
Chin. Ann. Math.
38B(3), 2017, 711–740
DOI: 10.1007/s11401-017-1092-7

Chinese Annals of
Mathematics, Series B
c⃝ The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2017

Exact Boundary Controllability on a Tree-Like Network
of Nonlinear Planar Timoshenko Beams∗

Qilong GU1 Günter LEUGERING2 Tatsien LI3

Abstract This paper concerns a system of equations describing the vibrations of a planar
network of nonlinear Timoshenko beams. The authors derive the equations and appropriate
nodal conditions, determine equilibrium solutions and, using the methods of quasilinear
hyperbolic systems, prove that for tree-like networks the natural initial-boundary value
problem admits semi-global classical solutions in the sense of Li [Li, T. T., Controllability
and Observability for Quasilinear Hyperbolic Systems, AIMS Ser. Appl. Math., vol 3,
American Institute of Mathematical Sciences and Higher Education Press, 2010] existing
in a neighborhood of the equilibrium solution. The authors then prove the local exact
controllability of such networks near such equilibrium configurations in a certain specified
time interval depending on the speed of propagation in the individual beams.
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1 Introduction

We consider a planar network of initially straight nonlinear Timoshenko beams under control

at some external boundary nodes. The corresponding linear system has been modeled and

analyzed with respect to wellposedness and controllability, observability and stabilizability,

optimal control and domain decomposition methods by Lagenese, Leugering and Schmidt [5–

6] and Lagnese and Leugering [8]. Nonlinear Timoshenko beams in three spatial dimensions

including thermal effects have been introduced by the same authors in [7]. Modeling and well-

posedness for nonlinear Timoshenko beams and in particular for networks of such beams, to the

best knowledge of the authors, have not been studied by many authors. A planar couple-stress

modeling has been recently described by Asghari et al. [1]. Other planar models have been given

by Zhong and Guo [17] and Racke and Riviera [12], the latter with thermal effects but without

longitudinal displacement. We will show below that these models are included in the approach

described in [7]. Global wellposedness for nonlinear Timoshenko beams in a general framework

does not seem to be available within the literature so far. Problems of exact controllability,
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observability and even stabilizability for single nonlinear Timoshenko beams has, to the best

knowledge of the authors, not been considered in the literature, and this is particularly so for

networks of nonlinear Timoshenko beams. This paper provides a first attempt to solve these

problems. We concentrate here our attention to planar networks of such kind. Networks in

three-spatial dimensions are subject to a forthcoming publication.

The plan of the paper is as follows. We first briefly describe the modeling procedure outlined

in [7]. The focus here, however, is on planar, initially straight and isothermal shearable beams.

These assumptions drastically reduce the complexity of the modeling procedure and, therefore,

the description is of independent interest. We then formulate the corresponding initial-boundary

value problem for a single beam under gravity. In the next step, we look for equilibria under

a given set of boundary conditions. In order to discuss well-posedness, we rewrite the system

in quasilinear form followed by a representation as a first order system. We notice that in

doing this, an artificial zero eigenvalue appears related to the shear angle. Then, the first order

format allows the application of the concept of semi-global classical solutions in the sense of Li

Tatsien [13]. Having established semi-global existence for the solution of the problem and the

problem resulting in interchanging the space and time variable a transformation that has to

be verified in due course the exact controllability can be shown as in [13]. The remaining part

of the paper is then devoted to extend the method to networks of such nonlinear Timoshenko

beams. Indeed, as is well-known that this procedure applies to tree-like networks using the

so-called peeling method.

2 Modeling of Nonlinear Beams

Let Ω be the domain of the undeformed planar beam:

Ω := {r(x) := r0(x1) + x3e3 | x3e3 ∈ A(x1), x1 ∈ [0, L]},

where e1, e2, e3 constitute an orthonormal basis in R3, L and A(x1) denote the length of the

beam and its cross section at x1, respectively. As we consider a planar and initially straight

reference configuration, e1, e3 describe the plane of deformation, while e2, pointing into the

plane, is the axis of rotation. We may, in fact, assume that A(x1) = A is constant along the

beam. It is clear that more general cases can also be dealt with. The reference configuration Ω

is subject to deformation, and thus we consider R(x) as the vector pointing into the deformed

configuration. Consequently, V(x) := R(x)−r(x) is the displacement. As in all beam theories,

one finally wants to express everything in terms of variables related to the center line x3 = 0

of the beam. Thus, the displacement of the center line is introduced as W(x1) := V(x1, 0),

where we suppress the variable x2, which is zero in the planar case. The tangents are given by

Gi := R,i :=
∂

∂xi
R and Ei(x1) := Gi(x1, 0), i = 1, 3, respectively. We then can write down

the strains

ϵij :=
1

2
(Gi ·Gj − δij) (2.1)

and

ϵij :=
1

2
(Ei ·Ej − δij). (2.2)

Using standard arguments, see [7, 16], for a shearable beam one can establish the following

representation of the potential energy of the beam under deformation:

U =
1

2

∫ L

0

(EAϵ211 +GAϵ213 + EIκ2)dx, (2.3)
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where κ is the curvature due to bending and E,A, I,G are Young’s modulus, the area of cross

section, the inertial moment around the e2 axis, and the shear modulus, respectively. In order

to derive the equations governing the motion of the beam, we need to express the strains (2.2)

and the curvature κ in terms of primitive variables such as displacements and rotation. We

consider the deformation process as being composed of the mappings, a rotation with the angle

Θ about the e2 axis carrying the orthonormal system e1, e3 into ê1, ê3 followed by a deformation

of ê1, ê3 into the non-orthogonal system E1,E3, described by the strains ϵij . The first smallness

assumption concerns the rotation angle Θ such that the rotation takes the form

ê1 = e1 −Θe3, ê3 = Θe1 + e3. (2.4)

By definition, the curvature is given by

κ := ê3 · ê1,1 = −ê1 · ê3,1 = −Θ,1. (2.5)

It is obvious from the definition (2.2) that E1,E3 take the form

E1 = ê1 + ϵ11e1, E3 = ê3 + 2ϵ31e1. (2.6)

Using (2.4) we find {
E1 = (1 + ϵ11)(e1 −Θe3) = e1 +W,1,
E3 = e3 + (Θ + 2ϵ31)e1.

(2.7)

(2.7) describes the overall deformation from e1, e3 into E1,E3 and the second line suggests the

introduction of a total rotation angle ϑ := Θ + 2ϵ31, which accounts for rotation due to both

bending and shear. We are now going to express ϵ in terms of a linear symmetric part and a

nonlinear part based on anti-symmetric quantities. Let
eij :=

1

2
(ei ·Ej + ej ·Ei)− δij ,

ωij :=
1

2
(ei ·Ej − ej ·Ei).

(2.8)

With this notation, we can express ϵ, given by (2.2), as

ϵij = eij +
1

2

∑
p=1,3

(epi + ωpi)(epj + ωpj). (2.9)

At this point, we introduce the second hypothesis on the smallness, namely, we assume that

the strains eij are small with respect to the rotations ωij , in other words, we set

ϵij = eij +
1

2

∑
p=1,3

(ωpi)(ωpj). (2.10)

We have W,1 · e3 = (E1 − e1) · e3 = −Θ =W3,1 and, therefore,

e11 =W1,1, e13 =
1

2
(ϑ−Θ), ω13 =

1

2
(ϑ+Θ). (2.11)

With (2.11) we can now express the strains ϵij as follows:

ϵ11 =W1,1 +
1

8
(ϑ+Θ)2, ϵ13 =

1

2
(ϑ−Θ). (2.12)
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It depends now on how one handles Θ versus ϑ in connection with W3,1 in order to obtain

different models of Timoshenko beams and Euler-Bernoulli beams. If there is no shear strain,

then upon Θ = ϑ = −W3,1 one obtains

ϵ11 =W1,1 +
1

2
W 2

3,1, ϵ13 = 0. (2.13)

This leads to a nonlinear Euler-Bernoulli beam as discussed in [7]. If one keeps the shear strain,

one arises at what has come to be known as von Karman relation, namely,

ϵ11 =W1,1 +
1

2
W 2

3,1, ϵ13 =
1

2
(ϑ+W3,1). (2.14)

We now express the quantities W1,W3, ϑ by u,w,−ψ, respectively, where the minus sign is

introduced only for easier comparison with the traditional notation for linear models. We

introduce then the following potential energy:

U =
1

2

L∫
0

{
EA

( ∂

∂x
u+

1

2

( ∂

∂x
w
)2)2

+GA
( ∂

∂x
w − ψ

)2

+ EI
( ∂

∂x
ψ
)2}

dx. (2.15)

If we consider the deformation of the beam under its own weight, we have to add to the potential

energy the corresponding gravitational effect:

Ug =

L∫
0

ρAg(e · e1u+ e · e3w)dx. (2.16)

Obviously, axial forces no longer couple to rotation (shear), and we then derive the following

nonlinear Timoshenko beam model:

ρA
∂2

∂t2
u = EA

∂2

∂x2
u+

EA

2

∂

∂x

( ∂

∂x
w
)2

− ρgAe · e1,

ρA
∂2

∂t2
w = GA

( ∂2

∂x2
w − ∂

∂x
ψ
)
+

∂

∂x

(
EA

( ∂

∂x
u+

1

2

( ∂

∂x
w
)2) ∂

∂x
w
)
− ρgAe · e3,

ρI
∂2

∂t2
ψ = EI

∂2

∂x2
ψ +GA

( ∂

∂x
w − ψ

)
.

(2.17)

Remark 2.1 Such a system (including higher order terms) has been investigated by Asghari

et al. [1]. If one considers very thin beams, then their model reduces to (2.17). It should also

be mentioned that upon neglecting the longitudinal displacement in (2.17), one derives a model

that can be written in the format of Riviera and Racke [12], where the thermal coupling is also

present. These models are included in the framework of Lagnese, Leugering and Schmidt [7].

While in [12] a wellposedness result is derived for the thermoelastic Timoshenko beam, a global

in time existence and uniqueness result does not seem to be known in the literature as regards

systems (2.17). Finally, if one assumes no shear, i.e., ψ = ∂
∂xw, then one obtains from the

Hamilton principle, after suitably adjusting the potential and kinetic energies, a nonlinear Euler-

Bernoulli-beam equation coupled to longitudinal motion. If the latter, in turn, is neglected one

arrives at a 1-d version of the von Karman-system. See Langese and Leugering [4] and Horn

and Leugering [3] for stabilizability results for the latter beam equations.

