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Abstract In this paper, the global well-posedness of the three-dimensional incompressible
Navier-Stokes equations with a linear damping for a class of large initial data slowly varying
in two directions are proved by means of a simpler approach.
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1 Introduction

The classical three-dimensional incompressible Navier-Stokes equations are given by
∂tu+ u · ∇u+∇p = △u,

∇ · u = 0,

u(x, 0) = u0(x),

(1.1)

where

u(x, t) = (u1, u2, u3)(x, t)

and p(x, t) stand for the velocity vector and the pressure function of the flow at the point

(x, t) ∈ R3 ×R+, respectively, and for simplicity, the kinematic viscosity of the fluid is taken to

be equal to one. The initial data u0 should also be a divergence-free vector field.

The study on Navier-Stokes equations dates back long time ago. The first important result

was obtained by Leray [12]. Despite much effort by many mathematicians and physicists,

however, our understanding of Navier-Stokes equations remains minimal (see [7]). We can

explain the main difficulty by means of the scaling property of the incompressible Navier-Stokes

equations from a purely mathematical viewpoint. If (u(x, t), p(x, t)) solves the Navier-Stokes
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equations on the time interval [0, T ], then we can form a new solution (uλ(x, t), pλ(x, t)) to the

Navier-Stokes equations on the time interval [0, λ−2T ], by the formula

uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t) (1.2)

with the initial data

uλ(x, 0) = λu0(λx). (1.3)

It can be easily checked that the unique conserved quantity — the energy E(u)(t) is

E(u)(t) =
1

2

∫
u2(x, t)dx+

∫ t

0

∫
|∇u(x, τ)|2dxdτ. (1.4)

If the dimension d is equal to 3, then

E(uλ)(t) =
1

λ
E(u)(λ2t). (1.5)

Thus, the energy is “super-critical”, which makes that the energy becomes increasingly useless

for controlling the solution as one moves to finer and finer scales.

For the problem with small initial data, we can see that the initial data should belong to

scale-invariant spaces in the following sense: There exists a constant C such that for any given

positive λ, we have

C−1∥u∥X ≤ ∥uλ∥X ≤ C∥u∥X . (1.6)

The corresponding result in Ḣ
1
2 is due to Fujita and Kato [8] (see also Leray [12], where the

smallness of the initial data is measured by ∥u0∥L2∥∇u0∥L2). The study of Navier-Stokes

equations in critical spaces was done by many authors, for example, Weissler [13], Kato [10],

Giga and Miyakawa [9], Cannone, Meyer and Planchon [2], in particular, Koch and Tataru [11]

proved the global well-posedness of the Navier-Stokes equations with small initial data in the

space BMO−1. For more information about the classical results, the reader can consult the

book by Cannone [1] and the references therein.

There are some results for large initial data, for example, in a series of recent papers [3–6],

Chemin et al. constructed some classes of large anisotropic initial data for the Navier-Stokes

system. We will not describe them in details, but we will just mention their work related to

our paper. In [4], Chemin, Gallagher and Paicu considered the well-poedness of the three-

dimensional Navier-Stokes equations with initial data slowly varying in one direction:(
v1(x1, x2, ϵx3), v2(x1, x2, ϵx3),

1

ϵ
v3(x1, x2, ϵx3)

)
, (1.7)

where ϵ > 0 is a small parameter, (x2, x2) belongs to the torus T2 and x3 belongs to R. After

a change of scale in the vertical variable, the system is not uniformly elliptic, which leads to
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lose the control on one derivative in the vertical variable. To compensate the loss of derivative,

by working in the class of analytical functions and using some kind of the global Cauchy-

Kowalewski result, the authors in [4] got the global well-posedness without small assumption

on the norm of initial data for the three-dimensional incompressible Navier-Stokes equations.

Inspired by their work, this paper is devoted to the study of the following system with a

linear damping: {
∂tu+ u · ∇u+∇p = −u+△u in Ω× R+,

∇ · u = 0
(1.8)

on the domain

Ω = {(x1, x2, x3) | (x1, x2) ∈ R2, x3 ∈ T = [−π, π]} (1.9)

with the initial data slowing varying in two directions

t = 0 : (u1, u2, u3) =
(1
ϵ
U1(ϵx1, ϵx2, x3),

1

ϵ
U2(ϵx1, ϵx2, x3), U3(ϵx1, ϵx2, x3)

)
, (1.10)

where ϵ > 0 is a small parameter.

For Uj(x1, x2, x3) (j = 1, 2, 3), we take the Fourier transformation with respect to x1, x2 ∈
R2, and also take the coefficients in the Fourier expansion with respect to x3 ∈ [−π, π]. More

precisely, let

Ûj,n(ξ1, ξ2) =
1

2π

∫ π

−π

∫
R2

e−i(x1ξ1+x2ξ2)e−inx3Uj(x1, x2, x3)dx1dx2dx3, j = 1, 2, 3. (1.11)

We give the following assumptions.

(1) Uj(x1, x2, x3) (j = 1, 2, 3) are analytic functions of x1, x2, Uj(x1, x2, x3) (j = 1, 2) are

even functions with respect to x3, and U3(x1, x2, x3) is an odd function with respect to x3.

