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Abstract This paper reviews a less known rational structure on the Siegel modular variety
X(N) = Γ(N)\Hg over Q for integers g,N ≥ 1. The author then describes explicitly how
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1 Introduction

Let g ≥ 1 and N ≥ 1 be positive integers, and let Hg be the Siegel upper half plane of genus
g, i.e., the set of symmetric complex matrices τ of order g such that �(τ) > 0. Let

Γ(N) = {γ ∈ Spg(Z) : γ ≡ 1 (mod N)}

be the main congruence subgroup and let X(N) = Γ(N)\Hg be the complex manifold which
turns out to be an algebraic variety. To construct a cryptosystem by using genus g (g = 1, 2)
CM curves, it is important to compute a CM point in X(N) and its Galois conjugates in
X(N) explicitly so that one can compute f(τ) explicitly for some explicit modular functions
(invariants) f on X(N). For this, one needs to interpret X(N) in terms of moduli. There are
two well-known moduli schemes: X0 over Q(μN ) whose C-points give X(N), and X over Q

whose C-points give (Z/N)×-copies of X(N) (see Section 2 for a review), which are thus not
connected. Here μN is the group of N -th root of unity. Neither one is handy for our purpose
as the first one is only defined over Q(μN ) and the second one has extra (Z/N)× in addition to
X(N). There turns out to be a third non-standard moduli scheme X ∗ over Q, whose C-points
also give X(N), which is natural and good for our purpose. This is constructed as a quotient
of X in Section 2. This moduli interpretation is a special case of the general Shimura variety
construction, though not explicitly presented in the literature and it should be of interest to
publicize it. Using this interpretation, we give an explicit Galois action on a CM point in X(N)
in Section 3. As a byproduct, we give in Section 4 a direct proof of the well-known Shimura
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reciprocity law, which Shimura developed in the 1970s (see for example [6]), and its explicit
version given by Streng recently (see [10]).

This work was inspired by my joint work with Castello, Deines-Shartz, and Lauter [1] on
genus two curues.

2 Open Modular Variety X(N) over Q

Let G = GSpg be the generalized symplectic group (matrices of order 2g) with a similitude
character μ, and let G0 = Spg be the usual symplectic group, i.e., the kernel of μ:

1→ Spg → GSpg → Gm → 1.

There are two well-known moduli spaces associated with X(N) which we now briefly review,
and refer to [2] for a thorough review. Let μN be the group of the N -th roots of unity in C, fix
an isomorphism μN

∼= Z/N and identify them in this paper. Then for any principally polarized
abelian variety A over a field F (of a character prime to N), the Weil pairing on the N -torsion
A[N ] becomes a symplectic pairing

〈 , 〉we : A[N ](F )×A[N ](F )→ Z/N,

which is perfect if A[N ](F ) = A[N ].
Let X be the moduli space over Z[ 1

N ] as follows: For a Z[ 1
N ]-scheme S, X (S) consists of

isomorphism classes of the triplets (A, λ, φ), where
(1) A is an abelian scheme over S,
(2) λ : A→ A∨ is a principal polarization of A, and
(3) φ : (Z/N)2g → A[N ](S) is locally a similitude symplectic isomorphism, i.e., 〈φ(x), φ(y)〉we

= d〈x, y〉 for some d ∈ (Z/N)× (both φ and d may vary, depending on local connected compo-
nents of S). Here we use the standard sympletic form on (Z/N)2g:

〈x, y〉 =
g∑

i=1

xiyg+i −
g∑

i=1

xg+iyi.

Notice that due to the freedom on d ∈ (Z/N)×, the moduli problem does not depend on the
choice of our identification μN

∼= Z/N . It is well-known that this moduli space is represented
by a smooth Deligne-Mumford stack, still denoted by X , over Z[ 1

N ]. It is actually a smooth
scheme when N ≥ 3.

Let X0 be the moduli space over Z[ 1
N , μN ] as follows: For a Z[ 1

N , ζN ]-scheme S, X (S)
consists of isomorphism classes of the triplets (A, λ, φ), where

(1) A is an abelian scheme over S,
(2) λ : A→ A∨ is a principal polarization of A, and
(3) φ : (Z/N)2g → A[N ](S) is a symplectic isomorphism, i.e., 〈φ(x), φ(y)〉we = 〈x, y〉.
It is also well-known that this moduli space is represented by a smooth Deligne-Mumford

stack, still denoted by X0, over Z[ 1
N , μN ]. It is again a smooth scheme when N ≥ 3.