We use the model (2.17) in this article. We have the following boundary conditions.
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(i) Dirichlet conditions at x = 0:

u(0, t) = v1D(t), w(0, t) = v2D(t), ψ(0, t) = v3D(t), t ∈ [0, T ]. (2.18)

(ii) Neumann conditons at x = L:

EA
∂

∂x
u(L, t) +

EA

2

( ∂

∂x
w(L, t)

)2

= v1N (t), t ∈ [0, T ], (2.19)

GA
( ∂

∂x
w(L, t)− ψ(L, t)

)
+ EA

[( ∂

∂x
u(L, t) +

1

2

( ∂

∂x
w(L, t)

)2) ∂

∂x
w(L, t)

]
= v2N (t), t ∈ [0, T ], (2.20)

EI
∂

∂x
ψ(L, t) = v3N (t), t ∈ [0, T ]. (2.21)

Remark 2.2 It is clear that with homogeneous boundary data, u = w = ψ = 0, x ∈ [0, L]

is an equilibrium. The determination of all non-zero constant and also nonconstant equilibria

is beyond the scope of the article. This will be considered in a forthcoming publication. Here

we restrict ourselves only with some examples.

We are now in the position to formulate the initial-boundary value problem for a planar

nonlinear Timoshenko beam.

ρA
∂2

∂t2
u(x, t) = EA

∂2

∂x2
u(x, t) +

EA

2

∂

∂x

( ∂

∂x
w(x, t)

)2

,

ρA
∂2

∂t2
w(x, t) = GA

( ∂2

∂x2
w(x, t)− ∂

∂x
ψ(x, t)

)
+
∂

∂x

(
EA

( ∂

∂x
u(x, t) +

1

2

( ∂

∂x
w(x, t)

)2) ∂

∂x
w(x, t)

)
− ρgA,

ρI
∂2

∂t2
ψ(x, t) = EI

∂2

∂x2
ψ(x, t) +GA

( ∂

∂x
w(x, t)− ψ(x, t)

)
,

(x, t) ∈ [0, L]× [0, T ],

(2.22)



u(0, t) = v1D(t), w(0, t) = v2D(t), ψ(0, t) = v3D(t), t ∈ [0, T ],

EA
∂

∂x
u(L, t) +

EA

2

( ∂

∂x
w(L, t)

)2

= v1N (t),

GA
( ∂

∂x
w(L, t)− ψ(L, t)

)
+
(
EA

( ∂

∂x
u(L, t) +

1

2

( ∂

∂x
w(L, t)

)2) ∂

∂x
w(L, t)

)
= v2N (t),

EI
∂

∂x
ψ(L, t) = v3N (t), t ∈ [0, T ],

(2.23)


u(x, 0) = u0(x),

∂

∂t
u(x, 0) = u1(x),

w(x, 0) = w0(x),
∂

∂t
w(x, 0) = w1(x),

ψ(x, 0) = ψ0(x),
∂

∂t
ψ(x, 0) = ψ1(x), x ∈ [0, L].

(2.24)

Here (2.22), (2.23) and (2.24) represent the state equations, the boundary conditions and the

initial conditions, respectively.
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2.1 Equilibrium solutions

We now consider equilibrium solutions of (2.22). Clearly, for the homogeneous system, the

zero-state is an equilibrium. However, in the context of mechanics, we always have to deal with

gravitational forces.

Example 2.1 The first case concerns a horizontal beam that is clamped at x = 0 and free

at the other end, i.e., e1 = (1, 0)T, e3 = (0, 1)T = e. Therefore, looking for an equilibrium

solution in the context of gravitation leads to the following ordinary differential system:

0 = EA
∂2

∂x2
u(x) +

EA

2

∂

∂x

( ∂

∂x
w(x)

)2

,

ρgA = GA
( ∂2

∂x2
w(x)− ∂

∂x
ψ(x)

)
+
∂

∂x

(
EA

( ∂

∂x
u(x) +

1

2

( ∂

∂x
w(x)

)2) ∂

∂x
w(x)

)
,

0 = EI
∂2

∂x2
ψ(x) +GA

( ∂

∂x
w(x)− ψ(x)

)
, x ∈ [0, L],

(2.25)



u(0) = 0, w(0) = 0, ψ(0) = 0,

EA
∂

∂x
u(L) +

EA

2

( ∂

∂x
w(L)

)2

= 0,

GA
( ∂

∂x
w(L)− ψ(L)

)
+

(
EA

( ∂

∂x
u(L) +

1

2

( ∂

∂x
w(L)

)2) ∂

∂x
w(L)

)
= 0,

EI
∂

∂x
ψ(L) = 0.

(2.26)

The solution of (2.25) and (2.26) is given by

û(x) = −1

2

(ρgA
EI

)2{
− 1

252
((L− x)7 − L7) +

1

15
((L− x)5 − L5))

EI

GA

+
1

72
L3((L− x)4 − L4)− 1

3
((L− x)3 − L3)

( EI
GA

)2

− L3

6
((L− x)2 − L2)

EI

GA
+
L6

36
x
}
, (2.27)

ŵ(x) =
ρgA

2EI

(
− 1

12
((L− x)4 − L4)− 1

3
L3x+ ((L− x)2 − L2)

EI

GA

)
, (2.28)

ψ̂(x) =
ρgA

6EI
((L− x)3 − L3). (2.29)

Example 2.2 In the case of a hanging beam, where the top end x = 0 is clamped and the

end x = L is free, we have e1 = −(0, 1)T = −e, e3 = (1, 0)T. Thus,

−ρgA = EA
∂2

∂x2
u(x) +

EA

2

∂

∂x

( ∂

∂x
w(x)

)2

,

0 = GA
( ∂2

∂x2
w(x)− ∂

∂x
ψ(x)

)
+
∂

∂x

(
EA

( ∂

∂x
u(x) +

1

2

( ∂

∂x
w(x)

)2) ∂

∂x
w(x)

)
,

0 = EI
∂2

∂x2
ψ(x) +GA

( ∂

∂x
w(x)− ψ(x)

)
, x ∈ [0, L].

(2.30)

The boundary conditions are the same as in (2.26). In this case the first equation gives a
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tangential load

ρgA(L− x) = EA
( ∂

∂x
u(x) +

1

2

( ∂

∂x
w(x)

)2)
, (2.31)

0 = GA
( ∂2

∂x2
w(x)− ∂

∂x
ψ(x)

)
+ ρgA

∂

∂x

(
(L− x)

∂

∂x
w(x)

)
. (2.32)

Obviously, the unique solution is the one, where w(x) = ψ(x) = 0, ∀x ∈ [0, L], while

u(x) =
ρg

2E
(L2 − (L− x)2),

which clearly shows the stretching due to gravitation.

2.2 Quasilinear form

We proceed to derive the quasilinear form of the system (2.17) or of the initial-boundary

value problem (2.22)–(2.24).

ρA
∂2

∂t2
u = EA

∂2

∂x2
u+ EA

∂

∂x
w
∂2

∂x2
w,

ρA
∂2

∂t2
w = GA

( ∂2

∂x2
w − ∂

∂x
ψ
)

+EA
∂

∂x
w
∂2

∂x2
u+ EA

( ∂

∂x
u+

3

2

( ∂

∂x
w
)2) ∂2

∂x2
w − ρgA,

ρI
∂2

∂t2
ψ = EI

∂2

∂x2
ψ +GA

( ∂

∂x
w − ψ

)
.

(2.33)

We rewrite (2.33) as a system of second order equations in vectorial form as follows. We

introduce the vectorial state as Φ := (u,w, ψ)T and define

M :=

 ρA 0 0
0 ρA 0
0 0 ρI

,

G
(
Φ,

∂

∂x
Φ
)
:=


EA EA

∂

∂x
w 0

EA
∂

∂x
w GA+ EA

( ∂

∂x
u+

3

2

( ∂

∂x
w
)2)

0

0 0 EI

,

F
(
Φ,

∂

∂x
Φ
)
:=


0

−GA ∂

∂x
ψ − ρgA

GA
( ∂

∂x
w − ψ

)
.

(2.34)

The system (2.33) can be written as

M
∂2

∂t2
Φ = G

(
Φ,

∂

∂x
Φ
) ∂2

∂x2
Φ+ F

(
Φ,

∂

∂x
Φ
)
. (2.35)

System (2.35) is a quasilinear system of second order in space and time. Now, given an equi-

librium Φ̂ := (û, ŵ, ψ̂)T, we look for states Φ = Φ̂ + Φ̃ for possibly small Φ̃. Clearly, we can

reformulate the quasilinear system in terms of the perturbation Φ̃. To this end, we define
G
(
Φ̃,

∂

∂x
Φ̃
)
:= G

(
Φ̂+ Φ̃,

∂

∂x
Φ̂+

∂

∂x
Φ̃
)
,

F
(
Φ̃,

∂

∂x
Φ̃
)
:= G

(
Φ̃,

∂

∂x
Φ̃
) ∂2

∂x2
Φ̂+ F

(
Φ̂+ Φ̃,

∂

∂x
Φ̂+

∂

∂x
Φ̃
)
.

(2.36)
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Because the Φ̂ is an equilibrium solution, we have

F(0, 0) = 0. (2.37)

The system (2.33) takes now the form

M
∂2

∂t2
Φ̃ = G

(
Φ̃,

∂

∂x
Φ̃
) ∂2

∂x2
Φ̃+ F

(
Φ̃,

∂

∂x
Φ̃
)
. (2.38)

Now,

M−1G
(
Φ̃,

∂

∂x
Φ̃
)
=
E

ρ


1

∂

∂x
(ŵ + w) 0

∂

∂x
(ŵ + w)

G

E
+

∂

∂x
(û+ u) +

3

2

( ∂

∂x
(ŵ + w)

)2

0

0 0 1

 (2.39)

is a symmetric matrix. Hyperbolicity is then a matter of showing that the eigenvalues ofM−1G
are uniformly positive in a neighborhood of the equilibrium solution. To this end, we introduce

q = q
(
Φ̂, Φ̃,

∂

∂x
Φ̂,

∂

∂x
Φ̃
)
:= 1 +

G

E

∂

∂x
(û+ u) +

3

2

( ∂

∂x
(ŵ + w)

)2

, (2.40)

r = r
(
Φ̂, Φ̃,

∂

∂x
Φ̂,

∂

∂x
Φ̃
)
:=

G

E
+

∂

∂x
(û+ u) +

1

2

( ∂

∂x
(ŵ + w)

)2

. (2.41)

Then the eigenvalues of M−1G are µ1 := E
ρ , µ2, µ3 with

µ2,3

(
Φ̂, Φ̃,

∂

∂x
Φ̂,

∂

∂x
Φ̃
)
=
µ1

2

(
q ±

√
q2 − 4r

)
. (2.42)

As the general discussion on the hyperbolicity of the system depending on the magnitudes of

E and G is a bit involved, for the sake of simplicity, in this article we resort to equilibria such

that the eigenvalues µi are uniformly positive and smooth in a sufficiently small neighborhood

of the equilibrium solution Φ̂.

