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Abstract Given a connected CW-space X, SNT (X) denotes the set of all homotopy types
[X ′] such that the Postnikov approximations X(n) and X ′(n) are homotopy equivalent for
all n. The main purpose of this paper is to show that the set of all the same homotopy n-
types of the suspension of the wedges of the Eilenberg-MacLane spaces is the one element
set consisting of a single homotopy type of itself, i.e., SNT (Σ(K(Z, 2a1) ∨ K(Z, 2a2) ∨
· · · ∨ K(Z, 2ak))) = ∗ for a1 < a2 < · · · < ak, as a far more general conjecture than the
original one of the same n-type posed by McGibbon and Møller (in [McGibbon, C. A. and
Møller, J. M., On infinite dimensional spaces that are rationally equivalent to a bouquet
of spheres, Proceedings of the 1990 Barcelona Conference on Algebraic Topology, Lecture
Notes in Math., 1509, 1992, 285–293].)
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1 Introduction

Let us call X(n) the n-th Postnikov approximation of a connected CW-space X . X(n) is a
CW-complex obtained from X by adjoining cells of dimension ≥ n+ 2 such that πi(X(n)) = 0
for i ≥ n + 1 and πi(X(n)) = πi(X) for i ≤ n. The Postnikov k-invariants kn+1(X) of X are
maps X(n−1) → K(πn(X), n + 1) and thus cohomology classes in Hn+1(X(n−1);πn(X)) for
n ≥ 2. We say that two connected CW-spaces X and X ′ have the same n-type if the n-th
Postnikov approximations X(n) and X ′(n) are homotopy equivalent for all n ≥ 1.

An interesting question raised by J. H. C. Whitehead is this: Suppose that X and X ′ are
two spaces whose Postnikov approximations, X(n) and X ′(n), are homotopy equivalent for each
integer n. Does it follow that X and X ′ have the same homotopy type? It is well known that
either if X is finite dimensional (use the cellular approximation theorem) or if X has only a
finite number of nonzero homotopy groups, then the answer to Whitehead’s question is yes!
However, in general, there are examples, founded by Adams [1] and Gray [6] independently,
saying that the answer to this question is no! It is also shown that in [16] if the base space of
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a sphere fibration ξ : E π−→ B is a topological manifold, then a Hopf index theorem can be
obtained.

Let Z be the ring of integers and let Σ denote the suspension functor. For a connected CW-
space X , we let SNT (X) denote the set of all homotopy types [X ′] such that the Postnikov
approximations X(n) and X ′(n) are homotopy equivalent for all n. This is a pointed set with
base point ∗ = [X ]. It is well known in [11] that the set of all the same homotopy n-types for
the k-th iterated suspension of the Eilenberg-MacLane space K(Z, 2b + 1) is trivial for k ≥ 0;
that is, SNT (ΣkK(Z, 2b+1)) = ∗. One reason of this fact is that ΣkK(Z, 2b+1) has a rational
homotopy type of a single sphere of dimension k+ 2b+ 1. As we can see, the even dimensional
case is much more complicated because ΣK(Z, 2a) has a rational homotopy type of a bouquet
of infinitely many spheres of dimensions 2a+ 1, 4a+ 1, · · · , 2na+ 1, · · · . So it is natural to ask
in the case of even integers. The first interesting case (a = 1) is the following conjecture.

Conjecture 1.1 (see [11, p. 287]) SNT (ΣK(Z, 2)) = ∗.
The positive answer to this conjecture was given in [8]. More generally, what will happen

in the case of the suspension of the wedge products of the Eilenberg-MacLane spaces of various
types? After suspensions or wedge products of the Eilenberg-MacLane spaces K(Z, 2a) and
K(Z, 2b + 1) for a, b ≥ 1 as the infinite loop spaces, they become much more intractable, and
they are worth mentioning what it is in the SNT -sense. The purpose of this paper is to provide
an answer to the above query as a general version of the original same n-type conjecture.

Theorem 1.1 Let Y := K(Z, 2a1) ∨K(Z, 2a2) ∨ · · · ∨K(Z, 2ak) be the wedge products of
the Eilenberg-MacLane spaces, where ai is the positive integer for i = 1, 2, · · · , k with a1 < a2 <

· · · < ak. Then SNT (ΣY ) = ∗.
In this paper we often do not distinguish notationally between a base point preserving map

and its homotopy class. We denote Q by the set of all rational numbers. As an adjointness,
we will make use of the notations Σ and Ω for the suspension and loop functors in the based
homotopy category, respectively.

2 Homotopy Self-Equivalences of CW-Spaces

Let Aut(X) be the group of homotopy classes of homotopy self-equivalences of a space
X and let Aut(π≤n(X)) denote the group of automorphisms of the graded Z-module, π≤n(X),
preserving the Whitehead product pairings. McGibbon and Møller (see [11, Theorem 1]) proved
the following theorem.