In terms of the Shimura datum, one has the following: Let

K(N) = {g ∈ G(Ẑ) : g ≡ 1 (mod N)}, K0(N) = K(N) ∩G0(Ẑ).
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Then X is the Shimura variety associated with K, i.e.,

X (C) = G(Q)\(H±
g ×G(Af )/K(N)) = (Γ(N)\Hg)× (Z/N)×.

Moreover,
X0(C) = X(N) = G0(Q)\(Hg ×G0(Af )/K0(N))

is the connected component of X (C).
It turns out that there is a (less known) third Shimura variety X ∗ over Z[ 1

N ] directly related
to X(N). It is associated with the compact open subgroup of G

K∗(N) = {g ∈ G(Ẑ) : g ≡ ( 1 0
0 ∗ ) (mod N)}.

By the strong approximation theorem, one has

X ∗(C) = G(Q)\(H±
g ×G(Af )/K∗(N)) = X(N),

X0(C) ↪→ X (C) � (Z/N)×

and
(Z/N)× � X (C) � X ∗(C).

Here the action is given by d ◦ [z, g] = [z, gv(d)], and the natural project from X (C) to X ∗(C)
has fiber (Z/N)×. Here v(d) = ( 1 0

0 d ) with respect to the standard symplectic basis of (Z/N)2g.
To give the moduli problem for this variety, let (Z/N)× act on X as follows:

d ◦ (A, λ, φ) = (A, λ, φ ◦ v(d)).

The action is free, so there is a quotient stack (a scheme for N ≥ 3) X ∗ = X/(Z/N)× which rep-
resents the following quotient moduli problem over Z[ 1

N ]. For a Z[ 1
N ]-scheme S, X ∗(S) consists

of the equivalence classes of the triples (A, λ, φ) as in X (S), but with the following equivalence
relation: (A1, λ1, φ1) ∼ (A2, λ2, φ2) if and only if there is an S-isomorphism f : A1 → A2

commuting with the polarizations λi and φ2 = φ1 ◦ v(d) for some d ∈ (Z/N)×. Alternatively,
X ∗(S) are the equivalence classes of the triples (A, λ,�e) where (A, λ) is a principally polarized
abelian scheme over S, and �e = (e1, · · · , e2g) is locally an ordered similitude symplectic basis
of A[N ](S) with respect to the Weil pairing, i.e., for i ≤ j,

〈ei, ej〉we =

{
d, if 1 ≤ i ≤ g, j = g + i,

0, otherwise

for some d ∈ (Z/N)×. A similitude symplectic basis is called a symplectic basis if d = 1. Two
such triples (A, λ,�e) ∼ (A′, B′, �e′) if and only if there is an S-isomorphism f : (A, λ)→ (A′, λ′)
such that f(ei) = e′i for 1 ≤ i ≤ g and f(ei) = de′i for all g + 1 ≤ i ≤ 2g and some d ∈ (Z/N)×

locally.

Proposition 2.1 One has, over Z[ 1
N , μN ],

X ∗ = X0.
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Proof Let �e = (e1, e2, · · · , e2g) be the standard symplectic basis of (Z/N)2g . Given two
triples (A, λ, φ) and (A′, λ′, φ′) in X0(S) for a Z[ 1

N , μN ]-scheme S, if they are equal in X ∗(S),
i.e., there is an S-isomorphism f : (A, λ)→ (A′, λ′) and d ∈ (Z/N)× such that φ′ = f ◦φ◦ v(d),
one has

1 = 〈φ′(ei), φ′(ei+g)〉we = 〈φ(v(d)ei), φ(v(d)eg+i)〉we = 〈ei, deg+i〉 = d ∈ (Z/N)×.

So (A, λ, φ) = (A′, λ′, φ′) in X0(S). This gives an injection X0 → X ∗ over Z[ 1
N , μN ]. To verify

the surjectivity, let (A, λ, φ) ∈ X ∗(S). Let Pi = φ(ei), and then there is d ∈ (Z/N)× such that

〈Pi, Pj〉we = d〈ei, ej〉.