(2) For Ûj,n(ξ1, ξ2) (j = 1, 2), the following inequality holds:∑
n

∫
R2

ea(|ξ1|+|ξ2|)|Ûj,n(ξ1, ξ2)|dξ1dξ2 ≤ δ, (1.12)

where a is a positive number and δ > 0 is a small constant.

(3) For Û3,n(ξ1, ξ2), the following inequality holds:∑
n

∫
R2

ea(|ξ1|+|ξ2|)|Û3,n(ξ1, ξ2)|dξ1dξ2 ≤ M, (1.13)

where M is a bounded constant.

Our result for system (1.8) is the following.

Theorem 1.1 Under assumptions (1)–(3), there exists δ = δ(a) > 0 so small that if ϵM ≤
δ, then the three-dimensional Navier-Stokes problem with damping (1.8) and with the initial

data given by (1.10) generates a unique global solution for any given small ϵ > 0.
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Remark 1.1 The linear damping term is put in system (1.8) to deal with the zero Fourier

mode. Comparing with [4], we give a much simpler proof at the cost of all initial data having

some analytical condition.

2 Proof of Theorem 1.1

Noting that the divergence free condition recovers p from u through the following formula:

−△p = ∇ · (u · ∇u) = ∇ · [∇ · (u⊗ u)], (2.1)

we can put the system (1.8) in the following formula:{
ut + (I −△−1(∇⊗∇))(u · ∇u) + (1−△)u = 0 in Ω× R+,

∇ · u = 0.
(2.2)

Let

uϵ(x, t) =
1

ϵ
u
(x
ϵ
,
t

ϵ2

)
.

The rescaled Navier-Stokes equations can be obtained from (1.8) as follows (to simplify the

notation, we will drop ϵ in the rest of this section):ut + (I −△−1(∇⊗∇))(u · ∇u) +
( 1

ϵ2
−△

)
u = 0 in Ω× R+,

∇ · u = 0
(2.3)

on the domain

Ω = {(x1, x2, x3) | (x1, x2) ∈ R2, x3 ∈ Tϵ = [−ϵπ, ϵπ]} (2.4)

with the initial data( 1

ϵ2
U1

(
x1, x2,

x3

ϵ

)
,
1

ϵ2
U2

(
x1, x2,

x3

ϵ

)
,
1

ϵ
U3

(
x1, x2,

x3

ϵ

))
. (2.5)

For any given point

x = (x1, x2, x3) ∈ Ω,

we denote its horizontal coordinates by

xh = (x1, x2).

Similarly, the horizontal components of any given vector field

u = (u1, u2, u3)

will be denoted by

v = (u1, u2),
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and ξ = (ξ1, ξ2) will be the frequency variable with respect to

xh = (x1, x2).

Let

ûn(ξ, t) =
1

2ϵπ

∫ ϵπ

−ϵπ

∫
R2

e−ixh·ξe−in
x3
ϵ u(xh, x3, t)dxhdx3. (2.6)

Thanks to the relationship between Fourier transformation, Fourier series and the derivative

with respect to x, the first equation in (2.3) becomes

∂tûn(ξ, t) +
(
|ξ|2 + 1 + n2

ϵ2

)
ûn(ξ, t)

= −
(
1−

(ξ, n
ϵ )⊗ (ξ, n

ϵ )

|ξ|2 + n2

ϵ2

) ∑
n1+n2=n

(∫
R2

v̂n1(ξ − η, t) · ηûn2(η, t)dη

+

∫
R2

û3,n1(ξ − η, t)
n2

ϵ
ûn2(η, t)dη

)
. (2.7)

The incompressible condition in (2.3) turns to

ξ · v̂n(ξ, t) +
n

ϵ
û3,n(ξ, t) = 0. (2.8)

Moreover, for j = 1, 2 the initial data (2.5) becomes

ûj,n(ξ, 0)

=
1

2ϵπ

∫ ϵπ

−ϵπ

∫
R2

e−i(x1ξ1+x2ξ2)e−in
x3
ϵ

1

ϵ2
Uj

(
x1, x2,

x3

ϵ

)
dx1dx2dx3

=
1

2π

∫ π

π

∫
R2

e−i(x1ξ1+x2ξ2)e−inx3
1

ϵ2
Uj(x1, x2, x3)dx1dx2dx3

=
1

ϵ2
Ûj,n(ξ1, ξ2), (2.9)

while, for j = 3 we have

û3,n(ξ, 0)

=
1

2ϵπ

∫ ϵπ

−ϵπ

∫
R2

e−i(x1ξ1+x2ξ2)e−in
x3
ϵ
1

ϵ
U3

(
x1, x2,

x3

ϵ

)
dx1dx2dx3

=
1

2π

∫ π

π

∫
R2

e−i(x1ξ1+x2ξ2)e−inx3
1

ϵ
U3(x1, x2, x3)dx1dx2dx3

=
1

ϵ
Û3,n(ξ1, ξ2). (2.10)

