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Abstract In recent years, there have been intensive activities in the area of constructing
quantum maximum distance separable (MDS for short) codes from constacyclic MDS codes
through the Hermitian construction. In this paper, a new class of quantum MDS code is
constructed, which extends the result of [Theorems 3.14–3.15, Kai, X., Zhu, S., and Li,
P., IEEE Trans. on Inf. Theory, 60(4), 2014, 2080–2086], in the sense that our quantum
MDS code has bigger minimum distance.
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1 Introduction

Quantum codes were introduced to protect quantum information from decoherence and
quantum noise. After the pioneering work of Shor [24] and Steane [25], a systematic mathemat-
ical scheme has been employed to construct q-ary quantum codes from classical error-correcting
codes over Fq or Fq2 with certain orthogonality properties. The quantum codes obtained in this
way are called stabilizer codes. After the establishment of the connection between quantum
codes and classical codes (see [3]), the construction of stabilizer codes can be converted to that
of classical codes with symplectic, Euclidean, or Hermitian self-orthogonal property.

A q-ary quantum code Q of length n and size K is a K-dimensional subspace of a qn-
dimensional Hilbert space H = (Cq)

⊗
n = Cq⊗· · ·⊗Cq. An important parameter of a quantum

code is its minimum distance: If a quantum code has minimum distance d, then it can detect
d − 1 and correct

⌊
d−1
2

⌋
quantum errors. Let k = logq K, we use [[n, k, d]]q to denote a q-ary

quantum code of length n with size qk and minimum distance d. The parameters of an [[n, k, d]]q
quantum code must satisfy the quantum Singleton bound: 2d ≤ n − k + 2 (see [19–20]). A
quantum code achieving this quantum Singleton bound is called a quantum maximum-distance-
separable (MDS for short) code. Ketkar et al. in [19] pointed out that, for any odd prime power
q, if the classical MDS conjecture holds, then the length of nontrivial quantum MDS codes can
not exceed q2+1. As mentioned in [16], except for some sparse lengths n such as n = q2+1, q2+1
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and q2, almost all known q-ary quantum MDS codes have minimum distance less than or equal
to q

2 + 1. The following result gives a connection between classical Hermitian self-orthogonal
MDS codes and quantum MDS codes.

Theorem 1.1 (see [2]) If C is a q2-ary [n, k, n − k + 1] MDS code such that C ⊆ C⊥H ,
then there exists a q-ary [[n, n − 2k, k + 1]] quantum code.

In recent years, constructing quantum MDS codes has become a hot research topic. Many
classes of quantum MDS codes have been found by employing different methods (see [1, 4–5,
7–17, 22–23]). Recently, Kai et al. [17–18] constructed several classes of good quantum codes
from classical constacyclic codes, including some new classes of quantum MDS codes.

Motivated by the above works, a new family of quantum MDS code is constructed in this
paper. The quantum code in this paper can be regarded as a generalization of [18, Theorems
3.14–3.15], in the sense that our quantum MDS code has bigger minimum distance.

2 Preliminaries

In this section, we recall some definitions and basic properties of constacyclic codes. Through-
out this paper, q denotes an odd prime power and Fq2 denotes the finite field with q2 elements.
Assume that n is a positive integer relatively prime to q, i.e., gcd(n, q) = 1.

Let Fn
q2 be the Fq2 vector space of n-tuples. A linear code C of length n is an Fq2 subspace

of Fn
q2 . For a nonzero element η of Fq2 , a linear code C of length n over Fq2 is said to be

η-constacyclic if (ηcn−1, c0, · · · , cn−2) ∈ C for every (c0, c1, · · · , cn−1) ∈ C. If each codeword
c = (c0, c1, · · · , cn−1) ∈ C corresponds with its polynomial representation c(x) = c0+c1x+ · · ·+
cn−1x

n−1 ∈ Fq2 [x], then the η-constacyclic code C is identified with exactly one ideal of the
quotient ring Fq2 [x]/(xn − η). Since Fq2 [x]/(xn − η) is a principal ideal ring, an η-constacyclic
code C is generated uniquely by a monic divisor g(x) of xn − η and denoted by C = 〈g(x)〉.
Hence g(x) and h(x) = xn−η

g(x) are called the generator polynomial and the check polynomial of
C, respectively.

Similarly to cyclic codes, there exists the following BCH bound for η-constacyclic codes (see
[21]).