Theorem 2.1 Let X be a 1-connected space with finite type over some subring of the ratio-
nals. Assume that X has the rational homotopy type of a bouquet of spheres. Then the following
three conditions are equivalent:

(a) SNT (X) = ∗;
(b) the map Aut(X)

f �→f(n)
�� Aut(X(n)) has a finite cokernel for each n;

(c) the map Aut(X)
f �→f� �� Aut(π≤n(X)) has a finite cokernel for each n.

In 1976, Wilkerson (see [21, Theorem I]) classified CW-spaces having the same n-type up
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to homotopy, and proved that for a connected CW-complex X , there is a bijection of pointed
sets

SNT (X) ≈ lim1Aut(X(n)),

where lim1 is the first derived limit of groups (not necessarily abelian) in the sense of Bousfield
and Kan [4]. Thus, if X is a space of finite type, then the torsion subgroup of π∗(X(n)) can be
ignored in the lim1-calculation (see [12]).

We note that Y has a CW-decomposition of wedges based on the Eilenberg-MacLane spaces
K(Z, 2as) as follows:

K(Z, 2as) = S2as ∪ T s1 ∪γ1 e4as ∪ T s2 ∪γ2 e6as ∪ · · · ∪ T sn−1 ∪γn−1 e2nas ∪ T sn ∪γn e2(n+1)as · · ·
for s = 1, 2, · · · , k, where γn is an attaching map, and T sn denotes the other cells or the Moore
spaces for torsions of the reduced homology groups for n = 1, 2, 3, · · · .

In order to define the homotopy self-maps of the suspension of wedges of the Eilenberg-
MacLane spaces K(Z, 2as), s = 1, 2, · · · , k, we first define maps ϕ̂as

n : Y → ΩΣY for s =
1, 2, · · · , k and n = 1, 2, 3, · · · as follows.

Definition 2.1 Let

K(Z, 2as)c = K(Z, 2a1) ∨ · · · ∨K(Z, 2as−1) ∨K(Z, 2as+1) ∨ · · · ∨K(Z, 2ak)

for each s = 1, 2, · · · , k, and let Yt denote the t-skeleton of Y := K(Z, 2a1) ∨K(Z, 2a2) ∨ · · · ∨
K(Z, 2ak). Then the cofibration sequences

K(Z, 2as)c
� � i1,as �� Y

p1,as �� Y/K(Z, 2as)c

and

Y2nas−1
� � in,as �� Y

pn,as �� Y/Y2nas−1

induce the exact sequences of groups

[Y/K(Z, 2as)c,ΩΣY ]
p�
1,as �� [Y,ΩΣY ]

i�1,as �� [K(Z, 2as)c,ΩΣY ]

and

[Y/Y2nas−1,ΩΣY ]
p�

n,as �� [Y,ΩΣY ]
i�n,as �� [Y2nas−1,ΩΣY ]

for n ≥ 2 and s = 1, 2, · · · , k. We now take essential maps

ϕ̂as
1 ∈ i�1,as

−1
(∗) = ker(i�1,as

) ⊂ [Y,ΩΣY ]

and
ϕ̂as
n ∈ i�n,as

−1
(∗) = ker(i�n,as

) ⊂ [Y,ΩΣY ]

for n ≥ 2 and s = 1, 2, · · · , k. Similarly, we can choose maps

̂ψas
1 : Y/K(Z, 2as)c −→ ΩΣY

and
̂ψas
n : Y/Y2nas−1 −→ ΩΣY

with p�1,as
( ̂ψas

1 ) = ϕ̂as
1 and p�n,as

( ̂ψas
n ) = ϕ̂as

n for n ≥ 2 and s = 1, 2, · · · , k, respectively, by using
the above exact sequences.



954 D. W. Lee

In the above definition, we note that

Y/K(Z, 2as)c = S2as ∪ higher cells

and
Y/Y2nas−1 = S2nas ∪ the other sphere(s) and higher cells.

We now have the following definition.

Definition 2.2 We define the rationally non-trivial homotopy elements x̂as
1 and x̂as

n of
the homotopy groups modulo torsions π2as(ΩΣY )/torsion and π2nas(ΩΣY )/torsion by x̂as

1 =
̂ψas
1 |S2as and x̂as

n = ̂ψas
n |S2nas , respectively, for s = 1, 2, · · · , k and n ≥ 2.

We now take the self-maps ϕas
n : ΣY → ΣY and maps xas

n : S2nas+1 → ΣY as the adjointness
of ϕ̂as

n : Y → ΩΣY and x̂as
n : S2nas → ΩΣY , respectively, for s = 1, 2, · · · , k and n = 1, 2, 3, · · · .

