ichihara [6] obtained the best upper bound for x which
states that

S(x) � x
1
2 k

3
4 (log x)

19
2 , (1.5)

where the implied constant is effective.
The purpose of this paper is to improve the above results in the weight aspect. By a new

bound for the second integral moment of the symmetric square L-function L(s, sym2f) at the
critical line (see Proposition 2.1 in the next section), we get the following result.

Theorem 1.1 Let f be a holomorphic Hecke eigenform of weight k for Γ and let λf (n) be
the n-th normalized Fourier coefficient. Then we have

S(x) =
∑
n≤x

λf (n2) � x
1
2 k

1
2 (log(x + k))6,

where the implied constant is absolute and does not depend on f .
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2 Preliminaries

The behavior of S(x) is intimately connected with the symmetric square L-function associ-
ated with f which is defined by

L(s, sym2f) = ζ(2s)
∑
n≥1

λf (n2)
ns

, (2.1)

where �s > 1 and ζ(s) is the Riemann zeta function. For convenience, hereafter, we write
F = sym2f which is a cuspidal automorphic form for SL(3, Z) by the Gelbart-Jacquet lift (see
[5]). The functional equation of L(s, F ) is given by

Λ(s, F ) = L∞(s, F )L(s, F ),

where
L∞(s, F ) = π− 3s

2 Γ
(s + 1

2

)
Γ
(s + k − 1

2

)
Γ
(s + k

2

)

is the Archimedean local factor. It is known that Λ(s, F ) can be extended to an entire function
and satisfies (see [8])

Λ(s, F ) = Λ(1 − s, F ). (2.2)

Denote by λF (n) the n-th coefficient of the Dirichlet series expansion of L(s, F ). This means
that for �s > 1,

L(s, F ) =
∞∑

n=1

λF (n)
ns

.

From (2.1), we have

λF (n) =
∑
m2|n
m>0

λf

(( n

m2

)2)
. (2.3)

Comparing with another special GL(3) L-function ζ3(s),

ζ3(s) = ζ(2s)
∑
n≥1

d(n2)
ns

=
∞∑

n=1

d3(n)
ns

, �s > 1,

we have, by (1.2),

|λF (n)| ≤
∑
m2|n
m>0

d
(( n

m2

)2)
= d3(n). (2.4)

By Möbius inversion and (2.3), we have

λf (n2) =
∑
m2|n
m>0

λF

( n

m2

)
μ(m),

where μ(m) is the Möbius function. As in Ichihara [6], we transform the question of estimating
S(x) into studying the sum

∑
n≤x

λF (n) in the following way:

S(x) ≤
∑

0<m≤√
x

∣∣∣ ∑
n≤ x

m2

λF (n)
∣∣∣.

Then Theorem 1.1 follows from the following result.
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Proposition 2.1 Let f be a holomorphic Hecke eigenform of weight k for Γ and L(s, F ) the
symmetric square L-function associated with f . Denote by λF (n) the n-th normalized Fourier
coefficient of L(s, F ). Then we have

∑
n≤x

λF (n) � x
1
2 k

1
2 (log(x + k))5,

where the implied constant is effective and does not depend on F .

To prove Proposition 2.1, we need the following four lemmas. The first one is related to the
uniform convexity bound for L(s, F ). In order to give a new estimate for the mean square of
L(s, F ) at the critical line, we introduce the approximate functional equation of L(s, F ) and a
classical result due to Montgomery and Vaughan [11]. The difficulty is that the weight aspect
should be considered.

Lemma 2.1 Let τ = (|t| + 1)(k + |t|)2. Then

L(σ + it, F ) � τ
1−σ

2 (log τ)3 (2.5)

holds for − 1
log τ ≤ σ ≤ 1 + 1

log τ .