Lemma 2.1 Let C = 〈g(x)〉 be an η-constacyclic code of length n over Fq2 and gcd(q, n) = 1.
Suppose that the roots of g(x) include γαi, i = 1, 2, · · · , d − 1 (≤ deg g(x)), where γ and α are
nonzero elements in some extension field of Fq2 , and α is an element of order n. Then the
minimum distance of the code is at least d.

For two vectors b = (b1, b2, · · · , bn) and c = (c1, c2, · · · , cn) in Fn
q2 , we define the Hermitian

inner product 〈b, c〉H to be 〈b, c〉H =
n∑

i=1

bici, where ci = cq
i for each 1 ≤ i ≤ n. The vectors

b and c are called orthogonal with respect to Hermitian inner product if 〈b, c〉H = 0. For a
q2-ary linear code C, the Hermitian dual codes of C is defined as

C⊥H = {c ∈ Fn
q2 | 〈b, c〉H = 0 for all b ∈ C}.
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A q2-ary linear code C of length n is called Hermitian self-orthogonal if C ⊆ C⊥H . Conversely,
if C⊥H ⊆ C, we say that C is a Hermitian dual-containing code.

The automorphism of Fq2 given by “ − ”, a = aq for any a ∈ Fq2 , can be extended to an
automorphism of Fq2 [x] in an obvious way:

Fq2 [x] → Fq2 [x],
n∑

i=0

aix
i 	→

n∑
i=0

aix
i

for any a0, a1, · · · , an in Fq2 , which is also denoted by “ − ” for simplicity.
For a monic polynomial f(x) ∈ Fq2 [x] of degree k with f(0) 
= 0, its reciprocal polynomial

will be denoted by
f(x)∗ = f(0)−1xkf(x−1).

The following result gives the generator polynomial of C⊥H .

Lemma 2.2 (see [26, Lemma 2.1(ii)]) Let C = 〈g(x)〉 be an η-constacyclic code of length
n and dimensional k over Fq2 . Set h(x) = xn−η

g(x) . Then the Hermitian dual code C⊥H is an
η−1-constacyclic code with the generator polynomial h(x)∗, where

h(x)∗ =
k∑

i=0

aix
i

and

h(x)∗ =
k∑

i=0

aq
i x

i

are the reciprocal and conjugate-reciprocal polynomials of h(x), respectively.

By Lemma 2.2, we can get the following result.

Lemma 2.3 Let η ∈ Fq2 be a primitive r-th root of unity and let C be a Hermitian dual-
containing η-constacyclic code of length n over Fq2 . Then η = η−q, i.e., r | q + 1.

Let C = 〈g(x)〉 be an η-constacyclic code of length n and let Ω = {1 + jr | 0 ≤ j ≤ n − 1}.
The set Z = {k ∈ Ω | g(ζk) = 0} is called the defining set of C, where ζ is a primitive rn-th
root of unity in some extension field of Fq2 such that ζn = η. The following result presents a
criterion to determine whether or not an η-constacyclic code of length n over Fq2 is Hermitian
dual-containing.

Lemma 2.4 (see [18, Lemma 2.2]) Let r be a positive divisor of q + 1 and let η ∈ Fq2

be of order r. Assume that C is an η-constacyclic code of length n over Fq2 with a defining
set Z. Then C is a Hermitian dual-containing code if and only if Z ∩ (−q)Z = ∅, where
(−q)Z = {−qz (mod rn) | z ∈ Z}.

The Hermitian construction suggests that we can obtain q-ary quantum codes as long as we
can construct classical Hermitian dual-containing codes over Fq2 . Constacyclic codes form an
important class of linear codes due to their good algebraic structures. In this paper, we will
use the Hermitian construction to obtain MDS quantum codes through constacyclic codes.
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3 New Quantum MDS Code

Throughout this section, we always assume that η is a primitive r-th root of unity in Fq2

with r | (q + 1), and n is a positive integer with rn | (q4 − 1) and rn � (q2 − 1). In this section,
we construct a family of q-ary quantum codes with good parameters through the Hermitian
construction.

Let C be an η-constacyclic code and let Ω = {1+ jr | 0 ≤ j ≤ n− 1}. Since rn | (q4 − 1), we
always have that |C1+jr | ≤ 2, 0 ≤ j ≤ n− 1, where C1+jr is the q2-cyclotomic coset containing
1 + jr modulo rn.