We then order the basic Whitehead products (see [7]) of weight 1 on the graded homotopy groups
modulo torsion, π∗(ΣY )/torsion, as follows: We order the rationally non-trivial elements xas

m

and xat
n of π∗(ΣY )/torsion as xas

m < xat
n either if dim(xas

m ) < dim(xat
n ), or if dim(xas

m ) = dim(xat
n )

and as < at for s, t = 1, 2, · · · , k and m,n = 1, 2, 3, · · · .
Let [ϕas

m , ϕ
at
n ] : ΣY → ΣY be the commutator of self-maps ϕas

m and ϕat
n ; that is

[ϕas
m , ϕ

at
n ] = ϕas

m + ϕat
n − ϕas

m − ϕat
n ,

where the operations are the suspension additions on ΣY . By using this suspension structure, we
construct self-maps of ΣY by I+[ϕ

asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]], where I is the identity map

of ΣY and [ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]] is the l-th iterated commutator of self-maps ϕasi

ni :
ΣY → ΣY, i = 1, 2, · · · , l on the suspension structure for si = 1, 2, · · · , k, and ni = 1, 2, 3, · · · .
The Whitehead theorem asserts that the above self-maps I+ [ϕ

asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]]

of ΣY are actually homotopy self-equivalences.
We note that the above iterated commutator maps

[ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]] : ΣY −→ ΣY

do make sense because there are infinitely many non-zero cohomology cup products in Y so that
it has the infinite Lusternik-Schnirelmann category (see [20, Chapter X] and [18]). Moreover,
Arkowitz and Curjel (see [2, Theorem 5]) showed that the n-fold commutator is of finite order
if and only if all n-fold cup products of any positive dimensional rational cohomology classes of
a space vanish.

Remark 2.1 (a) Let x be a rationally non-trivial indecomposable element of the homotopy
groups π2(n1as1+n2as2+···+nlasl

)+1(ΣY ). Then

(I + [ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]])�(x) = x+ [ϕ

asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]]�(x),

where the first addition is the one of suspension structure on ΣY , while the second addition
refers to the one of homotopy groups (see [8, Lemma 3.2]).

(b) Let J : Y → ΩΣY be the James map. Then we have

Ω[ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]] ◦ J = [ϕ̂

asl
nl , [ϕ̂

asl−1
nl−1 , · · · , [ϕ̂as1

n1 , ϕ̂
as2
n2 ] · · · ]]

in the group [Y,ΩΣY ] (see also [9, Lemma 4]).
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By using the Serre spectral sequence of a path space fibration

K(Z, 2as − 1) −→ PK(Z, 2as) −→ K(Z, 2as)

for each s = 1, 2, · · · , k, we have an algebra isomorphismH∗(K(Z, 2as); Q) ∼= Q[αs]. Here Q[αs]
is the polynomial algebra over Q generated by αs of dimension 2as; that is, αs is a generator
of H2as(K(Z, 2as); Q) with 〈αms , α′

n〉 = δmn, where α′
n is a rational homology generator of

dimension 2nas.

3 Proof of Theorem 1.1

We point out that the proof of Theorem 1.1 depends highly on Theorem 2.1. We remark
that the total rational homotopy group ̂L = π∗(ΩΣY ) ⊗ Q of ΩΣY is a graded Lie algebra
over Q with Lie bracket 〈 , 〉 given by the Samelson product which is called the rational
homotopy Lie algebra of ΣY (see [14] for the de Rham homotopy theory). For s = 1, 2, · · · , k
and n = 1, 2, 3, · · · , we let ̂L≤as,n denote the subalgebra of ̂L generated by all free algebra
generators of degree less than or equal to 2nas, that is

̂L≤as,n = π≤2nas(ΩΣY ) ⊗ Q

with generators χ̂asi
nj ∈ π2njasi

(ΩΣYQ) so that njasi ≤ nas, where χ̂asi
nj : S2njasi → ΩΣYQ is

the composition r ◦ x̂asi
nj of the rationally non-trivial indecomposable element x̂asi

nj : S2njasi →
ΩΣY of π2njasi

(ΩΣY )/torsion for si = 1, 2, · · · , k and nj = 1, 2, 3, · · · with the rationalization
r : ΩΣY → ΩΣYQ. As an adjointness,

L≤as,n = π≤2nas+1(ΣY ) ⊗ Q

with the Whitehead product [ , ]W has the graded quasi-Lie algebra structure which is called
the Whitehead algebra with generators χasi

nj ∈ π2njasi
+1(ΣYQ).