Proof By (2.4), we have

∣∣∣L
(
1 +

1
log τ

+ it, F
)∣∣∣ ≤ ∑

n≥1

d3(n)

n1+ 1
log τ

= ζ3
(
1 +

1
log τ

)
� (log τ)3. (2.6)

On the other hand, by the functional equation in (2.2), we have

L(s, F ) = χ(s, F )L(1 − s, F ),

where

χ(s, F ) = (2π
3
2 )2s−1 Γ

(
1 − s

2

)
Γ(k − s)

Γ( s+1
2 )Γ(k + s − 1)

.

In [13], Sankaranarayanan proved that for any ε > 0 and −1 + ε ≤ �s = c < 0,

∣∣∣Γ(1 − s
2 )

Γ( s+1
2 )

∣∣∣ � (|t| + 1)
1
2−c,

∣∣∣ Γ(k − s)
Γ(k + s − 1)

∣∣∣ � (k + |t|)1−2c.

Then we have

χ(c + it, F ) � τ
1
2−c.

It follows that
∣∣∣L

(
− 1

log τ
+ it, F

)∣∣∣ =
∣∣∣χ

(
− 1

log τ
+ it

)
L

(
1 +

1
log τ

− it, F
)∣∣∣ � τ

1
2 (log τ)3. (2.7)

Replacing the formulas (3.4.1) and (3.4.2) in the paper of Sankaranarayanan [13] by (2.6)–(2.7),
we complete the proof.
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Lemma 2.2 Let s = 1
2 + it, T ≤ t ≤ 2T and ε = 1

log(T+k) . Then for any Y ≥ 2, we have

L(s, F ) =
∞∑

n=1

λF (n)
ns

e−
n
Y −

∫ − 1
2−ε+i log T

− 1
2−ε−i log T

L(s + z, F )Y zΓ(z)dz + O
(Y

1
2+ε

ε3T
3
2

+
T + k

ε3TY
1
2+ε

)
.

Proof By applying Mellin’s inversion formula to Γ(z), we have

e−x =
1

2πi

∫
( 1
2 +ε)

Γ(z)x−zdz,

where x > 0 and (a) means the line �z = a. We put x = n
Y , multiply λF (n)

ns and sum over n on
the both sides. Finally we get

∞∑
n=1

λF (n)
ns

e−
n
Y =

1
2πi

∫
( 1
2+ε)

∞∑
n=1

λF (n)
ns+z

Y zΓ(z)dz =
1

2πi

∫
( 1
2+ε)

L(s + z, F )Y zΓ(z)dz

=
1

2πi

∫ 1
2 +ε+i log T

1
2+ε−i log T

L(s + z, F )Y zΓ(z)dz

+ O
( ∫ 1

2+ε+i∞

1
2+ε+i log T

|L(s + z, F )Y zΓ(z)|dz
)

=
1

2πi

∫ 1
2 +ε+i log T

1
2+ε−i log T

L(s + z, F )Y zΓ(z)dz + O
(Y

1
2+ε

ε3T
3
2

)
, (2.8)

where we have used Γ(a + ib) � e−
π|b|
2 |b|a− 1

2 . Moving the line of integration to �z = − 1
2 − ε,

we have

I =:
1

2πi

∫ 1
2 +ε+i log T

1
2 +ε−i log T

L(s + z, F )Y zΓ(z)dz

= L(s, F ) +
1

2πi

∫ − 1
2−ε+i log T

− 1
2−ε−i log T

L(s + z, F )Y zΓ(z)dz

+ O
( ∫ 1

2+ε+i log T

− 1
2−ε+i log T

L(s + z, F )Y zΓ(z)dz
)

= L(s, F ) +
1

2πi

∫ − 1
2−ε+i log T

− 1
2−ε−i log T

L(s + z, F )Y zΓ(z)dz

+ O
( 1

T
3
2

∫ 1
2+ε+i log T

− 1
2−ε+i log T

|L(s + z, F )Y z|dz
)

= L(s, F ) +
1

2πi

∫ − 1
2−ε+i log T

− 1
2−ε−i log T

L(s + z, F )Y zΓ(z)dz

+ O
(Y

1
2+ε

ε3T
3
2

+
T + k

ε3TY
1
2+ε

)
, (2.9)

where we have used Lemma 2.1 in the last estimate. Following from (2.8)–(2.9), we complete
the proof of this lemma.