For the analysis of (2.35), in particular for its controllability, it is important to consider the

invertibility of the matrix G(Φ̃, ∂
∂xΦ̃) in a neighborhood of Φ̂. Indeed, we formally have

G
(
Φ̃,

∂

∂x
Φ̃
)−1

=
1

d
(
Φ̃,

∂

∂x
Φ̃
)


∂

∂x
(û+ ũ) +

3

2

( ∂

∂x
(ŵ + w̃)

)2

+
G

E
− ∂

∂x
(ŵ + w̃)

− ∂

∂x
(ŵ + w̃) 1

0 0

0
0

E

I

( ∂

∂x
(û+ ũ) +

1

2

( ∂

∂x
(ŵ + w̃)

)2

+
G

E

)
,

where d
(
Φ̃, ∂

∂xΦ̃
)

:= EA
(
G
E + ∂

∂x

(
û+ ũ+ 1

2

(
∂
∂x (ŵ + w̃)

)2)
. It is obvious that the matrix

G(Φ̃, ∂
∂xΦ̃) is indeed invertible in a neighborhood of the equilibrium state Φ̂ that satisfies

the requirements above. Under these conditions, one may then multiply the system (2.38) by

G−1 and obtain the second order derivative in the spatial variable with the identity matrix as
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coefficient. Then, one may interchange x and t. Moreover, in this case, the transformed system

is again a hyperbolic system of second order. Formally, the original system and the one obtained

after interchanging x and t are not of the same type, as first order spatial derivatives in the

coefficients of the x− t version are now time derivatives in the t− x version of the problem. In

order to fully symmetrize the situation, one can use the format discussed by Wang [14].

3 First Order System

In order to analyze the well-posedness of system (2.33), we transform the second order

equations into a quasilinear hyperbolic system of first order. There are a number of equivalent

ways to do that. In order to avoid the ·̃-notation, we write the perturbations without the ·̃-sign.
To this end, we introduce the following variables U = (u1, · · · , u7):

u1 :=
∂

∂x
u, u2 :=

∂

∂t
u, u3 :=

∂

∂x
w, u4 :=

∂

∂t
w,

u5 :=
∂

∂x
ψ, u6 :=

∂

∂t
ψ, u7 := ψ

(3.1)

and write (2.17) in the following form:

∂

∂t
u1 =

∂

∂x
u2,

∂

∂t
u2 =

E

ρ

∂

∂x
u1 +

E

ρ
(û3 + u3)

∂

∂x
u3,

∂

∂t
u3 =

∂

∂x
u4,

∂

∂t
u4 =

E

ρ
(û3 + u3)

∂

∂x
u1 +

G+ E(û1 + u1 +
3
2 (û3 + u3)

2)

ρ

∂

∂x
u3 −

G

ρ
(û5 + u5)− g,

∂

∂t
u5 =

∂

∂x
u6,

∂

∂t
u6 =

E

ρ

∂

∂x
u5 +

GA

ρI
(û3 + u3 − û7 − u7),

∂

∂t
u7 = u6.

(3.2)

We rewrite (3.2) into matrix format and introduce

A(U) := −



0 1 0 0 0 0 0

E

ρ
0

E

ρ
(û3 + u3) 0 0 0 0

0 0 0 1 0 0 0

E

ρ
(û3 + u3) 0

G+ E((û1 + u1 +
3

2
(û3 + u3)

2))

ρ
0 0 0 0

0 0 0 0 0 1 0

0 0 0 0
E

ρ
0 0

0 0 0 0 0 0 0



, (3.3)
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B(U) := −A(U)
∂

∂x
Û +



0
0
0

−G
ρ
(û5 + u5)− g

0

GA

ρI
(û3 + u3 − û7 − u7)

u6


with B(0) = 0. (3.4)

With (3.3) and (3.4), system (3.2) can be written in standard form as follows:

∂

∂t
U +A(U)

∂

∂x
U = B(U). (3.5)

In order to verify the hyperbolicity of (3.5), we need the eigenvalues and eigenvectors of

A(U). We define

q := 2E
(
û1 + u1 +

3

2
(û3 + u3)

2 +
(
1 +

G

E

))
,

r := 16E2
(
û1 + u1 +

1

2
(û3 + u3)

2 +
G

E

)
.

There are three cases to deal with:

(1) G < E,

(2) G = E,

(3) G > E.

We first consider the case E > G. Then the eigenvalues are given in increasing order by
λ1 = −

√
E

ρ
, λ2 = − 1

2
√
ρ

√
q +

√
q2 − r, λ3 = − 1

2
√
ρ

√
q −

√
q2 − r,

λ4 = 0,

λ5 =
1

2
√
ρ

√
q −

√
q2 − r, λ6 =

1

2
√
ρ

√
q +

√
q2 − r, λ7 =

√
E

ρ
.

(3.6)

It is clear that the eigenvalues λj(j = 1, 2, 3, 5, 6, 7) correspond to ±√
µi(i = 1, 2, 3) with (2.42)

of the second order system. In order to establish the relation of the nonlinear model under

gravity with linear Timoshenko model without gravity, we set for the moment g = 0, i.e., we

look at the case Û = 0. In this case, we have as (u1, u3) → (0, 0),

λ2 →


−
√
E

ρ
, E > G,

−
√
G

ρ
, E < G,

λ3 →


−
√
G

ρ
, E > G,

−
√
E

ρ
, E < G,

(3.7)

λ5 →


√
G

ρ
, E > G,√

E

ρ
, E < G,

λ6 →


√
E

ρ
, E > G,√

G

ρ
, E < G.

(3.8)
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Remark 3.1 It should be noted that for Û = U = 0 the eigenvalues λi(i = 1, · · · , 7)
coincide with those of the linear Timoshenko beam system, namely,

µ1 = −

√
E

ρ
= µ2, µ3 = −

√
G

ρ
, µ4 = 0, µ5 =

√
G

ρ
, µ6 =

√
E

ρ
= µ7,

ordered by magnitude for E > G. Notice that for Û = U = 0 the eigenvalues ±
√

E
ρ have

double multiplicity, while the system is strictly hyperbolic for Û ̸= 0 and U such that (u1, u3) ̸=
(E−G

E , 0). The zero eigenvalue is an artificial one which can be avoided by directly considering

the original system (2.35) of second order. It is, however, necessary to use the first order format

in order to utilize the concept of semi-global classical solutions in the sense of Li [13].

For the case E > G we find the following right-eigenvectors:

v1 =

(
0 0 0 0 −

( ρ
E

) 1
2

1 0

)T

,

v2 =

(
1

λ2
1

1

λ2

((λ2
λ1

)2

− 1
) 1

û3 + u3

((λ2
λ1

)2

− 1
) 1

û3 + u3
0 0 0

)T

,

v3 =

(
û3 + u3
λ3

1

(λ3

λ1
)2 − 1

û3 + u3

(λ3

λ1
)2 − 1

1

λ3
1 0 0 0

)T

,

v4 =
(
0 0 0 0 0 0 1

)T
,

v5 =

(
û3 + u3
λ5

1

(λ5

λ1
)2 − 1

û3 + u3

(λ5

λ1
)2 − 1

1

λ5
1 0 0 0

)T

,

v6 =

(
1

λ6
1

1

λ6

((λ6
λ1

)2

− 1
) 1

û3 + u3

((λ6
λ1

)2

− 1
) 1

û3 + u3
0 0 0

)T

,

v7 =

(
0 0 0 0

( ρ
E

) 1
2

1 0

)T

,

(3.9)

while for the case G > E, we have to interchange the role of v2,v3 and v5,v6, according to

the change in the magnitude of G and E. E = G is a degenerate case with the additional

property that now, in the limit, we have three double eigenvalues. Nevertheless, even in this

case the system is strictly hyperbolic in a neighborhood of the origin. We need to evaluate the

left-eigenvectors. These, for the case G < E, are given by

l1 =

(
0 0 0 0

(E
ρ

) 1
2

1 0

)
,

l2 =

(
λ2 1 λ2

((λ2
λ1

)2 − 1
) 1

û3 + u3

((λ2
λ1

)2

− 1
) 1

û3 + u3
0 0 0

)
,

l3 =

(
λ3

(λ3

λ1
)2 − 1

(û3 + u3)
1

(λ3

λ1
)2 − 1

(û3 + u3) λ3 1 0 0 0
)
,

l4 =
(
0 0 0 0 0 0 1

)
,

l5 =

(
λ5

(λ5

λ1
)2 − 1

(û3 + u3)
1

(λ5

λ1
)2 − 1

(û3 + u3) λ5 1 0 0 0
)
,

l6 =

(
λ6 1 λ6

((λ6
λ1

)2

− 1
) 1

û3 + u3

((λ2
λ1

)2

− 1
) 1

û3 + u3
0 0 0

)
,

l7 =

(
0 0 0 0 −

(E
ρ

) 1
2

1 0

)
.

(3.10)

We suppress the analogous cases for G > E and E = G.
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Clearly, for E > G (E < G), the eigenvalues and the eigenvectors are C1-smooth as functions

of u1, u3 in a neighborhood of (û1, û3). However, if we consider the case (û1, û3) = (0, 0), the case

without gravity, then we only get directional differentiability along lines t(u1, u3), u1 ̸= 0, t > 0

when t → 0. Clearly, on t(u1, 0), t > 0 the expressions are not defined. For this reason, that

situation is not considered in this article further. We introduce

ri :=
vi

∥vi∥
, i = 1, 2, 3.

We have

li · ri = δij , ri · rTi = 1, i, j = 1, · · · , 7.

We can also express the boundary conditions at x = 0 and x = L in terms of U . To this end,

we introduce the matrices

RD(U) :=

 0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

 (3.11)

and

RN (U) :=


EA 0

EA

2
u3 0 0 0 0

EAu3 0
EA

2
u23 +GA 0 0 0 −GA

0 0 0 0 EI 0 0

. (3.12)

With (3.11) and (3.12), we can express nonhomogeneous Dirichlet conditions at x = 0 and

Neumann conditions at x = L as

RD(U(0, t))U(0, t) = VD(t),

RN (U(L, t))U(L, t) = VN (t), t ∈ [0, T ].
(3.13)

We are now in the position to formulate the initial-boundary value problem (2.22)–(2.24) as a

first order hyperbolic system of equations in the classical format:
∂

∂t
U(x, t) +A(U(x, t))

∂

∂x
U(x, t) = B(U(x, t))U(x, t), (x, t) ∈ [0, L]× [0, T ],

RD(U(0, t))U(0, t) = VD(t), RN (U(L, t))U(L, t) = VN (t), t ∈ [0, T ],

U(x, 0) = U0(x), x ∈ [0, L].