Lemma 3.1 There exist exactly two q2-cyclotomic cosets C1+rk and C1+r(k+ n
2 ) with |C1+rk|

= |C1+r(k+ n
2 )| = 1 if and only if n | (q2 + 1) and n is even, where rk ≡ −1

(
mod n

2

)
, 0 ≤ k ≤

n
2 − 1.

Proof Suppose that i = 1+jr ∈ Ω, 0 ≤ j ≤ n−1. Then there are exactly two q2-cyclotomic
cosets Ci and Ci′ (i, i′ ∈ Ω, i 
= i′) with |Ci| = |Ci′ | = 1 if and only if the congruence equation
(1 + jr)q2 ≡ 1 + jr (mod rn) has exactly two different solutions, which implies that

(q2 − 1)j ≡ −q2 − 1
r

(mod n) (3.1)

has two solutions k and k′ with 0 ≤ k 
= k′ ≤ n− 1. As rn | q4 − 1 and gcd(q2 − 1, q2 + 1) = 2,
(3.1) has two solutions if and only if gcd(n, q2 − 1) = 2 if and only if n | (q2 + 1) and n is even,
so i = 1 + rk, i′ = 1 + r

(
k + n

2

)
, where rk ≡ −1

(
mod n

2

)
, 0 ≤ k ≤ n

2 − 1.

Suppose that n | q2 + 1 and n is even. By Lemma 3.1, there are exactly two q2-cyclotomic
cosets Cs and Cs+ rn

2
with |Cs| = |Cs+ rn

2
| = 1, where s = q2+1

2 .

Lemma 3.2 Let n be an even divisor of q2 +1. Suppose that s = q2+1
2 . Then Ω = {1+ jr |

0 ≤ j ≤ n − 1} is a disjoint union of q2-cyclotomic cosets:

Ω = Cs ∪ Cs+ rn
2
∪

( n
2 −1⋃
j=1

Cs−rj

)
.

Proof Since n | q2 + 1 and n is even, by Lemma 3.1 there are exactly two q2-cyclotomic
cosets Cs and Cs+ rn

2
with one element.

For each j, 1 ≤ j ≤ n
2 − 1,

q2(s + rj) = q2s + (q2 + 1)rj − rj ≡ s − rj (mod rn).

Hence Cs+rj = {s− rj, s + rj} for 1 ≤ j ≤ n
2 − 1.

In order to use Lemma 3.2 to construct Hermitian dual-containing MDS constacyclic code,
we need the condition that −qCs = Cs+ rn

2
, i.e., Cs 
= −qCs.

Proposition 3.1 Let n be an even divisor of q2 +1 and s = q2+1
2 . Then Cs 
= −qCs if and

only if 2 � q+1
r , where Cs = {s} is the q2-cyclotomic coset containing s.
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Proof For s = q2+1
2 , s ≡ −qs (mod rn) if and only if rn | (q+1)s, which implies n | (q+1)s

r .
By s = q2+1

2 , we have n
2 |s with s odd, so n | (q+1)s

r if and only if 2 | q+1
r . Hence, we get the

result.

The following results are given in [18].

Lemma 3.3 (see [18, Theorem 3.14]) Let q be an odd prime power with the form 20m+3 or
20m+7, where m is a positive integer. Let n = q2+1

5 . Then, there exists a q-ary [[n, n−2d+2, d]]-
quantum MDS code, where 2 ≤ d ≤ q+5

2 is even.

Lemma 3.4 (see [18, Theorem 3.15]) Let q be an odd prime power with the form 20m−3 or
20m−7, where m is a positive integer. Let n = q2+1

5 . Then, there exists a q-ary [[n, n−2d+2, d]]-
quantum MDS code, where 2 ≤ d ≤ q+3

2 is even.

Using the Hermitian construction, we will obtain q-ary quantum codes of length q2+1
5 from

constacyclic codes over Fq2 . The main code of this paper has much larger minimum distance
than the one of [18] when q > 23.

Let q be an odd prime power with q ≡ 3 (mod 10) or q ≡ −3 (mod 10), and n = q2+1
5 . We

consider η-constacyclic code of length n over Fq2 .
In order to construct quantum MDS codes, we give a sufficient condition for η-constacyclic

codes which contain their Hermitian duals. For any odd prime power q with q ≡ ±3 (mod 10),
we first consider the case q ≡ 3 (mod 10).