Lemma 2.3 Let {ai}∞i=1 be a set of arbitrarily complex numbers. Then
∫ 2T

T

∣∣∣ ∑
n≤N

annit
∣∣∣2dt = T

∑
n≤N

|an|2 + O
( ∑

n≤N

n|an|2
)
.
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The above formula also remains valid if N = ∞, provided that the series on the right-hand side
converge. Furthermore,

∫ 2T

T

∣∣∣ ∑
n>N

annit
∣∣∣2dt = T

∑
n>N

|an|2 + O
( ∑

n>N

n|an|2
)
,

provided that the summations in the formula converge.

Proof See Theorem 5.2 of Ivić [7].

Lemma 2.4 Let s = 1
2 + it, T ≤ t ≤ 2T . Then for sufficiently large T > 2, we have

∫ 2T

T

|L(s, F )|2dt � T
1
2 (T + k)(log(T + k))7.

Proof The approximate functional equation of L(s, F ) states that

L(s, F ) =
∞∑

n=1

λF (n)
ns

e−
n
Y −

∫ − 1
2−ε+i log T

− 1
2−ε−i log T

L(s + z, F )Y zΓ(z)dz + O
(Y

1
2+ε

ε3T
3
2

+
T + k

ε3TY
1
2+ε

)
,

where s = 1
2 + it, T ≤ t ≤ 2T and Y ≥ 2. Hence it is sufficient to prove

I1 :=
∫ 2T

T

∣∣∣
∞∑

n=1

λF (n)
ns

e−
n
Y

∣∣∣2dt � T
1
2 (T + k)(log(T + k))7, (2.10)

I2 :=
∫ 2T

T

∣∣∣
∫ − 1

2−ε+i log T

− 1
2−ε−i log T

L(s + z, F )Y zΓ(z)dz
∣∣∣2dt � T

1
2 (T + k)(log(T + k))7 (2.11)

and

I3 :=
∫ 2T

T

∣∣∣O
(Y

1
2+ε

ε3T
3
2

+
T + k

ε3TY
1
2+ε

)∣∣∣2dt � T
1
2 (T + k)(log(T + k))7.

Taking Y = T
1
2 (T + k) and using Lemma 2.3, we have

I1 = T
∞∑

n=1

λ2
F (n)
n

e−
2n
Y + O

( ∞∑
n=1

λ2
F (n)e−

2n
Y

)

� T
( ∑

n≤Y

λ2
F (n)
n

+ Y
∑
n>Y

λ2
F (n)
n2

)
+

∑
n≤Y

λ2
F (n) + Y 2

∑
n>Y

λ2
F (n)
n2

� T log6 k log Y + Y log6 k � T
1
2 (T + k)(log(T + k))7,

where we have used the partial summation formula and the estimate (see [15])∑
n≤x

λ2
F (n) � |L(1, F )L(1, sym4f)|x � x log6 k. (2.12)

Hence the estimate (2.10) follows. Trivially, we also have I3 � (T + k)(log(T + k))6 because of
the choice of Y . Thus it only remains to prove (2.11).

By the functional equation of L(s, F ), we obtain

I2 =
∫ 2T

T

(log(T + k))
∣∣∣
∫ − 1

2−ε+i log T

− 1
2−ε−i log T

χ(s + z, F )

· L(1 − s − z, F )Y zΓ(z)dz(log(T + k))
∣∣∣2dt. (2.13)
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Next, we split L(1 − s − z, F ) into two parts. Then

I2 =
∫ 2T

T

∣∣∣
∫ − 1

2−ε+i log T

− 1
2−ε−i log T

χ(s + z, F )
( ∑

n≤Y

λF (n)
n1−s−z

+
∑
n>Y

λF (n)
n1−s−z

)
Y zΓ(z)dz

∣∣∣2dt

�
∫ 2T

T

∣∣∣
∫ − 1

2−ε+i log T

− 1
2−ε−i log T

χ(s + z, F )
( ∑

n≤Y

λF (n)
n1−s−z

)
Y zΓ(z)dz

∣∣∣2dt

+
∫ 2T

T

∣∣∣
∫ − 1

2−ε+i log T

− 1
2−ε−i log T

χ(s + z, F )
( ∑

n>Y

λF (n)
n1−s−z

)
Y zΓ(z)dz

∣∣∣2dt

=: I21 + I22.