(3.14)

In order to apply the theory for semi-global classical solutions of Li [13], we need to express the

boundary conditions in terms of the variables

vi := li(U) · U, i = 1, · · · , 7.

Namely, {
x = 0 : (v5, v6, v7) = G0(t, v1, v2, v3, v4) + V0(t),
x = L : (v1, v2, v3) = GL(t, v4, v5, v6, v7) + VL(t),

(3.15)

together with

G0(t, 0) = GL(t, 0) = 0.
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We analyze the situation for (3.10); hence for G ≤ E, we leave the case to the reader. Here we

obtain 

v1 + v7 = 2u6,

v2 + v6 = 2u2 + 2u4

((λ6
λ1

)2

− 1
) 1

û3 + u3
,

v3 + v5 = 2u4 + 2u2
û3 + u3

(λ5

λ1
)2 − 1

,

v7 − v1 = 2λ1u5,

v6 − v2 = 2λ6u1 + 2u3λ6

((λ6
λ1

)2

− 1
) 1

û3 + u3
,

v5 − v3 = 2λ5
û3 + u3

(λ5

λ1
)2 − 1

u1 + 2λ5u3.

(3.16)

This can be written in matrix form as follows:

 v1
v2
v3

+

 v7
v6
v5

 = 2


0 0 1

1
((λ6

λ1

)2

− 1
) 1

û3 + u3
0

û3 + u3

(λ5

λ1
)2 − 1

1 0


u2
u4
u6



=:M(u1, u3)

u2
u4
u6

 (3.17)

and

 v7
v6
v5

−

 v1
v2
v3

 = 2


0 0 λ1

λ6 λ6

((λ6
λ1

)2

− 1
) 1

û3 + u3
0

λ5
û3 + u3

(λ5

λ1
)2 − 1

λ5 0


u1
u3
u5



= diag(λ1, λ6, λ5)M(u1, u3)

u1
u3
u5

 =: Q(u1, u3)

u1
u3
u5

. (3.18)

In order to simplify the notation, we order the system variables in a different way. Namely,

the vector U is now ordered according to ÛT = (u1, u3, u5, u2, u4, u6, u7) =: (w1,w2,w3),

where w1 = (u1, u3, u5), w2 = (u2, u4, u6),w3 = u7. We also introduce ξ+ := (v7, v6, v5)
T and

ξ− := (v1, v2, v3)
T. With this notation, we can reformulate (3.17) and (3.18) as follows:

ξ+ + ξ− =M(w1)w2, ξ+ − ξ− = Q(w1)w1. (3.19)

The derivative

D(u1,u3)

Q(u1, u3)

u1
u3
u5

∣∣∣∣∣∣
(u1,u3,u5)=03

= Q(0, 0)

is invertible and, therefore, we can apply the implicit function theorem and conclude that there

exists a function Θ such that

w1 = Θ(ξ+ − ξ−).
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Inserting this into the first equation in (3.19), we obtain

ξ+ + ξ− =M(Θ(ξ+ − ξ−))w2.

We then define

Φ(ξ+, ξ−,w2) := ξ+ + ξ− −M(Θ(ξ+ − ξ−))w2.

Obviously, we have

Φ(0, 0, 0) = 0, Dξ+Φ(0, 0, 0) = I.

Thus, we can apply the implicit function theorem again in order to solve for ξ+. There exists

a vector function GD,0(·, ·) such that

ξ+ = GD,0(ξ−,w2), GD,0(0, 0) = 0. (3.20)

Upon defining Dirichlet controls at x = 0 as

w2(0, t) = (u2, u4, u6)
T(0, t) =

( ∂
∂t
u(0, t),

∂

∂t
w(0, t),

∂

∂t
ψ(0, t)

)T

= (h01(t), h02(t), h03(t))
T,

we rewrite (3.20) with

GD,0(ξ−(0, t); t) := G0,D(ξ−(0, t),h0(t))−GD,0(0,h0(t))

and VD(t) = GD,0(0,h0(t)) as

ξ+(0, t) = GD,0(ξ−; t) + VD(t), (3.21)

where now GD,0(0; t) = 0. We go back to the previous notation and conclude

(v7, v6, v5)(0, t) = GD,0((v1, v2, v3, v4)(0, t); t) + VD(t). (3.22)

This is the format required in (3.15). As for the Neumann boundary conditions (2.19)–

(2.21), we have, after dividing through the constants in each condition and renaming the controls

viN (i = 1, 2, 3)
u1(L, t) +

1

2
u23(L, t) = v1N (t),

u3(L, t)− u7(L, t) +
E

G
(u1(L, t) +

1

2
u3(L, t)

2)u3(L, t) = v2N (t),

u5(L, t) = v3N (t), t ∈ [0, T ].

(3.23)

Using the first equation of (3.23) in the second condition, we arrive at
u1(L, t) +

1

2
u23(L, t) = v1N (t),(

1 +
E

G
v1N (t)

)
u3(L, t)− u7(L, t) = v2N (t),

u5(L, t) = v3N (t), t ∈ [0, T ].

(3.24)

We are going to use (3.17)–(3.18). We notice that v4 = u7. According to the second equation

in (3.24), u3(L, t) can be expressed in terms of u7(L, T ) and, hence, in terms of v4(L, T ). By

the first equation in (3.24), this is true also for u1(L, T ). Thus,

u3(L, t) =
(
1 +

E

G
v1N (t)

)−1

v2N (t) +
(
1 +

E

G
v1N (t)

)−1

v4
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and

u1(L, T ) = v1N (t)− 1

2

((
1 +

E

G
v1N (t)

)−1

v2N (t) +
(
1 +

E

G
v1N (t)

)−1

v4

)2

.

As u5(L, T ) =
1

2λ1
(v7 − v1) = v3N (t), we can express the third condition in (3.23) as v1(L, t) =

v7(L, t) − 2λ1v
3
N (t). Now, the last two equations of (3.16) contain on their right-hand sides

terms in the variables u1, u3, only. As seen above, these can be expressed in terms of v4. Thus,

v2, v6 can be expressed in terms of v4 and terms involving the controls viN (t) (i = 1, 2, 3). This

shows that we can express (3.23) in the form

(v1, v2, v3)(L, t) = GN,L((v4, v5, v6, v7)(L, T ); t) + VN (t). (3.25)

Similarly, Dirichlet boundary conditions at x = 0 and Neumann conditions at x = L can be

shown to satisfy

(v1, v2, v3)
T(L, t) = GD,L((v4, v5, v6, v7)(L, t); t) + VD(t), (3.26)

(v7, v6, v5)
T(0, t) = GN,0((v1, v2, v3, v4)(0, t); t) + VN (t). (3.27)

Remark 3.2 It should be remarked that the system matrices with ÛT =: (w1,w2,w3),

where w1 = (u1, u3, u5), w2 = (u2, u4, u6), w3 = u7, have now the following forms:

Â(w) := −



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
E

ρ

E

ρ
(û3 + u3) 0 0 0 0 0

E

ρ
(û3 + u3)

G+ E(û1 + u1 +
3
2 ((û3 + u3)

2)

ρ
0 0 0 0 0

0 0
E

ρ
0 0 0 0

0 0 0 0 0 0 0


, (3.28)

B̂(w) := Â(w)
∂

∂x
ŵ −



0
0
0
0

−G
ρ
(û5 + u5)− g

GA

ρI
(û3 + u3 − (û7 + u7)

(û6 + u6)


with B̂(0) = 0. (3.29)

With (3.28) and (3.29), system (3.2) can be written in the following equivalent form:

∂

∂t
w + Â(w)

∂

∂x
w = B̂(w). (3.30)

The advantage of this form is that it reveals the typical block structure for wave equations.

4 Existence of Solutions

In order to study the well-posedness of (2.22)–(2.24) in the framework of semi-global clas-

sical solutions, we need to assume regular initial and boundary data, as well as compatibility

conditions.
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Definition 4.1 We say that the initial conditions and boundary conditions satisfy C1-

compatibility conditions for the Dirichlet case at x = 0 and for the Neumann case at x = L, if

the following conditions hold:

v1D(0) = u0(0), v2D(0) = w0(0), v3D(0) = ψ0(0),

(v1D)′(0) = u1(0), (v2D)′ = w1(0), (v3D)′(0) = ψ1(0),

(v1D)′′(0) =
E

ρ

∂

∂x

( ∂

∂x
u0 +

1

2

( ∂

∂x
w0

)2)
(0),

(v2D)′′(0) =
G

ρ

( ∂2

∂x2
w0 −

∂

∂x
ψ0

)
(0)

+
E

ρ

( ∂

∂x

( ∂

∂x
u0

∂

∂x
w0

)
+

3

2

( ∂

∂x
w0

)2 ∂2

∂x2
w0

)
(0),

(v3D)′′(0) = ψ′′
0 (0)−

GA

ρI

( ∂

∂x
w0 −

∂

∂x
ψ0

)
(0)

(4.1)

as well as 

EA
∂

∂x
u0(L) +

EA

2

( ∂

∂x
w0(L)

)2

= v1N (0),

GA
( ∂

∂x
w0(L)− ψ0(L)

)
+
(
EA

( ∂

∂x
u0(L) +

1

2

( ∂

∂x
w0(L)

)2) ∂

∂x
w0(L)

)
= v2N (0),

EI
∂

∂x
ψ0(L) = v3N (0)

(4.2)

and 

EA
∂

∂x
u1(L) + EA

∂

∂x
w0(L)

∂

∂x
w1(L) = (v1N )′(0),

GA
( ∂

∂x
w1(L)− ψ1(L)

)
+EA

( ∂

∂x
u0(L)

∂

∂x
w1(L) +

∂

∂x
u1(L)

∂

∂x
w0(L)

+
3

2

( ∂

∂x
w0(L)

)2 ∂

∂x
w1(L)

)
= (v2N )′(0),

EI
∂

∂x
ψ1(L) = (v3N )′(0).