Remark 3.1 We consider the following cofibration sequence:

S2(n1as1+n2as2)+1
[x

as1
n1 ,x

as2
n2 ]W �� S2n1as1+1 ∨ S2n2as2+1 −→ S2n1as1+1 × S2n2as2+1,

where
x
asi
nj ∈ π2njasi

+1(S2njasi
+1) ∼= Z ⊂ π2njasi

+1(ΣY )/torsion

are the rationally non-trivial homotopy elements. By considering the homotopy cofibre of
the above Whitehead product map and the cohomology cup product argument on it, we can
see that [xas1

n1 , x
as2
n2 ]W is rationally non-trivial, and that by induction on l the iterated ba-

sic Whitehead products [x
asl
nl , [x

asl−1
nl−1 , · · · , [xas1

n1 , x
as2
n2 ]W · · · ]W ]W in the graded homotopy group

π∗(ΣY )/torsion are also rationally non-trivial (see [10, Lemma 3.5] for details).

Thus we can define the following.

Definition 3.1 The basic Whitehead product [χ
asl
nl , [χ

asl−1
nl−1 , · · · , [χas1

n1 , χ
as2
n2 ]W · · · ]W ]W is

said to be a purely decomposable generator of the rational homotopy group in dimension 2(n1a1+
n2a2 + · · · + nlal) + 1 if s1 = s2 = · · · = sl, and it is said to be a hybrid decomposable gener-
ator if there is at least one si which differs from one of those sj, where i ∈ {1, 2, · · · , l} and
j = 1, 2, · · · , l.
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Recall that

˜H∗(Y ; Z)/torsion ∼= Z{βas
n | n = 1, 2, 3, · · · and s = 1, 2, · · · , k}

as a graded Z-module and

˜H∗(Y ; Q) ∼= Q{bas
n | n = 1, 2, 3, · · · and s = 1, 2, · · · , k}

as a graded Q-module, where βas
n and bas

n are the standard generators of the homology groups
H2nas(Y ; Z)/torsion and H2nas(Y ; Q), respectively for n = 1, 2, 3, · · · and s = 1, 2, · · · , k. The
Bott-Samelson theorem (see [3]) says that the Pontryagin algebra H∗(ΩΣY ; Q) is isomorphic
to the tensor algebra TH∗(Y ; Q) generated by {bas

n | n = 1, 2, 3, · · · and s = 1, 2, · · · , k}.
Let ad[ϕ

asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]] : Y −→ ΩΣY be the adjoint of the iterated com-

mutator map [ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]] : ΣY −→ ΣY . Then we have

ad[ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]] = [ϕ̂

asl
nl , [ϕ̂

asl−1
nl−1 , · · · , [ϕ̂as1

n1 , ϕ̂
as2
n2 ] · · · ]],

since the map ad = ̂ : [ΣY,ΣY ] −→ [Y,ΩΣY ] defined by

(adϕ)(y)(t) = ϕ̂(y)(t) = ϕ〈y, t〉

is an isomorphism of groups, where ϕ ∈ [ΣY,ΣY ], y ∈ Y, t ∈ I and 〈y, t〉 ∈ ΣY . Moreover, we
have the following lemma.

Lemma 3.1 Let j : Yt ↪→ Y and q : Yt → St be the inclusion map and the projection to the
top cell of Yt, respectively. Then the following diagram

Yt
� � j ��

q

��
�

Y

[ϕ̂
asl
nl

,[ϕ̂
asl−1
nl−1 ,··· ,[ϕ̂as1

n1 ,ϕ̂
as2
n2 ]··· ]]

��
St

〈x̂asl
nl

,〈x̂asl−1
nl−1 ,··· ,〈x̂as1

n1 ,x̂
as2
n2 〉··· 〉〉

�� ΩΣY

(3.1)

is commutative up to homotopy, where t = 2(n1as1 +n2as2 + · · ·+nlasl
) and 〈x̂asl

nl , 〈x̂
asl−1
nl−1 , · · · ,

〈x̂as1
n1 , x̂

as2
n2 〉 · · · 〉〉 is the iterated Samelson product.

Proof We first consider the exact sequence

[Y/Yt−1, Y ∧ Y ]
p∗ �� [Y, Y ∧ Y ] i∗ �� [Yt−1, Y ∧ Y ],

induced by a cofibration sequence

Yt−1
� � i �� Y

p �� Y/Yt−1.

Let Δ : Y → Y ∧ Y be the reduced diagonal map (i.e., the composite of the diagonal Δ : Y →
Y × Y with the projection π : Y × Y → Y ∧ Y onto the smash product) and let pni,asi

: Y →
Y/Y2niasi

−1 be the projection for i = 1, 2. Then by using the cellular approximation theorem,
and considering the cell structure of Y ∧ Y and the composition with

pn1,as1
∧ pn2,as2

: Y ∧ Y −→ Y/Y2n1as1−1 ∧ Y/Y2n2as2−1,
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we have (pn1,as1
∧ pn2,as2

) ◦ Δ ◦ i = ∗. From the above exact sequence, there exists a map

∇ : Y/Yt−1 −→ Y/Y2n1as1−1 ∧ Y/Y2n2as2−1

such that ∇ ◦ p = (pn1,as1
∧ pn2,as2

) ◦ Δ.
By using this fact, we now consider the following commutative diagram up to homotopy