Lemma 3.5 Assume that q is an odd prime power with q ≡ 3 (mod 10) and q+1
r odd. Let

s = q2+1
2 and n = q2+1

5 . If C is an η-constacyclic code over Fq2 of length n with defining set

Z =
δ⋃

j=0

Cs−jr, where 0 ≤ δ ≤ 3(q−3)
10 , then C is a Hermitian dual-containing code.

Proof By Lemma 2.4, it is sufficient to prove that Z∩(−q)Z = ∅. Suppose that Z∩(−q)Z 
=
∅. Then, there exist two integers j, k, 0 ≤ j, k ≤ 3(q−3)

10 , such that s−rj ≡ −q(s−rk) (mod rn)
or s − rj ≡ −q(s + rk) (mod rn).

Case I s − rj ≡ −q(s − rk) (mod rn). This is equivalent to

q + 1
r

s ≡ qk + j (mod n).

By s = q2+1
2 and q+1

r odd, we obtain

qk + j ≡ n

2
(mod n).

Since 0 ≤ j, k ≤ 3(q−3)
10 , 0 ≤ j + qk ≤ 3(q−3)(q+1)

10 < 3n
2 . We have that j + qk ≡ n

2 (mod n) if
and only if qk + j = n

2 . Since

n

2
=

q2 + 1
10

=
q2 − 3q + 3q + 1

10
= q · q − 3

10
+

3q + 1
10

,

we have
qk + j = q · q − 3

10
+

3q + 1
10

.
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By division algorithm, j = 3q+1
10 . This is impossible, because

0 ≤ j ≤ 3(q − 3)
10

.

Case II s − rj ≡ −q(s + rk) (mod rn). This is equivalent to

q + 1
r

s ≡ −qk + j (mod n).

As s = q2+1
2 and q+1

r odd, we obtain

−qk + j ≡ n

2
(mod n).

Since 0 ≤ j, k ≤ 3(q−3)
10 , we have

−3n

2
< −3(q − 3)q

10
≤ −qk + j ≤ 3(q − 3)

10
<

n

2
.

We have that −qk + j ≡ n
2 (mod n) if and only if

−qk + j = −n

2
.

Hence

−qk + j = −
(
q · q − 3

10
+

3q + 1
10

)
= −q · q + 7

10
+

(
q − 3q + 1

10

)
.

By division algorithm,

j = q − 3q + 1
10

=
7q − 1

10
>

3(q − 3)
10

.

This is impossible.

Theorem 3.1 Let q be an odd prime power with q ≡ 3 (mod 10). Then, there exist quantum
MDS codes with parameters

[[
q2+1

5 , q2+1
5 − 2d + 2, d

]]
q
, where d

(
2 ≤ d ≤ 3q+1

5

)
, is even.

Proof Put s = q2+1
2 with q+1

r odd. Let η be an r-th primitive root in Fq2 . Consider

the η-constacyclic code C over Fq2 of length n = q2+1
5 with defining set Z =

δ⋃
j=0

Cs−jr , where

0 ≤ δ ≤ 3(q−3)
10 . From Lemma 3.5, C⊥ ⊆ C. From Lemma 3.2 we can see that Z contains 2δ + 1

consecutive integers. This implies that C has minimum distance at least 2δ + 2. Hence, C is
an [n, n − 2δ − 1, 2δ + 2] MDS constacyclic code. Combining the Hermitian construction with
quantum Singleton bound, we can obtain a quantum MDS code with parameters

[[
q2+1

5 , q2+1
5 −

2d + 2, d
]]

q
, where d, 2 ≤ d ≤ 3q+1

5 , is even.

Compare our quantum MDS codes in Theorem 3.1 with quantum MDS codes in [18], our
quantum MDS codes has much bigger minimum distance than the known codes in [18] when
q > 23, because

3q + 1
5

>
q + 5

2
for q > 23.
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Example 3.1 Take q = 43, and so n = 370. Using Theorem 3.1 produces a new quantum
MDS code with parameters [[370, 320, 26]]43.

For the case q ≡ −3 (mod 10), we can produce the following quantum MDS codes. The
proof is similar to that in the case q ≡ 3 (mod 10) and we omit it.

Theorem 3.2 Let q be an odd prime power with q ≡ −3 (mod 10). Then, there exist
quantum MDS codes with parameters

[[
q2+1

5 , q2+1
5 − 2d + 2, d

]]
q
, where 2 ≤ d ≤ 3q−1

5 is even.

Example 3.2 Take q = 37, and so n = 137. Using Theorem 3.2 produces a new quantum
MDS code with parameters [[137, 95, 22]]37.
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