(4.3)

We say that the initial and boundary conditions satisfy C2-compatibility conditions if they

satisfy the C1-compatibility conditions and, in addition, the partial differential equations (2.33)

hold at x = 0, L on time t = 0, where the second order in time derivatives are replaced with

the second order in time derivatives of the controls at x = 0 and x = L, respectively.

Remark 4.1 The representation as a first order system, say, in the format described in

Remark 3.2, is useful. In particular, w1,w2, at t = 0, are related to (the spatial derivatives of)

the initial displacements u0, w0, ψ0 and the initial velocities u1, w1, ψ1, respectively.

Theorem 4.1 Let T > 0 be given. Let the boundary controls VD := (viD)3i=1 ∈ C2([0, T ])3,

VN := (viN )3i=1 ∈ C1([0, T ])3 and the initial data Φ0 = (u0, w0, ψ0)
T ∈ C2([0, L])3, Φ1 :=

(u1, w1, ψ1)
T ∈ C1([0, T ]) satisfy the C2 compatibility conditions of Definition 4.1, such that

∥(Φ0,Φ1)∥C2([0,L])3×C1([0,L])3 and ∥(VD, VN )∥C2([0,T ])3×C1([0,L])3 are sufficiently small. Then
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there exists a unique semi-global C2-solution Φ(x, t) = (u(x, t), w(x, t), ψ(x, t)) with small C2-

norm on R(T ) defined as

R(T ) := {(x, t) | 0 ≤ x ≤ L, 0 ≤ t ≤ T}. (4.4)

Proof The proof is similar to the one given in [10] and follows the lines of [13].

5 Exact Controllability

We are now in the position to formulate the problem of local one-sided exact boundary

controllability around an equilibrium solution Φ̂ = (û, ŵ, ψ̂). We denote the perturbations of Φ̃

by Φ. Let us recall the eigenvalues µi (i = 1, 2, 3) given by (2.42). For the sake of brevity, we

write µi(x,Φ) (i = 1, 2, 3) in order to indicate the dependence of µi on the spatial variable and

the perturbation. Thus, µi(x, 0) (i = 1, 2, 3) signifies the eigenvalues in (2.42) at the spatial

point x at equilibrium. Both, the systems at equilibrium and at the actual position, define

speeds of propagation. The maximum travel time in the beam can be estimated as follows:

T0 := max
i=1,2,3

max
x∈[0,L]

L√
µi(x, 0)

. (5.1)

For a given ϵ-neighborhood Bϵ(Φ) of Φ, we can bound the travel time by

T1 := max
∥Φ∥<ϵ

max
i=1,2,3

max
x∈[0,L]

L√
µi(x,Φ)

. (5.2)

Indeed, by our assumptions, we find such an ϵ0 > 0 such that T > 2T0 implies T > 2T1.

Thus, we can bound the time that a signal needs to travel from the boundary, where controls

that apply to the clamped origin and back can be estimated by the corresponding time for the

system seen at equilibrium.

Definition 5.1 Let a control time T > 0, initial and final data (Φ0,Φ1), (Ψ0,Ψ1) where

Φ0 = (u0, w0, ψ0)
T ∈ C2([0, L])3, Φ1 := (u1, w1, ψ1)

T ∈ C1([0, L])3, Ψ0 = (uT0 , w
T
0 , ψ

T
0 )

T ∈
C2([0, L])3, Ψ1 := (uT1 , w

T
1 , ψ

T
1 )

T ∈ C1([0, L]3) be given. We say that the problem (2.22)–(2.24)

is exactly controllable in time T with one-sdided controls, if there exist boundary controls VD
with VN = 0 or VN with VD = 0, satifying the compatibility conditions (4.1)–(4.3), such that

the corresponding solution, satisfying the conditions of Theorem 4.1, admits the final values
u(x, T ) = uT0 (x), w(x, T ) = wT

0 (x), ψ(x, T ) = ψT
0 (x),

∂

∂t
u(x, T ) = uT1 (x),

∂

∂t
w(x, T ) = wT

1 (x),
∂

∂t
ψ(x, T ) = ψZ

1 (x), x ∈ [0, L].
(5.3)

Theorem 5.1 Let T be given by T > 2T0. There exist neighborhoods U0,U1 of (Φ̂, 0) such

that for each pair of initial states in U0 and final states in U1 satisfying the regularity and

compatibility conditions given in Theorem 4.1, there exist C2(0, T ;R3)-controls VD or VN such

that the solutions of (2.38) satisfy the conditions in Definition 5.1.

Proof The remaining part of the proof consists of applying method described in [13]. For

the sake of brevity, we refer to the proof of Theorem 7.1 (Section 7 below) for n = 1.

Remark 5.1 We remark that we do not consider the exact controllability problem on

the level of the first order system (3.5). Indeed, the exact controllability of the full state via

boundary controls is generally impossible, due to the appearance of the zero eigenvalue. This
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eigenvalue would make it necessary to involve a distributed control (see [13] and a more recent

discussion in Hu [2]). The controllability result is a local one. It can be extended to a local-

global result if one considers two distinct equilibria connected by a path of equilibria (see [10]

for the analogous case in the context of nonlinear strings).

6 Networks of Nonlinear Timoshenko Beams

We now consider networks of planar initially straight nonlinear Timoshenko beams accord-

ing to (2.17). We introduce some notation in order to describe the network. We suppose that

there are n beams indexed by i ∈ I = {1, · · · , n}. We let the i-th beam be parametrized

by its rest arc length x with x ∈ [0, Li], Li the length of that beam. The position and s-

hear at time t of the point corresponding to the parameter x will be denoted by the vector

((u,w, ψ)i(x, t))T. The positions and shear at the endpoints, which we refer to as nodes, are

given by functions ((v1D, v
2
D, v

3
D)j)T(t) with j ∈ J = {1, · · · ,m}. A similar statement holds for

the simple nodes where Neumann conditions are applied, see below. At multiple nodes which

we denote by JM , where several beams meet there is a common location Nj . Simple nodes

are those corresponding to the endpoints of only one beam. This set is split into nodes J SD ,

where Dirchilet conditions are satisfied, and J SN where Neumann conditions hold. We let

Ij = {i ∈ I : Nj is an end point of the i-th beam}, JM be the subset of J corresponding to

multiple nodes, while J S contains the indices of simple nodes. We assume that there are simple

nodes so that J S is not empty. For j ∈ J S we have Ij = {ij}. For i ∈ Ij we let xij = 0 or

xij = Li depending on whether the beam begins or ends at the simple node, respectively. For

purposes of integration by parts we also introduce ϵij to equal 1 or −1 depending on whether

xij is equal to Li or 0.

We only consider rigid joints such that the positions and, hence, the displacements as well

as the angles between to adjacent beams before and after deformation coincide. Pinned joints

will be treated elsewhere. The continuity of displacements is expressed as

Wi(xij) = Wk(xkj), ∀i, k ∈ Ij , j ∈ JM . (6.1)

Reflecting the meaning of W = ue1 + we3, we can rewrite (6.1) as

ui(xij)e
i
1 + wi(xij)e

i
3 = uk(xij)e

k
1 + wk(xij)e

k
3 , ∀i, k ∈ Ij , j ∈ JM ,

where we notice that because the undeformed and the deformed configurations ri,Ri satisfy

the same conditions, these conditions are also valid for the displacements at the centerline. As

for the total angles ψi, we obtain at a rigid joint

ψi(xij) = ψk(xkj), ∀i, k ∈ Ij , j ∈ JM . (6.2)

We can now derive the following conditions on balance of forces and moment at a multiple

node: ∑
i∈Ij

ϵij

{
EiAi

( ∂

∂x
ui(xij) +

1

2

∂

∂x
wi(xijj)

2
)
ei1

+GiAi

( ∂

∂x
wi(xij)− ψi(xij)

)
ei3

}
= Fj , (6.3)∑

i∈Ij

ϵij

(
EiIi

∂

∂x
ψi(xij)

)
=Mj . (6.4)
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Remark 6.1 We notice that the conditions (6.3)–(6.4) at multiple node are vectorial con-

ditions coupling longitudinal motion and shearing, while the rotation around e2 does not couple

to other primitive variables. This is in contrast to scalar beam models which represent out-of-

the-plane dsiplacements, only. The fact that the multiple node conditions are vectorial implies

that the network depends on the angels between the beams, thus, on the topology. In scalar

networks, the angles do not matter.

Let e be the upright unit vector. The full initial-, boundary-, nodal-value network problem

for initially straight planar nonlinear Timoshenko beams reads as follows:

ρiAi
∂2

∂t2
ui(x, t) = EiAi

∂2

∂x2
ui(x, t) +

EiAi

2

∂

∂x

( ∂

∂x
wi(x, t)

)2

− ρiAige · ei1,

ρiAi
∂2

∂t2
wi(x, t) = GiAi

( ∂2

∂x2
wi(x, t)− ∂

∂x
ψi(x, t)

)
+
∂

∂x

(
EiAi

( ∂

∂x
ui(x, t) +

1

2

( ∂

∂x
wi(x, t)

)2) ∂

∂x
wi(x, t)

)
−ρiAie · ei3,

ρiIi
∂2

∂t2
ψi(x, t) = EiIi

∂2

∂x2
ψi(x, t) +GiAi

( ∂

∂x
wi(x, t)− ψi(x, t)

)
,

(x, t) ∈ [0, Li]× [0, T ], i ∈ I,

(6.5)



ui(xijj , t)) = viD1(t), wi(xijj , t) = viD2(t), ψi(xijj , t) = viD3(t),

i ∈ Ij , j ∈ J SD , t ∈ [0, T ],

EiAi
∂

∂x
ui(xijj , t) +

EiAi

2

( ∂

∂x
wi(xijj , t)

)2

= viN1(t),

GiAi

( ∂

∂x
wi(xijj , t)− ψi(xijj , t)

)
+
(
EiAi

( ∂

∂x
ui(x, t) +

1

2

( ∂

∂x
wi(x, t)

)2) ∂

∂x
wi(x, t)

)
= viN2(t),

EiIi
∂

∂x
ψi(xijj , t) = viN3(t), i ∈ Ij , j ∈ J SN , t ∈ [0, T ],

(6.6)



Wi(xij , t) = Wk(xkj , t), ∀i, k ∈ Ij , j ∈ JM , t ∈ [0, T ],

ψi(xij) = ψk(xkj), ∀i, k ∈ Ij j ∈ JM , t ∈ [0, T ],∑
i∈Ij

ϵij

{
EiAi

( ∂

∂x
ui(xij) +

1

2

( ∂

∂x
wi(xijj)

)2)
ei1

+GiAi

( ∂

∂x
wi(xij)− ψi(xij)

)
ei3

}
= Fj , t ∈ [0, T ],∑

i∈Ij

ϵij

(
EiIi

∂

∂x
ψi(xij)

)
=Mj , t ∈ [0, T ],

(6.7)


ui(x, 0) = ui0(x),

∂

∂t
ui(x, 0) = ui1(x), x ∈ [0, Li],

wi(x, 0) = wi
0(x),

∂

∂t
wi(x, 0) = wi

1(x), x ∈ [0, Li],

ψi(x, 0) = ψi
0(x),

∂

∂t
ψi(x, 0) = ψi

1(x), x ∈ [0, Li].