(see also [13] in the case of the infinite complex projective space):

Yt−1� �

i

��
Y

Δ ��

p

��

Y ∧ Y
ϕ̂

as1
n1 ∧ϕ̂as2

n2 ��

pn1,as1
∧pn2,as2

��

ΩΣY ∧ ΩΣY

id

��
Yt

� �

j

�����������������
��

q

�����
���

���
���

�� Y/Yt−1
∇ �� Y/Y2n1as1−1 ∧ Y/Y2n2as2−1

̂ψ
as1
n1 ∧ ̂ψ

as2
n2 �� ΩΣY ∧ ΩΣY

C

��
St

��

= �� S2n1as1 ∧ S2n2as2

��

x̂
as1
n1 ∧x̂as2

n2

������������������������� 〈x̂as1
n1 ,x̂

as2
n2 〉

�� ΩΣY

(3.2)

where t = 2(n1as1 + n2as2) and C : ΩΣY ∧ΩΣY → ΩΣY is the commutator map with respect
to the loop operation, that is

C(ϕ̂as1
n1 (y), ϕ̂as2

n2 (y)) = ϕ̂
as1
n1 (y) · ϕ̂as2

n2 (y) · (ϕ̂as1
n1 (y))−1 · (ϕ̂as2

n2 (y))−1.

Here the multiplication is the loop multiplication and the inverse means the loop inverse ν :
ΩΣY → ΩΣY defined by ν(ω) = ω−1, where ω−1(t) = ω(1 − t), t ∈ [0, 1]. It shows that

[ϕ̂as1
n1 , ϕ̂

as2
n2 ] ◦ j = 〈x̂as1

n1 , x̂
as2
n2 〉 ◦ q.

The proof in case of the l-fold iterated commutators and the Samelson products goes to the
same way by substituting ϕ̂

asl
nl and [ϕ̂

asl−1
nl−1 , · · · , [ϕ̂as1

n1 , ϕ̂
as2
n2 ] · · · ] for ϕ̂as1

n1 and ϕ̂as2
n2 , respectively

(similarly for the iterated Samelson products of homotopy classes).

Lemma 3.2 Let h : π∗(ΩΣY ) → H∗(ΩΣY ; Q) be the Hurewicz homomorphism. Then

h(〈x̂asl
nl , 〈x̂

asl−1
nl−1 , · · · , 〈x̂as1

n1 , x̂
as2
n2 〉 · · · 〉〉) = [ϕ̂

asl
nl , [ϕ̂

asl−1
nl−1 , · · · , [ϕ̂as1

n1 , ϕ̂
as2
n2 ] · · · ]]∗(bas

n ),

where bas
n is the standard generator of rational homology in dimension 2(n1as1 + n2as2 + · · ·+

nlasl
).

Proof By applying homology to the above homotopy commutative diagram (3.2) in the
case of the two-fold commutators and the Samelson products, we obtain

h(〈x̂as1
n1 , x̂

as2
n2 〉) = [ϕ̂as1

n1 , ϕ̂
as2
n2 ]∗(bas

n )



958 D. W. Lee

in rational homology of ΩΣY . Here nas = n1as1 + n2as2 and bas
n is the standard generator of

H2(n1as1+n2as2 )(Y ; Q). The homotopy commutative diagram (3.1) in Lemma 3.1 shows that
this lemma is still true for the l-th iterated commutators and the iterated Samelson products,
as required.

By considering the cell structure of the product of CW-spaces (this works for countable
CW-complexes or when one factor is locally finite), we have the following lemma.

Lemma 3.3 If X is a CW-complex of finite type with base point x0 as the zero skeleton
and if f and g : X → ΩX ′ are the base point preserving maps with f |Xp � ∗ and g|Xq � ∗,
respectively, then the restriction of the commutator [f, g] : X → ΩX ′ to the (p+ q)-skeleton of
X is inessential.

Proof For details, see [10, Lemma 2.3].

Lemma 3.4 Let t = 2(n1as1 + n2as2 + · · · + nlasl
). Then

[ϕ̂
asl
nl , [ϕ̂

asl−1
nl−1 , · · · , [ϕ̂as1

n1 , ϕ̂
as2
n2 ] · · · ]]|Yt−1 : Yt−1 −→ ΩΣY

is inessential, where si = 1, 2, · · · , k and ni = 1, 2, 3, · · · for i ∈ {1, 2, · · · , l}.

Proof We prove this lemma by induction on l. Since ad[ϕas1
n1 , ϕ

as2
n2 ] = ̂[ϕas1

n1 , ϕ
as2
n2 ] =

[ϕ̂as1
n1 , ϕ̂

as2
n2 ] and ϕ̂asi

ni |Y2niasi−1
� ∗ for si = 1, 2, · · · , k, and ni = 1, 2, 3, · · · , by Lemma 3.3, we see

that the commutator [ϕ̂as1
n1 , ϕ̂

as2
n2 ] restricts to the trivial map on the skeleton Y2(n1as1+n2as2)−2.