By the Cauchy’s inequality and Lemma 2.3, we obtain

I22 � T (T + k)2 log T

Y

∫ 2T+log T

T−log T

∣∣∣ ∑
n>Y

λF (n)
n1+ε−it

∣∣∣2dt

� T (T + k)2 log T

Y

(
T

∑
n>Y

λ2
F (n)

n2+2ε
+

∑
n>Y

λ2
F (n)

n1+2ε

)

� T
1
2 (T + k)(log(T + k))7. (2.14)

Here we have used the partial summation and Y = T
1
2 (T + k).

For I21, it is slightly different from the estimation of I22. Moving the inner integration to
the parallel segment with �z = − 1

6 , we have

I21 =
∫ 2T

T

∣∣∣
∫ − 1

6+i4 log T

− 1
6−i4 log T

χ(s + z, F )
( ∑

n≤Y

λF (n)
n1−s−z

)
Y zΓ(z)dz

∣∣∣2dt + O(T + k).

Next, following the step of the evaluation of I22, we get

I21 � T log T

Y
1
3

∫ 2T+4 log T

T−4 log T

∣∣∣ ∑
n≤Y

λF (n)

n
2

3−ε−it

∣∣∣2dt + O(T + k)

� T
1
3 (k + T )

2
3 log T

Y
1
3

(
T

∑
n≤Y

λ2
F (n)

n
4
3−2ε

+
∑
n≤Y

λ2
F (n)

n
1
3−2ε

)
+ O(T + k)

� T
1
2 (T + k)(log(T + k))7. (2.15)

This completes the proof.

Remark 2.1 Sankaranarayanan [13] pointed out that mean value theorems play an impor-
tant role in L-function theory and he established the following result:

∫ 2T

T

∣∣∣L
(1

2
+ it, F

)∣∣∣2dt � (T + k)
3
2 (log(T + k))17

holds for sufficiently large T . By the observation of Γ-functions, we obtained T
1
2 k instead of

k
3
2 , which implies the convexity bound in the k-aspect, i.e., L

(
1
2 + it, F

) �t k
1
2 (log k)3. If one

can reduce the power of T , the subconvexity bound of L(s, F ) in the t-aspect will be given
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obviously. Another way is to evaluate the integral in short intervals. Recently, Li [9] proved
that ∫ T+H

T

∣∣∣L
(1

2
+ it, F

)∣∣∣2dt �k T 1+εH

for H = T
3
8 , which implies that L

(
1
2 + it, F

) � (|t| + 1)
11
16 +ε. Unfortunately, the subconvexity

bound in k-aspect is rarely given. There has been no other result up to now, except one for the
weak subconvexity of Soundararajan [14].

3 Proof of Proposition 2.1

Without loss of generality, we assume that x is not an integer. By Perron’s formula (see
Davenport [1, p. 105]), we have

∑
n≤x

λF (n) =
1

2πi

∫ c+iT

c−iT

L(s, F )
xs

s
ds + O

( ∑
n≥1

|λF (n)|
(x

n

)c

min
{
1,

∣∣∣T log
(x

n

)∣∣∣−1})
,

where c = 1 + 1
log(x+k) and T ≤ x is a parameter to be chosen later. Following from the

argument of Ramachandra and Sankaranarayanan [12], we have
∑
n≤x

λF (n) =
1

2πi

∫ c+iT

c−iT

L(s, F )
xs

s
ds + O

(
xε +

x

T

(
log(x + k)