(6.8)

Here (6.5) includes the equations governing the motion of the beams along the individual edges,

(6.6) describes the boundary conditions at simple Dirichlet- and Neumann-nodes, (6.7) provides

the conditions of continuity and force/moment balance at multiple nodes and (6.8) denotes the
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initial conditions. As for the single element case, we introduce the mass-matrices and stiffness

operators for each individual beam: For each i ∈ I, we define

Mi :=

 ρAi 0 0
0 ρiAi 0
0 0 ρiIi

,

Gi

(
Φi,

∂

∂x
Φi

)
:=


EiAi EiAi

∂

∂x
wi 0

EiAi
∂

∂x
wi GiAi + EiAi

( ∂

∂x
ui +

3

2

( ∂

∂x
wi

)2)
0

0 0 EiIi

,

Fi

(
Φi,

∂

∂x
Φi

)
:=


0

−GiAi
∂

∂x
ψi − ρigAi

GiAi

( ∂

∂x
wi − ψi

)
.

(6.9)

Then each Timoshenko-beam system can be written as

Mi
∂2

∂t2
Φi = Gi

(
Φi,

∂

∂x
Φi

) ∂2

∂x2
Φi + Fi

(
Φi,

∂

∂x
Φi

)
. (6.10)

Now, given an equilibrium configuration such that on the edge i we have Φ̂i := (ûi, ŵi, ψ̂i)
T, we

look for states Φi = Φ̂i +Φi for possibly small Φi. Notice that we omit the tilde for the per-

turbations right away. We can reformulate the quasilinear system in terms of the perturbation

Φi:

Gi

(
Φi,

∂

∂x
Φi

)
:= Gi

(
Φ̂i +Φi,

∂

∂x
Φ̂i +

∂

∂x
Φi

)
, (6.11)

Fi

(
Φi,

∂

∂x
Φi

)
:= Gi

(
Φi,

∂

∂x
Φi

) ∂2

∂x2
Φ̂i + Fi

(
Φ̂i +Φi,

∂

∂x
Φ̂i +

∂

∂x
Φi

)
. (6.12)

Because the Φ̂i correspond to an equilibrium solution we have

Fi(0, 0) = 0. (6.13)

We thus have

Mi
∂2

∂t2
Φi = Gi

(
Φi,

∂

∂x
Φi

) ∂2

∂x2
Φi + F

(
Φi,

∂

∂x
Φ̃i

)
. (6.14)

Under precisely the same conditions as in the single link case, we may invert Gi(Φi,
∂
∂xΦi), as

this matrix is uniformly positive definite in a sufficiently small neighborhood of the equilibrium.

This fact will be important for the proof of controllability. In order to proceed with existence in

the sense of [13], we need compatibility conditions both at the simple nodes and at the multiple

nodes. At a simple node j ∈ J SD,SN , there is only one edge incident and the location is denoted

as above by xij . It is straightforward to reformulate the compatibility conditions (4.1)–(4.3) for

such simple node conditions. We refrain from displaying the corresponding conditions. However,

the new multiple node conditions (6.7) require the following new compatibility conditions:

ui0(xij)e
i
1 + wi

0(xij)e
i
3 = uk0(xkj)e

k
1 + wk

0 (xkj)e
i
3, ∀i, k ∈ Ij , j ∈ JM , t ∈ [0, T ],

ui1(xij)e
i
1 + wi

1(xij)e
i
3 = uk1(xkj)e

k
1 + wk

1 (xkj)e
i
3, ∀i, k ∈ Ij , j ∈ JM , t ∈ [0, T ],

ψi
0(xij) = ψk

0 (xkj), ∀i, k ∈ Ij , j ∈ JM , t ∈ [0, T ],

ψi
1(xij) = ψk

1 (xkj), ∀i, k ∈ Ij , j ∈ JM , t ∈ [0, T ],

(6.15)
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∑
i∈Ij

ϵij

{
EiAi

( ∂

∂x
ui0(xij) +

1

2

( ∂

∂x
wi

0(xijj)
)2)

ei1

+GiAi

( ∂

∂x
wi

0(xij)− ψi
0(xij)

)
ei3

}
= Fj(0), t ∈ [0, T ],∑

i∈Ij

ϵij

(
EiIi

∂

∂x
ψi
0(xij)

)
=Mj(0), t ∈ [0, T ],∑

i∈Ij

ϵij

{
EiAi

( ∂

∂x
ui1(xij) +

1

2

( ∂

∂x
wi

0(xijj)
) ∂

∂x
wi

1(xij)
)
ei1,

+GiAi

( ∂

∂x
wi

1(xij)− ψi
1(xij)

)
ei3

}
= F ′

j(0), t ∈ [0, T ],∑
i∈Ij

ϵij

(
EiIi

∂

∂x
ψi
1(xij)

)
=M ′

j(0), t ∈ [0, T ].

(6.16)

6.1 Equilibrium solutions for the network

We assume from now on that we have an equilibrium solution of the entire tree-like network.

That is a solution ûi(x), ŵi(x), ψ̂i(x) of the following steady state problem:

ρigAie · ei1 = EiAi
∂2

∂x2
ui(x) +

EiAi

2

∂

∂x

( ∂

∂x
wi(x)

)2

,

ρigAie · ei3 = GiAi

( ∂2

∂x2
wi(x)− ∂

∂x
ψi(x)

)
+
∂

∂x

(
EiAi

( ∂

∂x
ui(x) +

1

2

( ∂

∂x
wi(x)

)2) ∂

∂x
wi(x)

)
,

0 = EiIi
∂2

∂x2
ψi(x) +GiAi

( ∂

∂x
wi(x)− ψi(x)

)
,

x ∈ [0, Li], i ∈ I,

(6.17)



ui(xijj) = 0, wi(xijj) = 0, ψi(xijj) = 0, i ∈ Ij , j ∈ J SD ,

EiAi
∂

∂x
ui(xijj) +

EiAi

2

( ∂

∂x
wi(xijj)

)2

= 0,

GiAi

( ∂

∂x
wi(xijj)− ψi(xijj)

)
+
(
EiAi

( ∂

∂x
ui(x) +

1

2

( ∂

∂x
wi(x)

)2) ∂

∂x
wi(x)

)
= 0,

EiIi
∂

∂x
ψi(xijj) = 0, i ∈ Ij , j ∈ J SN ,

(6.18)



Wi(xij) = Wk(xkj), ∀i, k ∈ Ij , j ∈ JM ,

ψi(xij) = ψk(xkj), ∀i, k ∈ Ij , j ∈ JM ,∑
i∈Ij

ϵij

{
EiAi

( ∂

∂x
ui(xij) +

1

2

( ∂

∂x
wi(xijj)

)2)
ei1

+GiAi

( ∂

∂x
wi(xij)− ψi(xij)

)
ei3

}
= 0,∑

i∈Ij

ϵij

(
EiIi

∂

∂x
ψi(xij)

)
= 0.

(6.19)

It is clear that for the local equations (6.17) a similar analysis as for the single-link case (2.25)

can be performed. The full analysis of the equlibirum problem is beyond the scope of this article.
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We provide, however, a simple example that makes the vectorial nodal conditions evident.

Example 6.1 In order to elucidate the network setup, we give an example of a “carpenter

square”. Here, we have a horizontal beam (labelled 1) and a second hanging beam (labelled

2) mounted at the end of the first beam. The constellation of local bases is as follows: e11 =

(1, 0), e13 = (0, 1) and e21 = (−1, 0), e23 = (1, 0).

0 = E1A1
∂2

∂x2
u1(x) +

E1A1

2

∂

∂x

( ∂

∂x
w1(x)

)2

,

−ρ1gA1 = G1A2

( ∂2

∂x2
w1(x)− ∂

∂x
ψ1(x, t)

)
+
∂

∂x

(
E1A1

( ∂

∂x
u1(x) +

1

2

( ∂

∂x
w1(x)

)2) ∂

∂x
w1(x)

)
,

0 = E1I1
∂2

∂x2
ψ1(x) +G1A1

( ∂

∂x
w1(x)− ψ1(x)

)
,

x ∈ [0, L1],

(6.20)



ρ2gA2 = E2A2
∂2

∂x2
u2(x, t) +

E2A2

2

∂

∂x

( ∂

∂x
w2(x)

)2

,

0 = G2A2

( ∂2

∂x2
w2(x)− ∂

∂x
ψ2(x, t)

)
+
∂

∂x

(
E2A2

( ∂

∂x
u2(x) +

1

2

( ∂

∂x
w2(x)

)2) ∂

∂x
w2(x)

)
,

0 = E2I2
∂2

∂x2
ψ2(x) +G2A2

( ∂

∂x
w2(x)− ψ2(x)

)
,

x ∈ [0, L2],

(6.21)

The boundary conditions at the simple nodes are

u1(0) = 0, w1(0) = 0, ψ1(0) = 0,

E2A2
∂

∂x
u2(L2) +

E2A2

2

( ∂

∂x
w2(L2)

)2

= 0,

G2A2

( ∂

∂x
w2(L2)− ψ2(L2)

)
+
(
E2A2

( ∂

∂x
u2(x) +

1

2

( ∂

∂x
w2(L2)

)2) ∂

∂x
w2(L2)

)
= 0,

E2I2
∂

∂x
ψ2(0) = 0,

(6.22)

while the transmission conditions at the multiple node read as follows:

u1(L1) = w2(0), w1(L1) = −u2(0), ψ1(L1) = ψ2(0),

E1A1

( ∂

∂x
u1(L1) +

1

2

( ∂

∂x
w1(L1)

)2)
= G2A2

( ∂

∂x
w2(0)− ψ2(0)

)
,

E2A2

( ∂

∂x
u2(0) +

1

2

( ∂

∂x
w2(0)

)2)
= G1A1

( ∂

∂x
w1(L1)− ψ1(L1)

)
,

E1I1
∂

∂x
ψ1(L1) = E2I2

∂

∂x
ψ2(0).