By considering the cell structures of the Eilenberg-MacLane spaces described above, we see
that Y has no cells in some ranges of dimensions, more precisely, between dimensions 2n1as1 +
2n2as2 − 2 and 2n1as1 + 2n2as2 − 1, that is

Y2(n1as1+n2as2 )−2 = Y2(n1as1+n2as2)−1.

The cellular approximation theorem shows that the restriction [ϕ̂as1
n1 , ϕ̂

as2
n2 ]|Y2(n1as1+n2as2 )−1 to

the skeleton is null homotopic.
We now suppose that [ϕ̂

asl−1
nl−1 , · · · , [ϕ̂as1

n1 , ϕ̂
as2
n2 ] · · · ]|Y2(n1as1+n2as2+···+nn−1asl−1 )−1 is inessential.

Since ϕ̂
asl
nl |Y2nlasl

−1 � ∗, the similar argument as described above shows that

[ϕ̂
asl
nl , [ϕ̂

asl−1
nl−1 , · · · , [ϕ̂as1

n1 , ϕ̂
as2
n2 ] · · · ]]|Yt−1 � ∗.

By induction on l, we complete the proof of this lemma.

Lemma 3.5 For each basic Whitehead product [x
asl
nl , [x

asl−1
nl−1 , · · · , [xas1

n1 , x
as2
n2 ]W · · · ]W ]W of

the graded homotopy group π∗(ΣY ), we can construct the corresponding iterated commutator
[ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]] in the group [ΣY,ΣY ] such that

(I+[ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]])�(xas

n ) = xas
n +λ[x

asl
nl , [x

asl−1
nl−1 , · · · , [xas1

n1 , x
as2
n2 ]W · · · ]W ]W ,

where λ �= 0, and xas
n and xasi

ni are rationally non-trivial indecomposable elements, and nas =
n1as1 + n2as2 + · · · + nlasl

.
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Proof We argue about a matter with induction on l again. We first show that

[ϕas1
n1 , ϕ

as2
n2 ]�(xas

n ) = λ[xas1
n1 , x

as2
n2 ]W ,

where λ �= 0, and nas = n1as1 + n2as2 . To do this, we consider the following commutative
diagram:

π∗(ΩΣY )
Ω[ϕ

as1
n1 ,ϕ

as2
n2 ]� ��

h

��

π∗(ΩΣY )

h

��
H∗(ΩΣY ; Q)

Ω[ϕ
as1
n1 ,ϕ

as2
n2 ]∗ �� H∗(ΩΣY ; Q)

The Cartan-Serre theorem (see [5, Theorem 16.10]) asserts that the Hurewicz homomorphism
h : π∗(ΩΣY ) → H∗(ΩΣY ; Q) becomes an isomorphism

π∗(ΩΣY ) ⊗ Q ∼= PH∗(ΩΣY ; Q),

where the latter is a primitive subspace of H∗(ΩΣY ; Q). Thus we observe that

h(x̂as
n ) = λbas

n + decomposables (λ �= 0)

for each s = 1, 2, · · · , k and n = 1, 2, 3, · · · (compare with the Hurewicz map of the Brown-
Peterson spectra in [15, p. 166]). Here x̂as

n is the rationally non-trivial indecomposable element
of the homotopy groups, and bas

n (= E∗(bas
n )) is the rational homology generator in dimension

2nas, where E : Y → ΩΣY is the canonical inclusion. We now have

hΩ[ϕas1
n1 , ϕ

as2
n2 ]�(x̂as

n ) = Ω[ϕas1
n1 , ϕ

as2
n2 ]∗h(x̂as

n ) (by commutativity)

= [ϕ̂as1
n1 , ϕ̂

as2
n2 ]∗(λbas

n + decomposables) (by Remark 2.1 (b))

= [ϕ̂as1
n1 , ϕ̂

as2
n2 ]∗(λbas

n ) + 0 (by Lemma 3.4)

= λh(〈x̂as1
n1 , x̂

as2
n2 〉) (by Lemma 3.2 )

= h(λ〈x̂as1
n1 , x̂

as2
n2 〉). (3.3)

It can be noticed that the above zero term is derived from the fact that the restriction
[ϕ̂as1
n1 , ϕ̂

as2
n2 ]|Y2(n1as1+n2as2 )−1 to the skeleton is inessential by Lemma 3.4; that is

[ϕ̂as1
n1 , ϕ̂

as2
n2 ]∗(b

asi
nj ) = 0

for dim(basi
nj ) ≤ 2(n1as1+n2as2)−1 in rational homology of ΩΣY . Moreover, we see that x̂as

n and
〈x̂as1
n1 , x̂

as2
n2 〉 are rationally non-trivial indecomposable and decomposable elements, respectively,

in π2(n1as1+n2as2)(ΩΣY )/torsion, by Remark 3.1 as adjointness for decomposable generators,
and that h(x̂as

n ) is spherical, and thus primitive. Now considering the above equation (3.3), we
observe that

Ω[ϕas1
n1 , ϕ

as2
n2 ]�(x̂as

n ) = λ〈x̂as1
n1 , x̂

as2
n2 〉.