Take φ′ = φ ◦ v(d−1), and then one sees that φ′ is a symplectic isomorphism. So (A, λ, φ) =
(A, λ, φ′) ∈ X ∗(S) is the image of (A, λ, φ′) ∈ X0(S).

Remark 2.1 There is another moduli interpretation for X(N) over Q as follows: Let X ′ be
the moduli space of the equivalence classes of the triples (A, λ, φ), where (A, λ) are principally
polarized abelian schemes as above, and φ : (Z/N)g×(μN )g → A[N ] is a Galois equivariant map
which respects the pairings. The equivalence is the usual one as in the moduli interpretation
of X . Here the pairing at the right-hand side is the Weil pairing while the one at the left-hand
side is the obvious one

〈(n, ξ), (ñ, ξ̃)〉 =
g∑

i=1

ξ̃ni

i −
g∑

i=1

ξñi

i .

The natural maps
X ′ → X0 → X → X ∗

are defined over Q(μN ). One can prove that the composition X ′ → X ∗ is actually an isomor-
phism defined over Q. This remark belongs to the anonymous referee.

Remark 2.2 The moduli variety X ∗ is quite natural both in terms of the Shimura datum
and in terms of moduli interpretation. It is curious and a bit strange that it has not appeared
in any literature to my best knowledge. For example, it could have naturally been in [3, Table
(7.4.3)], as its analogues for Γ1(N) and Γ0(N) are both there.

Remark 2.3 If we let N change, temporarily write X (N) for X and take the inverse limit,
then the pro-Shimura variety X = lim←−X (N) is a right G(Af )-module, but far from connected.
On the other hand, X ∗ = lim←−X

∗(N) = X/v(Ẑ×) is a connected quotient of X . However, only
the normalizer of v(Ẑ×) in G(Af ), not the whole G(Af ), can act on X ∗.

3 Complex Multiplication and Galois Orbit of a CM Point

Let (E, Φ) be a CM number field with the CM type Φ, and let (Ẽ, Φ̃) be the reflex CM field
with the reflex CM type. Let M be a Galois extension of Q containing both E and Ẽ. Recall
the type-norm on elements

NΦ : E× → Ẽ×, x �→
∏
σ∈Φ

σ(x),
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and on ideals

NΦ(a) =
( ∏

σ∈Φ

σ(a)OM

)
∩ OẼ .

Here M is a (any) Galois extension of Q containing both E and Ẽ. For the convenience of
the reader, we first recall the well-known main theorem of Shimura and Taniyama on complex
multiplication (see [7–8]). A CM abelian variety over a field L ↪→ C of the CM type (E, Φ)
is in this paper a pair (A, ι), where A is an abelian variety over L of dimension 1

2 [E : Q],
ι : OE → EndL(A) is an isomorphism, and there is a C basis {ωσ, σ ∈ Φ} on ΩA/C such that
i(z)∗ωσ = σ(z)ωσ. For a number field E, we denote by Ef the finite adeles of E, and by ÔE

the ring of integers of Ef .

Theorem 3.1 (Shimura-Taniyama) Let b ∈ Ẽ×
f and σ ∈ Aut(C/Ẽ) such that σ|Ẽab = σb−1

via the class field theory (the Artin map). Here Ẽab is the maximal abelian extension of Ẽ. Let
(A, ι) be a CM abelian variety over C of CM type (E, Φ). Then there is an isomorphism
f : Cg/Φ(a) ∼= A for some fractional ideal a of E over C. Fix such an isomorphism f (and
a), and there is a unique isomorphism f ′ : Cg/Φ(a NΦ̃ b)→ Aσ over C such that the following
diagram commutes:

E/a
f◦Φ ��

·NΦ̃(b)

��

Ator

σ

��
E/a NΦ̃(b)

Φ◦f ′
�� Aσ

tor

.

Here the multiplication by the idele in the column makes sense via the canonical isomorphism
E/a = ⊕pEp/ap. Here Ep (resp. ap) is the completion of E (resp. a) with respect to the prime
ideal p.