(6.23)

The conditions at the multiple node are intuitive, as they clearly show that the longitudinal

displacement of the horizontal beam converts to transversal displacements of the second beam

and vice versa. The analogous observation is evident for the balance of forces. It can be

shown that this system of ordinary differential equations has a unique solution. However,
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Figure 1 A carpenter’s square: Current, geometric exact and linear model.

the analytical solution cannot be provided due to space limitations. See Figure 1, however,

for a numerical comparison between the current beam model, the geometric exact model and

the linear Timoshenko beam model. It is clearly seen that the two nonlinear models are in

good agreement, while the classical linear model deviates significantly. In the linear theory the

downwards movement of the tip of the horizontal beam follows the vertical line, which is clearly

non-intuitive for large displacements.

6.2 Network equations in first order format

By taking (3.2) into a matrix format, we denote the individual matrices for the i-th beam

as follows:

Ai(U
i) := −



0 1 0 0 0 0 0

Ei

ρi
0

Ei

ρi
(ûi3 + ui3) 0 0 0 0

0 0 0 1 0 0 0

Ei

ρi
(ûi3 + ui3) 0

Gi + Ei((ûi1 + ui1 +
3
2 (û

i
3 + ui3)

2))

ρi
0 0 0 0

0 0 0 0 0 1 0

0 0 0 0
Ei

ρi
0 0

0 0 0 0 0 0 0



, (6.24)

Bi(U
i) := −Ai(U

i)
∂

∂x
Û i +



0
−ge · ei3

0

−Gi

ρi
(ûi5 + ui5)− ge · ei1

0

GiAi

ρiIi
(ûi3 + ui3 − ûi7 − ui7)

ui6


with Bi(0) = 0. (6.25)
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Also for the multiple node, we introduce the representation of the local coordinate systems

in terms of global coordinates in the 1-3-plane as follows: ei1 = (ei11, e
i
13), ei3 = (ei31, e

i
33).

Moreover, the continuity conditions have to be differentiated with respect to time, so that

instead of ui, wi, ψi, ∂tu
i, ∂tw

i, ∂tψ
i, hence, ui2, u

i
4, u

i
6 are involed. Then

Ci :=

 0 ei11 0 ei31 0 0 0
0 ei13 0 ei33 0 0 0
0 0 0 0 0 1 0

 (6.26)

and

F i(U i) :=



Ei

ρi
ei11 0

Gi

ρi
ei31 +

Ei

ρi

1

2
(ûi3 + ui3)e

i
11 0 0 0 −Gi

ρi
ei31

Ei

ρi
ei13 0

Gi

ρi
ei33 +

Ei

ρi

1

2
(ûi3 + ui3)e

i
13 0 0 0 −Gi

ρi
ei33

0 0 0 0
EiIi
ρi

0 0

. (6.27)

With this notation, the general network problem can be expressed as follows:

∂

∂t
U i(x, t) +Ai(U

i(x, t))
∂

∂x
U i(x, t) = Bi(U

i(x, t))U i(x, t),

(x, t) ∈ [0, Li]× [0, T ],

RD(U i(xijj , t))U
i(xijj , t) = ViD(t), i ∈ Ij , j ∈ J SD , t ∈ [0, T ],

RN (U i(xijj , t))U
i(xijj , t) = ViN (t), i ∈ Ij , j ∈ J SN , t ∈ [0, T ],

CiU i(xij , t) = CkUk(xkj , t), ∀i, k ∈ Ij , j ∈ JM , t ∈ [0, T ],∑
i∈Ij

ϵijF
i(U i)(Û i + U i)(xij , t) = 0, i ∈ JM , t ∈ [0, T ],

U i(x, 0) = U0(x), x ∈ [0, Li], i ∈ I.

(6.28)

An alternative formulation is as follows: We rewrite the system in terms of w according to

ÛT =: (w1,w2,w3), where w1 = (u1, u3, u5), w2 = (u2, u4, u6),w3 = u7 has now the following

form:

Âi(w
i) := −



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

Ei

ρi

Ei

ρi
(ûi3 + ui3) 0 0 0 0 0

Ei

ρi
(ûi3 + ui3)

Gi + Ei(û
i
1 + ui1 +

3
2 ((û

i
3 + ui3)

2)

ρ
0 0 0 0 0

0 0
Ei

ρi
0 0 0 0

0 0 0 0 0 0 0


, (6.29)

B̂i(w
i) := Âi(w

i)
∂

∂x
ŵi −



0
0
0

−ge · ei3
−Gi

ρi
(ûi5 + ui5)− ge · ei1

GiAi

ρiIi
(ûi3 + ui3 − (ûi7 + u7)

(ûi6 + u6)


with B̂i(0) = 0, (6.30)
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∂

∂t
wi(x, t) + Âi(w

i(x, t))
∂

∂x
wi(x, t) = B̂i(w

i(x, t))wi(x, t),

(x, t) ∈ [0, Li]× [0, T ],

wi
2(xijj , t) = ViD(t), i ∈ Ij , j ∈ J SD , t ∈ [0, T ],

R̂N (wi
1(xijj , t),w

i
3(xijj , t)) = ViN (t), i ∈ Ij , j ∈ J SN , t ∈ [0, T ],

wi
s(xij , t) = wk

s (xkj , t), ∀i, k ∈ Ij , j ∈ JM , t ∈ [0, T ], s = 2, 3,∑
i∈Ij

ϵijF̂
i(wi

1(xij , t),w
i
3(xij , t)) = 0, i ∈ JM , t ∈ [0, T ],

wi(x, 0) = w0(x), x ∈ [0, Li], i ∈ I,

(6.31)

where we have used the obvious condensed forms of the operators Ri
N , F

i with respect to the

partition of variables. We can now apply the same calculus as in the single-link case. This

means that we may introduce, for each individual edge, a system of left and right eigenvalues

of the matrices Ai(U
i), lij (j = 1, · · · , 7), rij (j = 1, · · · , 7) or Â, respectively. This makes it

possible to rewrite the system (6.28) as a first order system in these new variables, analogous

to the single-link case. For more details see [13]. We introduce

Vi
+ := (vi1, v

i
2, v

i
3)

T, Vi
− := (vi7, v

i
6, v

i
5)

T, Vi
0 := vi4 = ui7. (6.32)

According to (3.17)–(3.18), we obtain{
Vi

+ +Vi
− =M i(wi

1)w
i
2,

Vi
+ −Vi

− = Qi(wi
1)w

i
1.

(6.33)

We consider the case that xij = 0, the other case is completely analogous. In a tree, and this is

the case we consider, one can always arrange the multiple nodes in such a way that all incident

edges either start at the node, i.e., xij = 0, ∀i ∈ Ij , or end there, i.e., xij = L, ∀i ∈ Ij .

For this, one has to work with a simple scaling in order to transform the lengths to a uniform

quantity. Now, the second equation in (6.33), after applying the implicit function theorem at

w = 0, provides a function ϕi such that

wi
1 = ϕi(Vi

+,V
i
−). (6.34)

We insert this in the first equation of (6.33) and get

Vi
+ +Vi

− =M i(ϕi(Vi
+,V

i
−))w

i
2.

In view of this, we can define the map

Φi := Vi
+ −Vi

− −M i(ϕi(Vi
+,V

i
−))w

i
2 = 0

together with

Φi(0, 0, 0) = −M i(ϕi(0, 0))0 = 0, DVi
+
Φi(0, 0, 0) = I.

We may, thus, apply the implicit function theorem again and obtain

Vi
+ = Gi

0(V
i
−,w

i
2), (6.35)

so that at a controlled Dirichlet simple node we obtain

Vi
+(0, t) = Gi

0(V
i
−(0, t), (V

i
D)′(t)), (6.36)
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where Vi
D(t) := (viD,1, v

i
D,2, vD,3)(t) is the vector of Dirichlet controls at x = 0. This is the

format required in [13]. Another way of writing (6.33) is
Vi

+ =
1

2
(M i(wi

1)w
i
2 +Qi(wi

1)w
i
1),

Vi
− =

1

2
(M i(wi

1)w
i
2 −Qi(wi

1)w
i
1).

(6.37)

Now, (6.37) defines a map Θi(wi
1,w

i
2) := (Vi

+,V
i
−), the Jacobian of which is given by

Dwi
1
|0,0Θ =

1

2

(
Qi

0(w
i
1) M0(w

i
1)

−Q0(w
i
1) M i

0(w
i
1)

)
,

which, in turn, is invertible. Notice that

Qi =

λ1 0 0
0 λ2 0
0 0 λ3

M i.

Therefore, we may apply the implicit function theorem once again in order to find mappings

ϕi, ψi with

wi
1 = ϕi(Vi

+,V
i
−), (6.38)

wi
2 = ψi(Vi

+,V
i
−). (6.39)

With these expressions the Neumann node conditions at controlled simple nodes can be ex-

pressed in terms of wi(0, t):

R̂N (wi
1(0, t),w

i
3(0, t)) = R̂(ϕ(Vi

+(0, t),V
i
−(0, t)),w

i
3(0, t)) = Vi

N (t). (6.40)

The continuity condition at a multiple node (taken at x = 0 for all incident edges) reads

wi
2(0, t) = w1

2(0, t), i = 2, · · · , nj ,

where nj = |Ij | is the edge degree of the current multiple node j ∈ JM at xij = 0. We can

now use (6.38) and the lst equation to obtain

wi
1(0, t) = ϕi(Vi

+(0, t),V
i
−(0, t)) = ϕi(Gi

0(V
i
+(0, t),w

1
2(0, t)),V

i
−(0, t)). (6.41)

The final point is now to consider the transmission conditions involving the forces and moments.

These conditions can be expressed as follows:

n∑
i=1

ϵijF̂
i(wi

1(0, t),w
i
3(0, t)) = 0, (6.42)

which turns into

n∑
i=1

ϵijF̂
i(ϕi(Gi

0(V
i
−(0, t),w

1
2(0, t)),V

i
−(0, t)),w

i
3(0, t)) = 0. (6.43)

This gives rise to the map

H0(w
1
2(0, t), {wi

3(0, t)}ni=1, {Vi
−(0, t)}ni=1)
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=
n∑

i=1

ϵijF̂
i(ϕi(Gi

0(V
i
−(0, t),w

1
2(0, t)),V

i
−(0, t)),w

i
3(0, t)) = 0. (6.44)

Now, H0(0, 0, 0) = 0 and Dw1
2
H0(0, 0, 0) is invertible. This finally shows that w1

2(0, t) is a

function of {Vi
−(0, t)}n1 , {Vi

0(0, t)}n1 , i.e.,

Vi
+(0, t) = Gi

0({Vi
−(0, t)}ni=1, {Vi

0(0, t)}ni=1) (6.45)

and this is the precisely format required in [13].

