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Singularity of the Extremal Solution for Supercritical
Biharmonic Equations with Power-Type Nonlinearity∗

Baishun LAI1 Zhengxiang YAN2 Yinghui ZHANG3

Abstract Let B ⊂ Rn be the unit ball centered at the origin. The authors consider the
following biharmonic equation:{

∆2u = λ(1 + u)p in B,

u =
∂u

∂ν
= 0 on ∂B,

where p > n+4
n−4

and ν is the outward unit normal vector. It is well-known that there exists
a λ∗ > 0 such that the biharmonic equation has a solution for λ ∈ (0, λ∗) and has a unique
weak solution u∗ with parameter λ = λ∗, called the extremal solution. It is proved that u∗

is singular when n ≥ 13 for p large enough and satisfies u∗ ≤ r
− 4

p−1 − 1 on the unit ball,
which actually solve a part of the open problem left in [Dàvila, J., Flores, I., Guerra, I.,
Multiplicity of solutions for a fourth order equation with power-type nonlinearity, Math.
Ann., 348(1), 2009, 143–193] .
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1 Introduction

In the previous two decades, positive solutions to the second order semilinear elliptic problem{
−∆u = λg(u) in Ω,
u = 0 on Ω

(1.1)

have attracted a lot of interest (see [1–5] and references therein). Here, we only mention the

work by Joseph and Lundgren [2]. In their well known work, Joseph and Lundgren gave a

complete characterization of all positive solutions of (1.1) in the case g(u) = eu or g(u) =

(1+ au)p, ap > 0, λ > 0 and Ω being a unit ball in Rn. In particular, they found a remarkable

phenomenon for g(u) = eu and n > 2: Either (1.1) has at most one solution for each λ or there

is a value of λ for which infinitely many solutions exist. In the case of a power nonlinearity the

same alternative is valid if n ≥ 3 and p > n+2
n−2 . As a subsequent step, Lions (see [3, Section 4.2
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(c)]) suggested to study positive solutions to systems of semilinear elliptic equations. So it is

an important task to gain a deeper understanding for related higher order problems.

In this paper, we study a semilinear equation involving the bilaplacian operator and a power

type nonlinearity 
∆2u = λ(1 + u)p in B,

u =
∂u

∂ν
= 0 on ∂B,

(1.2)

where B ⊂ Rn is the unit ball, λ > 0 is an eigenvalue parameter, n ≥ 5 and p ≥ n+4
n−4 . The

subcritical case p < n+4
n−4 is by now folklore, where existence and multiplicity results are easily

established by means of variational methods. For the critical case p = n+4
n−4 (under Navier

boundary conditions), we refer to [6]. Recently, a lot of research on supercritical case, i.e.,

p > n+4
n−4 , has been done and many beautiful important results have been proved. In what

follows, we will summarize some of the results obtained by [7–8]. For convenience, we introduce

the following notions.

Definition 1.1 We say that u ∈ Lp(B) is a solution of (1.2) if u ≥ 0 and if for all φ ∈ C4(B)
with φ|∂B = |∇φ||∂B = 0, one has∫

B
u∆2φdx = λ

∫
B
(1 + u)pφdx.

We call u singular if u ̸∈ L∞(B), and regular if u ∈ L∞(B). A radial singular solution u = u(r)

of (1.2) is called weakly singular if lim
r→0

r
4

p−1u(r) ∈ (0,∞] exists.

Note that by standard regularity theory for the biharmonic operator, any regular solution u

of (1.2) satisfies u ∈ C∞(B). Note also that by the positivity preserving property of ∆2 in the

ball (see [10]) any solution of (1.2) is positive, see also [11] for a generalized statement. This

property is known to fail in general domains. For this reason, we restrict ourselves to the ball.

Hence, the sub- and super-solution method applies as well as monotone iterative procedures.

Definition 1.2 We call a solution u of (1.2) minimal if u ≤ v a.e. in B for any other

solution v of (1.2).

We also denote by λ1 > 0 the first eigenvalue for the biharmonic operator with Dirichlet

boundary conditions 
∆2φ1 = λ1φ1 in B,

φ1 =
∂φ1

∂ν
= 0 on ∂B.

It is known from the positivity preserving property and Jentzsch’s (or Krein-Rutman’s) theorem

that λ1 is isolated and simple and the corresponding eigenfunction φ1 does not change sign.