Multiplying ûn(ξ,t)
|ûn(ξ,t)| on both sides of (2.7), we get

∂t|ûn(ξ, t)|+
(
|ξ|2 + 1 + n2

ϵ2

)
|ûn(ξ, t)|

≤ C
∑

n1+n2=n

∫
R2

|v̂n1(ξ − η, t)||η||ûn2(η, t)|dη

+
|û3,n1(ξ − η, t)|

ϵ
|n2||ûn2(η, t)|dη. (2.11)
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Here and hereafter C denotes a positive constant. Since u3 is an odd function with respect to

x3, we have

û3,0(ξ, t) ≡ 0. (2.12)

The combination of (2.8) with (2.12) leads to

|û3,n(ξ, t)|
ϵ

≤ |ξ||v̂n(ξ, t)|, ∀n. (2.13)

Plugging (2.13) into (2.11) gives

∂t|ûn(ξ, t)|+
(
|ξ|2 + 1 + n2

ϵ2

)
|ûn(ξ, t)|

≤ C
∑

n1+n2=n

∫
R2

|v̂n1(ξ − η, t)||η||ûn2(η, t)|dη

+ |ξ − η||v̂n1(ξ − η, t)||n2||ûn2(η, t)|dη

≤ C
∑

n1+n2=n

∫
R2

(|n1||ûn1(ξ − η, t)|+ |ûn1(ξ − η, t)|)|η||ûn2(η, t)|dη. (2.14)

Suppose that there exists a C1 function θ(t) satisfying

θ(t) ≤ a

2
, θ(0) = 0. (2.15)

Multiplying e(a−θ(t))|ξ| on both sides of (2.14), and using the triangle inequality, we obtain

d

dt

∑
n

∫
R2

e(a−θ(t))|ξ||ûn(ξ, t)|dξ +
∑
n

∫
R2

θ̇(t)|ξ||ûn(ξ, t)|e(a−θ(t))|ξ|dξ

+
∑
n

∫
R2

(
|ξ|2 + 1 + n2

ϵ2

)
|ûn(ξ, t)|e(a−θ(t))|ξ|dξ

≤ C
(∑

n

∫
R2

(|n|+ 1)|ûn(ξ, t)|e(a−θ(t))|ξ|dξ
)(∑

n

∫
R2

|η||ûn(η, t)|e(b−θ(t))|η|dη
)
. (2.16)

Integrating both sides of (2.16) with respect to t, we get∑
n

∫
e(a−θ(t))|ξ||ûn(ξ, t)|dξ

+

∫ t

0

∑
n

∫
θ̇(τ)|ξ||ûn(ξ, τ)|e(a−θ(τ))|ξ|dξdτ

−
∑
n

∫
ea|ξ||ûn(ξ, 0)|dξ +

∫ t

0

∑
n

∫ (
|ξ|2 + 1 + n2

ϵ2

)
|ûn(ξ, τ)|e(a−θ(τ))|ξ|dξdτ

≤ C

∫ t

0

(∑
n

∫
(|n|+ 1)|ûn(ξ, τ)|e(a−θ(τ))|ξ|dξ

)(∑
n

|η||ûn(η, τ)|e(a−θ(τ))|η|dη
)
dτ. (2.17)

Now, setting

θ̇(t) = C
∑
n

∫
R2

(|n|+ 1)|ûn(ξ, t)|e(a−θ(t))|ξ|dξ, (2.18)
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we have ∫ t

0

∑
n

∫
R2

(
|ξ|2 + 1 + n2

ϵ2

)
|ûn(ξ, τ)|e(a−θ(τ))|ξ|dξdτ

+
∑
n

∫
R2

e(a−θ(t))|ξ||ûn(ξ, t)|dξ

≤
∑
n

∫
R2

ea|ξ||ûn(ξ, 0)|dξ. (2.19)

According to the original assumptions (2)–(3), it is obvious that∑
n

∫
R2

ea|ξ||ûn(ξ, 0)|dξ ≤ δ

ϵ2
+

M

ϵ
, (2.20)

then, owing to ϵM ≤ δ, we have∑
n

∫
R2

ea|ξ||ûn(ξ, 0)|dξ ≤ Cδ

ϵ2
. (2.21)

It follows from (2.19) that∫ t

0

∑
n

∫
R2

1 + n2

ϵ2
|ûn(ξ, τ)|e(a−θ(τ))|ξ|dξdτ ≤ Cδ

ϵ2
. (2.22)

By the definition of θ(t), obviously we have

θ(t) ≤ 2C

∫ t

0

∑
n

∫
R2

(1 + n2)|ûn(ξ, τ)|e(a−θ(τ))|ξ|dξdτ ≤ C̃δ, (2.23)

then we can choose δ so small that

θ(t) ≤ a

4
. (2.24)

Recalling (2.15) and (2.18), the bootstrap argument ensures the existence of θ(t).

Thus, according to (2.19), it follows that∑
n

∫
R2

e
a
2 |ξ||ûn(ξ, t)|dξ ≤ Cδ

ϵ2
(2.25)

for all time t ≥ 0. This means the global existence of the solution.
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