On the other hand, Ω[ϕas1
n1 , ϕ

as2
n2 ] is a loop map, thus it is an H-map. Furthermore, the

Scheerer’s theorem (see [17, p. 75]) says that there is a bijection between [ΣY,ΣY ] and the set
[ΩΣY,ΩΣY ]H of homotopy classes of H-maps ΩΣY → ΩΣY . Therefore, by taking the adjoint
of the Samelson product, we obtain the result.
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We now suppose that the result holds for the (l − 1)-fold Whitehead product. Since

[ϕ̂
asl−1
nl−1 , · · · , [ϕ̂as1

n1 , ϕ̂
as2
n2 ] · · · ]|Y2(n1as1+n2as2+···+nl−1asl−1 )−1 � ∗,

and the iterated Samelson product 〈x̂asl−1
nl−1 , · · · , 〈x̂as1

n1 , x̂
as2
n2 〉 · · · 〉 is rationally non-trivial, by

using the first result above and combining with ϕ̂
asl
nl : Y → ΩΣY , we can construct an iterated

commutator map [ϕ̂
asl
nl , [ϕ̂

asl−1
nl−1 , · · · , [ϕ̂as1

n1 , ϕ̂
as2
n2 ] · · · ]] such that, after taking the adjointness, the

desired formula of this lemma is obtained.

Remark 3.2 We turn now to the other types of purely decomposable generators, namely
[[χas

1 , χ
as
2 ]W , [χas

1 , χ
as
3 ]W ]W and [[χas

1 , χ
as
2 ]W , [χas

1 , χ
as
4 ]W ]W , consisting of the basic Whitehead

products of the rational homotopy. It can be shown that we can also consider the iterated com-
mutators [[ϕas

1 , ϕ
as
2 ], [ϕas

1 , ϕ
as
3 ]] and [[ϕas

1 , ϕ
as
2 ], [ϕas

1 , ϕ
as
4 ]] (corresponding to the basic Whitehead

products [[χas
1 , χ

as
2 ]W , [χas

1 , χ
as
3 ]W ]W and [[χas

1 , χ
as
2 ]W , [χas

1 , χ
as
4 ]W ]W , respectively) satisfying

Lemma 3.5 whose proof goes to the similar way.

By using the results described above, we now proceed to the proof of Theorem 1.1 as follows.
If X is a connected H-space of finite type, then X has k-invariants of finite order, and

H∗(X ; Q) becomes a Hopf algebra which is the tensor product of exterior algebras with odd
degree generators and polynomial algebras with even degree generators. On the space level,
this means that every H-space has a rational homotopy type of a product of rational Eilenberg-
MacLane spaces. The Eckmann-Hilton dual of the Hopf-Thom theorem (see [19, p. 263–269]
and [20, Chapter III]) says that ΣK(Z, 2as) has the rational homotopy type of the wedge
products of the infinite number of spheres, that is

ΣK(Z, 2as) �Q S2as+1 ∨ S4as+1 ∨ S6as+1 ∨ · · · ∨ S2nas+1 ∨ · · ·

for each s = 1, 2, · · · , k. By using both the basic Whitehead products and the Hilton’s theorem
(see [7]), we can find various kinds of rational homotopy indecomposable and purely decompos-
able generators on π∗(ΣY ) ⊗ Q as follows:

Table 1 s = 1, 2, · · · , k

n dimension indecomposable purely decomposable
1 2as + 1 χas

1 -
2 4as + 1 χas

2 -
3 6as + 1 χas

3 [χas
1 , χ

as
2 ]W

4 8as + 1 χas
4 [χas

1 , χ
as
3 ]W , [χas

1 [χas
1 , χ

as
2 ]W ]W

5 10as + 1 χas
5 [χas

1 , χ
as
4 ]W , [χas

1 [χas
1 , χ

as
3 ]W ]W , [χas

2 , χ
as
3 ]W ,

[χas
1 , [χ

as
1 [χas

1 , χ
as
2 ]W ]W ]W , [χas

2 [χas
1 , χ

as
2 ]W ]W

...
...

...
...