)3)
,

where ε > 0 can be arbitrarily small. Taking T = x
1
2 and moving the line of integration in (3.1)

to �s = 1
2 , by the residue theorem, we get

∑
n≤x

λF (n) =
1

2πi

∫ 1
2 +iT

1
2−iT

L(s, F )
xs

s
ds + O

(∣∣∣
∫ c+iT

1
2 +iT

L(s, F )
xs

s
ds

∣∣∣ + x
1
2 (log(x + k))3

)
. (3.1)

For the integral in the O-term, we have
∣∣∣
∫ c+iT

1
2+iT

L(s, F )
xs

s
ds

∣∣∣ � 1
T

max
1
2≤σ≤c

xσ|L(σ + iT, F )|

� x + x
1
2 (T + 1)

1
4 (k + T )

1
2

T
(log(T + k))3

�
(
x

1
2 k

1
2 +

x

T

)
(log(T + k))3

� x
1
2 k

1
2 (log(T + k))3, (3.2)

where we have used Lemma 2.1.
Next, we put T0 = max{e30, 8k} and split the first integral in (3.1) into three pieces, i.e.,

∫ 1
2+iT

1
2−iT

L(s, F )
xs

s
ds =

{∫ 1
2+iT0

1
2−iT0

+
∫ 1

2−iT0

1
2−iT

+
∫ 1

2+iT

1
2+iT0

}
L(s, F )

xs

s
ds.

By Cauchy’s inequality and Lemma 2.4, we have
∫ 1

2 +iT0

1
2−iT0

L(s, F )
xs

s
ds � x

1
2 k

1
2 log3 k + x

1
2 log T0 max

T1≤T0

1
T1

∫ T1

T1
2

∣∣∣L
(1

2
+ it, F

)∣∣∣dt

� x
1
2 k

1
2 log3 k + x

1
2 log T0 max

T1≤T0

1
T1

T
1
2
1

{∫ T1

T1
2

∣∣∣L
(1

2
+ it, F

)∣∣∣2dt
} 1

2

� x
1
2 k

1
2 log3 k + x

1
2 k

1
2 (log k)

9
2 � x

1
2 k

1
2 (log k)

9
2 . (3.3)
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For the other two integrals, we follow the argument of Ichihara [6]. Consider
∫

L

L(s, F )
xs

s
ds,

where the integral interval L means two segments which satisfy σ = 1
2 and T0 ≤ |t| ≤ T . Divide

the interval L into Lj (0 ≤ j ≤ J) with J satisfying T
2J+1 ≤ T0 ≤ T

2J . Lj (0 ≤ j ≤ J − 1)
denotes the interval T

2j+1 < |t| ≤ T
2j and LJ is T0 < |t| ≤ T

2J . The argument of the first case
implies that ∫

LJ

L(s, F )
xs

s
ds � x

1
2 k

1
2 (log(x + k))3.

Furthermore, Section 4 of Ichihara [6] gives the bound of the integral over Lj (0 ≤ j ≤ J − 1),
i.e.,

∫
Lj

L(s, F )
xs

s
ds � x

1
2 (log(x + k))4. (3.4)

The only difference is that we have used (2.12) instead of the estimate
∑
n≤x

λ2
F (n) � x log15 x.

Obviously, J � log x. Combining the above estimates, we finally get
∑
n≤x

λF (n) � x
1
2 k

1
2 (log(k + x))5.

This proves Proposition 2.1.
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[7] Ivić, A., On sums of Fourier coeffcients of cusp form, IV, International Conference “Modern Problems of
Number Theory and Its Applications”: Current Problems, part II(Russia)(Tula,2001), 92–97, Mosk. Gos.
Univ. im. Lomonosoua, Mekh. Mat. Fak., Moscow, 2002.

[8] Iwaniec, H., Luo, W. and Sarnak, P., Low lying zeros of families of L-functions, Inst. Hautes Études Sci.
Publ. Math., 91, 2000, 55–131.



802 H. C. Tang

[9] Li, X., Bounds for GL(3) × GL(2) L-functions and GL(3) L-functions, Ann. Math., 173, 2011, 301–336.
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