Theorem 6.1 Consider a tree-like network of Timosheko beams as described by (6.5)–(6.8).

For each T > 0, there exist constants c0 and cT such that for initial data Φi
0 = (ui0, w

i
0, ψ

i
0) ∈

C2([0, Li])
3, Φi

1 = (ui1, w
i
1, ψ

i
1) ∈ C1([0, Li])

3 and boundary data Vi
D = (viD,, v

i
D2, v

i
D3) ∈

C2([0, T ])3, Vi
N = (viN1, v

i
N2, v

i
N3) ∈ C1([0.T ])3 satisfying a uniform smallness condition, i.e.,

max{∥Φi
0∥2, ∥Φi

1∥1, ∥Vi
D∥2, ∥Vi

N∥}i∈Ij ,j∈J S ≤ c0, (6.46)

and the compatibility conditions (4.1)–(4.3), extended to all simple nodes, and (6.15)–(6.16)

at the multiple nodes. Then, there exists a unique piecewise twice continuously differentiable

solution ui, wi, ψi ∈
n∏

i=1

C2([0, Li]× [0, T ]) depending continuously on the data:

∥(ui, wi, ψi)∥2 ≤ max{∥Φi
0∥2, ∥Φi

1∥1, ∥Vi
D∥2, ∥Vi

N∥}i∈Ij ,j∈J S ≤ cT . (6.47)

7 Exact Controllability on Star-Like Networks and Trees

In this section, we assume that n beams meet at one node, such that for each beam the

junction is at x = 0. Thus, |JM | = |J 1| = 1 and xi1 = 0, i ∈ I1. We define the travel times

T0 = max
j=1,2,3

max
x∈[0,L1]

L1√
µ1
j (x, 0)

+ max
i=2,··· ,n

max
j=1,2,3

max
x∈[0,Li]

Li√
µi
j(x, 0)

, (7.1)

T1 = max
j=1,2,3

max
x∈[0,L1]

L1√
µ1
j (x,Φ

1)
+ max

i=2,··· ,n
max

j=1,2,3
max

x∈[0,Li]

Li√
µi
j(x,Φ

i)
. (7.2)

Theorem 7.1 Let {Φi}i∈I be an equilibrium solution of (6.5)–(6.8) and let T > 2T0. Then

there are neighborhoods U0 and U1 of ({Φi}i∈I , 0) such that given initial and final data

{(Φ0
i ,Φ

1
i )}i∈I ∈ U0, {(Φ0,T

i ,Φ1,T
i )}i∈I ∈ U1, (7.3)

one can find Dirichlet-controls vi ∈ C2(0, T ;R3) such that the corresponding solutions of (6.5)–

(6.8) satisfy

Φi(·, T ) = Φ0,T
1 ,

∂

∂t
Φi(·, T ) = Φ1,T

i , i = 1, · · · , n.

Proof We follow the spirit of the proof of Theorem 5.2 in [13]. The principal idea in exact

boundary controllability of 1D-hyperbolic systems is to solve a forward problem with given

initial data, a backward problem with given final data and a corresponding initial-boundary

value problem from “the left or the right”. In particular, for the latter it is convenient to

interchange the spatial and time variables x and t, and then solve a mixed Cauchy-problem

from the left or the right, once the corresponding boundary conditions have been reduced

from the initial and final data. We assume equilibria for which Gi(0, 0) and Gi

(
Φi,

∂
∂xΦi

)
are
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positive definite uniformly with respect to (x, t) for a sufficiently small neighborhood of Φ̂i.

If one has Cauchy-data
(
Φi,

∂
∂xΦi

)
at a boundary point, say x = Li and “boundary data”

Φi(x, 0), Φi(x, T ), x ∈ [0, Li] one can solve the wave-type equation “from x = Li to x = 0”.

For this procedure, it is important to understand that the Cauchy data at t = 0 and t = T

can be converted to the proper boundary conditions for the system when the role of x and t

is reversed. As the existence and uniqueness results are obtained on the level of first order

equations, one needs to first invert on the second order level and then rewrite the resulting

second order system as a first order system such that the corresponding boundary conditions

are of the standard type. Due to the zero eigenvalue for the first order system, the direct

inversion on the level of the first order system is impossible. We describe the idea of the proof

as follows: There are five steps. Step 1: In the first step we proceed forward from t = 0 to t = T1.

We solve the initial-boundary value problem with artificial controls at x = Li. For each beam

i ∈ I, we define the set Ri
I := {(x, t) ∈ [0, Li]× [0, T1]} and for the network we set RI :=

n∪
i=1

Ri
I .

The first beam to be fixed at x = L1. We may, for the sake of convenience, assume that we

impose a homogenous Dirichlet condition there. This specifies the corresponding compatibility

conditions. We impose artificial inhomogeneous Dirichlet conditions at x = Li (i = 2, · · · , n),
i.e., Φi(Li, t) = vi(t) (i = 2, · · · , n), where vi(·) are small in C2(0, T1;R3). We also have

sufficiently small initial data
(
Φi(x, 0),

∂
∂tΦ

i
i(x, 0)

)
= (Φ0

i (x),Φ
1
i (x)) for all beams. We apply

the existence Theorem 6.1 and obtain a unique solution on RI . We can now take traces of(
Φ1(L1, t),

∂
∂xΦ1(L1, t)

)
= (a1(t),a2(t)) (here a1(t) = 0) at the boundary of the first beam

along {L1} × [0, T1] and of
(
Φi(0, t),

∂
∂xΦi(0, t)

)
= (bi

1(t),b
i
2(t)) for all beams at {0} × [0, T1].

It is clear that (bi
1(t),b

i
2(t)) satisfy the nodal conditions at the common node. Moreover, all

data is small in the appropriate spaces.

Step 2: We perform the same procedure, but now reversing the time and progressing from

the final time T to T −T1. More precisely, we introduce the individual domains Ri
II := {(x, t) ∈

[0, Li]× [T − T1, T ]} (i = 1, · · · , n) and the global one RII =
n∪

i=1

Ri
II . By the same argument,

a unique semi-global small solution
(
ΦII

i ,
∂
∂xΦ

II
i

)
of the network problem exists, and we can

take traces
(
ΦII

1 (L1, t),
∂
∂xΦ

II
1 (L1, t)

)
= (a1(t),a2(t)) at {L1} × [T − T1, T ] for the first beam

(again a1(t) = 0) and
(
ΦII

i (0, t), ∂
∂xΦ

II
i (0, t)

)
= (b

i

1(t),b
i

2(t)) at {Li} × [T − T1, T ] for the

beams labelled i = 2, · · · , n.
In order to prepare Step 3, we extend the Cauchy-data at {{L1}×[0, T1]}∪{{L1}×[T−T1, T ]}

in the C2-sense to {L1}× [0, T ] as (ã1(t), ã2(t)). After that we can use these Cauchy-data along

{L1} × [0, T ] as “initial conditions”.

Step 3: We change the order of x and t as explained in the beginning of the proof. The

Cauchy-data just constructed can be taken as “initial conditions” for the first beam “starting”

at x = L1 with ‘boundary conditions’ at t = 0 and t = T taken from the original initial and final

data. Applying the semi-global existence Theorem 6.1 to that situation, we can evaluate the

solution
(
Φ1(x, t),

∂
∂xΦ1(x, t)

)
at {0}×[0, T ]. On the set

{
(x, t) ∈ [0, L1], 0 ≤ t ≤ T2+

(T1−T2)x
L1

}
this solution Φ1 is identical to ΦI

1. Therefore, at t = 0 we have

Φ1(x, 0) = Φ0
1(x),

∂

∂t
Φ1(x, 0) = Φ1

1(x), x ∈ [0, L1].

At x = 0 we have

Φ1(0, t) = b1
1(t),

∂

∂x
Φ1(0, t) = b1

2(t), t ∈ [0, T2].

The analogous uniqueness argument applies for the backward solution of Step 2, such that the
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final conditions are

Φ1(x, T ) = Φ0,T
1 (x),

∂

∂t
Φ1(x, T ) = Φ1,T

1 (x), x ∈ [0, L1],

while the evaluation at x = 0 provides the Cauchy-data

Φ1(0, t) = b
1

1(t),
∂

∂x
Φ1(0, t) = b

1

2(t), t ∈ [T − T2, T ].

Step 4: We now extend the Cauchy-data (b1
1(t),b

1
2(t)), t ∈ [0, T2] together with (b

1

2(t),

b
1

2(t)), t ∈ [T−T2, T ] to Cauchy-data (b̃1
1(t), b̃

1
2(t)), t ∈ [0, T ] such that corresponding solutions

satisfy the nodal conditions.

Step 5: We now have Cauchy-data on {0}×[0, T ] such that the nodal conditions are satisfied.

Therefore, we can use these as compatible initial conditions for the beams labelled i = 2, · · · , n
after interchanging x and t. Thus, on the domains Ri

IV := {(x, t) ∈ [0, Li] × [0, T ]} we solve

the initial boundary value problems with Cauchy-data

Φi(0, t) = b̃i
1,

∂

∂x
Φi(0, t) = b̃i

2, t ∈ [0, T ]

and boundary conditions

Φi(x, 0) = Φ0
i (x), Φi(x, T ) = Φ1,T

i (x), x ∈ [0, Li].

By construction, the solutions are small in the sense described above. A similar uniqueness

argument applies to the region {(x, t) | x ∈ [0, Li], 0 ≤ t ≤ T2(1− x
Li
)} to the effect that

Φi(x, 0) = Φ0
i (x),

∂

∂t
Φi(x, 0) = Φ1

i (x), x ∈ [0, Li].

The analogous argument on the “upper” domain leads to

Φi(x, T ) = Φ0,T
i (x),

∂

∂t
Φi(x, T ) = Φ1,T

i (x), x ∈ [0, Li].

This gives the solution to the problem stated.

Remark 7.1 It is clear that a local-global controllability theorem can be proved, provided

that we have two non-identical equilibrium solutions connected by a path of equilibria. However,

as the analysis of general network equilibria is still open, we refrain from stating the theorem

here. Also, the analogous controllability holds for tree-like networks as usual. This is proved by

the so-called peeling method (see [13]). Moreover, it should be remarked that the observability

does not directly follow as in the linear case (see the corresponding remarks in the monograph of

Li [13]). Also feedback stabilization is an open problem that will be addressed in a forthcoming

publication.
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