A CM point of the CM type (E, Φ) in X ∗(L), for a field L ⊂ C, is a tuple (A, ι, λ, φ) where
(A, ι) is a CM abelian variety of the CM type (E, Φ) and (A, λ, φ) ∈ X ∗(L) such that the Rosati
involution associated to λ induces the complex conjugation on E. Let CM(E, Φ) be the set of
CM points in X ∗(C) = X(N) of the CM type (E, Φ).

Let R be a (communicative) ring, and let V be a free R-module of rank 2g with the non-
degenerate symplectic form 〈 , 〉. A basis �a = (a1, · · · , a2g) is called a similitude symplectic
basis if the associated matrix

(〈ai, aj〉) =
(

0 dIg

−Ig 0

)
for some d ∈ R×. When d = 1, we call it a symplectic basis.

Proposition 3.1 There are bijections among the following sets:

(1) The set CM(E, Φ) ⊂ X(N) of CM points of the CM type (E, Φ).

(2) The set of points [τ ] ∈ X(N) such that Λτ = τZg +Zg ⊂ Cg is a (projective) OE-module
via Φ = {σ1, · · · , σg}, where E acts on Cg via ι(z)x = diag(σ1(z), · · · , σg(z))x for z ∈ E and
x ∈ Cg.

(3) The set of equivalence classes of (a, ξ,�a), where a is a fractional ideal of E, and ξ ∈ E×

such that ξ = −ξ and a is integral and self-dual with respect to the symplectic pairing (the
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Riemann form)

Eξ : E × E → Q, Eξ(x, y) = trE/Q ξxy, (3.1)

i.e., ξ∂Eaa = OE, where ∂E is different from E. �a = (a1, · · · , a2g) is an ordered symplectic
basis of a with respect to Eξ. Two triples (a, ξ,�a) and (b, η,�b) are equivalent if there is an
r ∈ E× and a γ ∈ Γ(N) such that rr ∈ Q×, a = rb, ξ = (rr)−1η, and �a = rγ�b.

(3′) The set of equivalence classes of (a, ξ, 1
N�a), where a is a fractional ideal of E, ξ ∈ E×

such that ξ = −ξ and 1
N�a is a symplectic basis for 1

N a/a with respect to the Weil pairing〈 x

N
,

y

N

〉
we

= Eξ(x, y) (mod N).

Two triples (a, ξ, 1
N�a) and (b, η, 1

N
�b) are equivalent if there is an r ∈ E× such that rr ∈ Q×,

a = rb, ξ = (rr)−1η, and 1
N�a = 1

N r�b (i.e., �a ≡ r�b(mod N)).
(4) The set of equivalence classes of triples (Aa, Eξ,

1
N�a) where Aa = Cg/Φ(a) is a CM

abelian variety of the CM type (E, Φ) over C, Eξ, as defined in (3.1), is a Riemann form on
Aa, which gives a principally polarization on Aa, and 1

N�a is a similitude symplectic basis of
Aa[N ] = 1

N a/a with respect to the Weil pairing:〈 x

N
,

y

N

〉
we

= Eξ(x, y) (mod N).

Two triples (Aa, Eξ,�a) and (Ab, Eη,�b) are equivalent if there is an r ∈ E such that rr ∈ Q×,
a = rb, ξ = (rr)−1η, and 1

N�a = v(d)(r�b) in 1
N a/a for some d ∈ (Z/N)×.

Proof (Sketch) The bijection between (1) and (3) follows from X(N) = X0(C) and Theorem
3.1. The bijection between (1) and (4) follows from X(N) = X ∗(C) and Theorem 3.1. The
bijection between (3) and (3′) is due to the fact that SL2(Z) � SL2(Z/N) is surjective. Now
we describe the bijection between (2) and (3). Recall that τ ∈ X(N) = X0(C) gives the
triple (Aτ , Eτ , 1

N �eτ ), where Aτ = Cg/Λτ with Λτ = τZg + Zg and the principal polarization
Eτ = �Hτ , where

Hτ (x, y) = xt�(τ)−1y

is the associated positive definite Hermitian form on Cg, and �eτ = (ei)1≤i≤2g with

(e1, e2, · · · , eg) = τ, (eg+1, · · · , e2g) = Ig.