Moreover, we can see that there exist hybrid decomposable generators of the rational homo-
topy. The hybrid decomposable generator might be occurred firstly in dimension 2a3 + 1. For
example, if a1 = 1, a2 = 3 and a3 = 4, then [χa1

1 , χ
a2
1 ]W and [χa2

1 [χa1
1 , χ

a1
4 ]W ]W are the hybrid

decomposable generators in π9(ΣY )⊗Q and π17(ΣY )⊗Q, respectively. The number of purely
or hybrid decomposable generators increases dramatically as the homotopy dimensions are on
the increase.
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Since the ranks between the graded homotopy group modulo torsion and the graded rational
homotopy group coincide with each other, we can also find the corresponding indecomposable
and decomposable elements on π∗(ΣY )/torsion. More precisely, it can be seen from the above
table that there is only one indecomposable generator, up to sign, of the homotopy group
π2nas+1(ΣY )/torsion for each n = 1, 2, 3, · · · and s = 1, 2, · · · , k, while there are various kinds
of purely or hybrid decomposable generators in it (possibly) for n ≥ 2.

We now let L = (π∗(ΣY )/torsion, [ , ]W ) and L≤as,n = (π≤2nas+1(ΣY )/torsion, [ , ]W )
be the Whitehead algebras (corresponding to L and L≤as,n, respectively) under the Whitehead
products. And we denote Ias

n L and Das
n L by the indecomposable and decomposable com-

ponents, respectively, of the homotopy group modulo torsions, namely, π2nas+1(ΣY )/torsion.
Then we have that Ias

n L ∼= Z, and thus Aut(Ias
n L) ∼= Z2 for each s = 1, 2, · · · , k and n =

1, 2, 3, · · · . Moreover, the following sequence

0 �� Hom(Ias
n L,Das

n L)
f �� Aut(L≤as,n)

g �� Aut(L<as,n) ⊕ Aut(Ias
n L) �� 0

is exact for each s = 1, 2, · · · , k and n = 1, 2, 3, · · · (see [11]). Here the map f sends

[ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]]� ∈ Hom(Ias

n L,Das
n L)

to
I + j ◦ [ϕ

asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]]� ◦ q ∈ Aut(L≤as,n),

and the map g is given by restriction and projection, where q : L≤as,n → Ias
n L is the pro-

jection and j : Das
n L ↪→ L≤as,n is the inclusion. We observe that the above short exact

sequence is still valid since we are working on π≤2nas+1(ΣY )/torsion. Furthermore, we get
Aut(π2as+1(ΣY )/torsion) ∼= Z2 for s = 1, 2, · · · , k, and Aut(π≤2nas+1(ΣY )/torsion) is infinite
for all n ≥ 3 and s = 1, 2, · · · , k. Therefore the induction step begins. We now suppose that the
map Aut(ΣY ) → Aut(L<as,n) has a finite index. For each basic (iterated) Whitehead product
[x
asl
nl , [x

asl−1
nl−1 , · · · , [xas1

n1 , x
as2
n2 ]W · · · ]W ]W ∈ Das

n L (or other types of iterated Whitehead prod-
ucts) with nas = n1as1 + n2as2 + · · ·+ nlasl

and x
asi
ni ∈ Isi

ni
L for i = 1, 2, · · · , l, by Lemma 3.5,

we can always establish an iterated commutator [ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]] (or other

types of iterated commutators), and thus we have a homotopy self-equivalence

I + [ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]] ∈ Aut(ΣY )

completely depending on the form of [x
asl
nl , [x

asl−1
nl−1 , · · · , [xas1

n1 , x
as2
n2 ]W · · · ]W ]W such that the re-

striction (I+[ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]])�|L<as,n to the subalgebra L<as,n is the identity,

and

(I+[ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]])�(xas

n ) = xas
n +λ[x

asl
nl , [x

asl−1
nl−1 , · · · , [xas1

n1 , x
as2
n2 ]W · · · ]W ]W ,

where λ �= 0, and nas = n1as1 + n2as2 + · · · + nlasl
. By considering the indecomposable and

(purely or hybrid) decomposable generators, induction hypothesis and Theorem 2.1, we finally
complete the proof of Theorem 1.1.

Remark 3.3 One may wonder why the k-th suspensions are not mentioned in this pa-
per (or the previous papers [9–10]) for k ≥ 2. Indeed, the homotopy self-equivalences I +
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[ϕ
asl
nl , [ϕ

asl−1
nl−1 , · · · , [ϕas1

n1 , ϕ
as2
n2 ] · · · ]] constructed in our main theorem are not as well behaved as

one might wish on the self-maps of the k-th suspension of a given CW-space Y for k ≥ 2 since
the group [ΣkY,ΣkY ] becomes abelian for k ≥ 2. However, it is reasonable for us to conjecture
that there are lots of self-maps in this abelian group which are nontrivial rationally, but suspend
to the trivial self-map of Σk+1Y .

Acknowledgement The author is grateful to the anonymous referees for their careful
readings and many helpful suggestions that improved the quality of the paper.
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