Notice that �eτ is a symplectic basis of Λτ with respect to Eτ , and that Hτ (x, y) = Eτ (ix, y) +
iEτ (x, y) (see for example [2, 7]).

Given a triple (a, ξ,�a) in (3), let τ = (Φ(ag+1), · · · , Φ(a2g))−1(Φ(a1), · · · , Φ(ag)), also de-
noted by τ(a, ξ,�a). Then

f : Aτ
∼= Aa, f(z) = (Φ(ag+1), · · · , Φ(a2g))z,

which sends �eτ to �a. So (Aτ , Eτ , 1
N �eτ ) = (Aa, Eξ,

1
N�a) ∈ X0(C) = X(N). Via the map f ,

Λτ
∼= Φ(a) becomes an OE-module.
Conversely, if Λτ is an OE-module via Φ, then it is finitely generated, torsion-free and thus

projective of rank 1 (comparing with the Z-rank). So there is a fractional ideal a of E and an
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OE-module isomorphism f : Φ(a) ∼= Λτ , which extends to an isomorphism f : Aa
∼= Aτ . The

Riemann form Eτ on Λτ gives a self-dual sympletic form on a. So there is ξ such that a is
Eξ-self-dual, and that �a = Φ−1f−1(�eτ ) is a symplectic basis of a. That is τ = τ(a, ξ,�a). This
gives the bijection between (2) and (3).

We will identify each set in Proposition 3.1 with CM(E, Φ). Given (a, ξ,�a) ∈ CM(E, Φ), we
write the associated τ in X(N) as τ = τ(a, ξ,�a). It is given by

τ = (Φ(ag+1), · · · , Φ(a2g))−1(Φ(a1), · · · , Φ(ag)). (3.2)

Viewing �a as a Q-basis of E, one obtains an embedding

ε : E× → GL2g(Q), ε(z)ai = zai, (3.3)

and a map

g = g(a, ξ,�a) : Ẽ× → GSpg(Q)+, g(z) = ε(NΦ̃(z)). (3.4)

The map is well-defined as

Eξ(g(z)(ai), g(z)(aj)) = Eξ(NΦ̃(z)ai, NΦ̃(z)aj) = NΦ̃(z)NΦ̃(z)Eξ(ai, aj) = N(z)Eξ(ai, aj).

One has further μ(g(z)) = N(z). The maps g and ε depend on the point τ .

Let Cl(Φ̃, N) be the type-class group of modulus N , defined as the quotient of all fractional
ideals of Ẽ prime to N by the subgroup

P (Φ̃, N) = {a ⊂ Ẽ : NΦ̃(a) = μOE , for some μ ≡ 1 (mod N), μμ = N(a)}.

Let H(Φ̃, N) be the associated type-class field of Ẽ. For a number field E, we write Ef as its
finite adeles and ÔE as the ring of integers of Ef . The following isomorphism is well-known:

Cl(Φ̃, N) ∼= Ẽ×
f /U(Φ̃, N), [b] �→ [b], (3.5)

where b ∈ Ẽ×
f satisfies (b) = bÔẼ ∩ Ẽ = b and bp ≡ 1 (mod N) for all p|N . Here

U(Φ̃, N) = {x ∈ Ẽ×
f : NΦ̃(x) ∈ E×((1 + NÔE) ∩ Ô×

E )}.

Proposition 3.2 (1) For every CM point τ = τ(a, ξ,�a) ∈ X0(C), its field of definition is
the class field H(Φ̃, N).

(2) For a CM point τ = τ(a, ξ,�a) ∈ X ∗(C), its field of definition is the class field H∗(Φ̃, N)
associated to the class group Cl∗(Φ̃, N) = Ẽ×

f /U∗(Φ̃, N), where

U∗(Φ̃, N) = {b ∈ Ẽ×
f : NΦ̃(b) = αu : α ∈ E×, αα = N(b), ε(u) ∈ K∗(N)}.

Proof This proposition is a direct consequence of Theorem 3.1 and we give a sketch of (2)
for convenience. Let σ ∈ Aut(C) with σ|H∗(Φ̃,N) = σb−1 via the class field theory. Here we
use the normalization in [7] for the Artin map, i.e., σp(x) ≡ xN(p) (modp). Let b = (b) be the
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ideal of b. Assume τσ = τ , and then Aa NΦ̃(b)
∼= Aa. So NΦ̃ b = αOE for some α ∈ E×. Write

NΦ̃ b = αu with u ∈ Ô×
E . So we have

τσ = τ
(
a, ξ

αα

N(b)
,

1
N

u�a
)

= τ
(
a, ξ,

1
N

�a
)
.

This implies that we can change α properly to make αα = N(b). Since the two symplectic
similitude bases 1

N u�a and 1
N�a of 1

N a/a with respect to the Weil pairing have to be equivalent,
i.e., differing only by v(d) for some d ∈ (Z/N)×, one has ε(u) ∈ K∗(N). The other way is the
same.

Noticing that μN ⊂ H(Φ̃, N) and X0 = X ∗
Q(μN ), one has that H(Φ̃, N) = H∗(Φ̃, N)(μN ).

We remark that the class field H∗(Φ̃, N) might depend on the map ε in (3.3), and thus the
CM point τ . It is an interesting question whether and how H∗(Φ̃, N) really depends on τ . For
example, do different Galois orbits in CM(E, Φ) have the same cardinality? (or does the index
[H∗(Φ̃, N) : Ẽ] depend on τ?)

Theorem 3.2 Let τ = τ(a, ξ,�a) ∈ CM(E, Φ) ∈ X(N)(C). Let σ ∈ Aut(C/Ẽ) and [b]
∈ Cl(Φ̃, N) such that σ|H(Φ̃,N) = σb−1 via the class field theory. Choose an (ordered) symplectic
basis �c of a NΦ̃(b) with respect to the symplectic form Eξ N(b)−1 such that

ci ≡ ai (mod N), 1 ≤ i ≤ g, ci ≡ ai N(b) (mod N), g + 1 ≤ i ≤ 2g.

Then
τ(a, ξ,�a)σ = τ(a NΦ̃(b), ξ N(b)−1,�c).

Proof Choose b ∈ Ẽ×
f such that (b) = b and bp = 1 for all primes of Ẽ above N , as in

(3.5). We may assume that b is integral. Then Theorem 3.1 implies(
Aa, Eξ,

1
N

�a
)σ

=
(
Aa NΦ̃(b), Eξ N(b)−1 ,

1
N

NΦ̃(b)�a
)
.

Notice 〈 1
N

NΦ̃(b)ai,
1
N

NΦ̃(b)aj

〉
we
≡ N(b)

N(b)
Eξ(ai, aj) (mod N)

≡ 1
N(b)

Eξ(ai, aj) (mod N).

So one has in ( 1
N a NΦ̃(b))/a NΦ̃(b),

1
N

ci =
1
N

NΦ̃(b)ai, 1 ≤ i ≤ g

and
1
N

ci =
1
N

NΦ̃(b)N(b)ai, g + 1 ≤ i ≤ 2g.

So 1
N�c = v(N(b))

(
1
N NΦ̃(b)�a

)
. Indeed, for a prime p of E above N , it is true by our choice of �c

and by the fact NΦ̃ bp = 1. For p � N , both sides are zero. Therefore,(
Aa, Eξ,

1
N

�a
)σ

= (Aa NΦ̃(b), Eξ N(b)−1 ,�c),
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i.e.,

τ(a, ξ,�a)σ = τ(a NΦ̃(b), ξ N(b)−1,�c).

Let f(τ) be a memormorphic modular function on Hg for Γ(N), viewed also as a rational
function on X ∗(C), and let

f(τ) =
∑

T∈Symg(Z)∗
c(T )qT

N

be the Fourier expansion of f(τ) with c(n) ∈ C and qT
N = e( 1

N tr Tτ). For σ ∈ Aut(C), fσ, as a
rational function on X ∗(C), is defined to satisfy the following condition: For every P ∈ X ∗(C),
one has

f(P )σ = fσ(P σ).

By the q-expansion principle, fσ has the following Fourier expansion:

fσ(τ) =
∑
T

c(T )σqT
N .

Now the following explicit Galois action formula on CM values follows directly from Theo-
rems 3.1–3.2.

Corollary 3.1 Let f(τ) be a memomorphic modular function on Hg for Γ(N) (also momo-
morphic at cusps). Let τ = τ(a, ξ,�a) ∈ CM(E, Φ) be a CM point on X(N). Let σ ∈ Aut(C/Ẽ),
and let [b] ∈ Cl(Φ̃, N) such that σ|Ẽab = σb−1 . Then

f(τ)σ = fσ(τ(a NΦ̃ b, ξ N(b)−1,�c)),

where τ(a NΦ̃ b, ξ N(b)−1,�c) = τσ is given as in Theorem 3.2.

Proof Let X be a toriodal compactification of X ∗/Q which is a projective algebraic variety.
By our assumption, f is a rational function on X . So f(τ)σ = fσ(τσ), and the first claim follows
directly from Theorem 3.1.

The case N = 2 and g = 2 was used in [1] and is the initial motivation for this work.

Remark 3.1 It should be very interesting to work out the whole Galois orbit of a CM
point under Aut(C/Q). It should be doable by using Deligne and Langlands’ generalization of
Theorem 3.1 (see [4]).

Remark 3.2 There is another group acting on CM(E, Φ). Let

C0(E, N) =
{(b, α ∈ Q>0, b ∈ b/Nb) : NE/F b = αOF , bbα−1 ≡ 1 (mod N)}

{(ξOE , ξξ, ξ) : ξ ∈ E×, ξ ≡ 1 (mod N)} .

The action is given as follows:

(b, α, b)
(
a, ξ,

1
N

�a
)

=
(
ab, α−1ξ,

b

N
�a
)
.
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4 Reciprocity Law

In this section, we will use Corollary 3.1 to give another proof of Streng’s explicit Shimura
reciprocity law and the original Shimura reciprocity law. We need some notations before stating
their theorems (see [5–6, 10]). We will mainly follow [10] in the review and refer to it for more
details. Let FN be the field of meromorphic Siegel modular functions g1

g2
, where gi (i = 1, 2) are

holomorphic Siegel modular forms of level N and of the equal weight with Fourier coefficients
in Q(μN ), and g2 �= 0. By the q-expansion principle, one has FN = Q(μN )(X0) = Q(μN )(X ∗).
Let F∞ = ∪FN . The following proposition is due to Shimura (see [10, Propositions 2.1 and
3.1]). Let G(R)+ be the subgroup of G(R) with μ(g) > 0, G(A)+ = G(Af ) × G(R)+ and
G(Q)+ = G(R)+ ∩G(Q). Recall G = GSpg (GSp2g in Streng’s notation).

Proposition 4.1 (a) There is a unique action of G(A)+ on F∞ satisfying the following
conditions:

(1) For γ ∈ G(Q)+, one has fγ(τ) = f(γτ).
(2) For x ∈ A×, one has fv(x) = fσx . Here σx ∈ Gal(Q(μ∞)/Q is the Artin map image of

x via the class field theory, v(x) = diag(Ig, xIg), and fσ(τ) is the new modular function with σ

acting on the Fourier coefficients of f .
(3) For any N ≥ 1, the group K(N) × G(R)× acts on FN trivially. Here we recall that

K(N) is the compact open subgroup of G(Af ) defining X .
(b) There is a unique action of G(Z/N) on FN as follows:
(1) The action of Spg(Z/N) on FN is given by fγ(mod N) = fγ for γ ∈ Spg(Z), where fγ is

given by (a)(1) above.
(2) For any x ∈ (Z/N)×, fv(x) = fσx .

Now we are ready to give a direct proof of Streng’s explicit reciprocity law (without using
Shimura’s reciprocity law). Please note that we only deal with the case of the maximal order of
E while Shimura and Streng dealt with the general case, though our method works in general
too.

Theorem 4.1 (see [10, Theorem 2.4]) Let τ = τ(a, ξ,�a) ∈ X(N) be a CM point of the CM
type (E, Φ) as before. Let σ = σb−1 ∈ Gal(H(Φ̃, N)/Ẽ). Let �b be a symplectic basis of a NΦ̃(b)
with respect to Eξ N(b)−1 . Let M ∈ GSpg(Q)+ such that M(�a) = �b. Then M is N -integral and
invertiable modulo N . Let U = M−1(mod N) ∈ GSpg(Z/N). Then for any f ∈ FN , one has

f(τ)σ = fU (Mτ).

Proof By Corollary 3.1, one has

f(τ)σ = fσ(τ(a NΦ̃(b), ξd,�c)),

where d = N(b)−1 and �c is the symplectic basis of a NΦ̃(b) with respect to Edξ given in Theorem
3.2. Let Cl(Z, N) be the ray class group of Q with modulus N , and its associated class field is
Q(μN ). Notice that the norm map from Cl(Φ̃, N) to Cl(Z, N) is surjective which also explains
Q(μN ) ⊂ H(Φ̃, N). So by the class field theory, one has Q(μN ) ⊂ H(Φ̃, N), and

σb−1 |Q(μN ) = σN(b)−1 |Q(μN ).
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So fσ = fσd = fv(d), and
f(τ)σ = fv(d)(τ(a NΦ̃(b), ξd,�c)).

Let γ ∈ Spg(Z) such that γ(�b) = �c. Then γM(τ) = τ(a NΦ̃(b), ξd,�c). On the other hand,
M�a = �b implies μ(M) = d−1 and thus μ(U) = d (mod N), and U(�b) = �a (mod N). So

U = v(d)γ (mod N).

Therefore
fU (Mτ) = fv(d)(γMτ) = fv(d)(τ(a NΦ̃(b), ξd,�c)) = f(τ)σ

as claimed.
Finally, we derive Shimura’s reciprocity law in its original adelic form (see [6, P. 57]). Let

τ = τ(a, ξ,�a) ∈ CM(E, Φ) ∈ X(N) as before. Recall the maps ε and g in (3.3)–(3.4). The
following is the Shimura’s reciprocity law (see [6, P. 57], see also [10, Theorem 3.4]).

Theorem 4.2 (Shimura) Let τ = τ(a, ξ,�a) ∈ CM(E, Φ) ∈ X(N) be a CM point of the CM
type (E, Φ), and let g : Ẽ×

A → GSpg(A)+ be the adelization of the map g defined in (3.4). Then
for any f ∈ F∞ such that f(τ) is finite, and for any b ∈ Ẽ×

A , we have

f(τ) ∈ Ẽab, f(τ)σb−1 = fg(b)(τ).

Proof We can choose N big enough so that f ∈ FN , and then view τ as a CM point
on X(N). So f(τ) ∈ H(Φ̃, N), and both sides of the identity depend only on the idele class
[b] ∈ Ẽ×\Ẽ×

f /U(Φ̃, N). Therefore we may assume that bp = 1 for all primes of Ẽ above N ,
and let b = (b) be the fractional ideal of Ẽ associated to b. Let τσ = (a NΦ̃(b), ξ N(b)−1,�c)
as in Theorem 3.2. We write â = a ⊗Z Ẑ, and g = g(b). Then ̂a NΦ̃(b) has two similitude
symplectic Ẑ-bases g(�a) = NΦ̃ b�a and �c (with respect to Eξ). So there is γ ∈ GSpg(Ẑ) such
that γ−1g(�a) = �c and μ(γ−1) = N(b)

N(b) ∈ Ẑ×. Let M = γ−1g ∈ GSpg(Af ) with μ(M) = N(b).
Since �a and �c = M(�a) are both similitude symplectic Q-bases of E (with respect to Eξ), one
has M ∈ GSpg(Q)+. Write γ = γ1v(N(b)

N(b) ) with γ1 ∈ Spg(Ẑ). Recalling the condition on �c

in Theorem 3.1 and that bp = 1 for all p | N , one sees that γ1 maps �a to �a modulo N . So
γ1 ≡ 1 (mod N). Now g = γ1v(N(b)

N(b) )M (since we write elements in G as maps in the proof,
this order of decomposition is correct), and one has by Proposition 4.1 that

fg(τ) = fv(N(b)
N(b) )(Mτ) = fσN(b)−1 (τ(a NΦ̃(b), ξ N(b)−1,�c)) = f(τ)σ

as claimed.
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