Definition 1.3 We say a weak solution of (1.2) is stable (resp. semi-stable) if

µ1(u) = inf
{∫

B
(∆φ)2dx− pλ

∫
B
φ2(1 + u)p−1dx : φ ∈ C∞

0 (B), ∥φ∥L2 = 1
}

is positive (resp. non-negative).
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To illuminate the motivations, we need the following notations which will be used throughout

the paper. Set

K0 =
4

p− 1

( 4

p− 1
+ 2

)(
N − 2− 4

p− 1

)(
N − 4− 4

p− 1

)
and

pc =
n+ 2−

√
4 + n2 − 4

√
n2 +Hn

n− 6−
√
4 + n2 − 4

√
n2 +Hn

for n ≥ 3,

with Hn

(n(n−4)
4

)2
and the number pc such that when p = pc( 4

p− 1
+ 4

)( 4

p− 1
+ 2

)(
n− 2− 4

p− 1

)(
n− 4− 4

p− 1

)
= Hn.

Now we summarize some of the well-known results as follows.

Theorem 1.1 (see [7–8]) There exists λ∗ ∈
[
K0,

λ1

p

)
such that the following terms hold:

(i) For λ ∈ (0, λ∗), (1.2) admits a minimal stable regular solution, denoted by uλ. This

solution is radially symmetric and strictly decreasing in r = |x|.
(ii) For λ = λ∗, (1.2) admits at least one not necessarily bounded solution, which is called

extremal solution u∗.

(iii) For λ > λ∗, (1.2) admits no (not even singular) solutions.

Theorem 1.2 (see [9]) Assume that

n+ 4

n− 4
< p < pc, if n ≥ 13;

n+ 4

n− 4
< p < ∞, if 5 ≤ n ≤ 12.

Then u∗ is regular.

From Theorem 1.2, we know that the extremal solution of (1.2) is regular for a certain range

of p and n. At the same time, they left an open problem: If

n ≥ 13 and p ≥ pc,

is u∗ singular?

In this paper, by constructing a semi-stable singular H2
0 (B)-weak sub-solution of (1.2), we

prove that, if p is large enough, the extremal solution is singular for dimensions n ≥ 13 and

complete part of the above open problem. Our result is stated as follows.

Theorem 1.3 There exists p0(n) > 1 large enough such that for p ≥ p0(n), the unique

extremal solution of (1.2) is singular for dimensions n ≥ 13, in which case u∗ ≤ |x|−
4

p−1 − 1 on

the unit ball B.

From the technical point of view, one of the obstacle is the well-known difficulty of extracting

energy estimates for solutions of fourth order problems from their stability properties. Besides,

for the corresponding second order problem (1.1), the starting point was an explicit singular

solution for a suitable eigenvalue parameter λ which turned out to play a fundamental role for

the shape of the corresponding bifurcation diagram (see [12]). When turning to the biharmonic

problem (1.2) the second boundary condition ∂u
∂ν = 0 prevents to find an explicit singular
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solution. This means that the method used to analyze the regularity of the extremal solution

for second order problem could not carry to the corresponding problem for (1.2). In this paper,

in order to overcome the second obstacle, we use improved and non-standard Hardy-Rellich

inequalities recently established by Ghoussoub-Moradifam in [13] to construct a semi-stable

singular H2
0 (B)-weak sub-solution of (1.2).

This paper is organized as follows. In the next section, some preliminaries are reviewed.

In Section 3, we will show that the extremal solution u∗ in dimensions n ≥ 13 is singular by

constructing a semi-stable singular H2
0 (B)-weak sub-solution of (1.2).

2 Preliminaries

First we give some comparison principles which will be used throughout this paper.

Lemma 2.1 (see [10]) If u ∈ C4(BR) satisfies
∆2u ≥ 0 in BR,

u =
∂u

∂ν
= 0 on ∂BR,

then u ≥ 0 in BR. Here and in what follows, BR is denoted by the ball of radius R centered at

0.

Lemma 2.2 Let u ∈ L1(BR) and suppose that∫
BR

u∆2φdx ≥ 0

for all φ ∈ C4(BR) such that φ ≥ 0 in BR, φ|∂BR = ∂φ
∂ν |∂BR = 0. Then u ≥ 0 in BR. Moreover,

u ≡ 0 or u > 0 a.e. in BR.

For a proof, see Lemma 17 in [11].

Lemma 2.3 If u ∈ H2(BR) is radial, ∆2u ≥ 0 in BR in the weak sense, that is∫
BR

∆u∆φdx ≥ 0, ∀φ ∈ C∞
0 (BR), φ ≥ 0

and u|∂BR
≥ 0, ∂u

∂ν |∂BR
≤ 0, then u ≥ 0 in BR.

Proof For the sake of completeness, we include a brief proof here. We only deal with the

case R = 1 for simplicity. Solve 
∆2u1 = ∆2u in B,

u1 =
∂u1

∂ν
= 0 on ∂B

in the sense u1 ∈ H2
0 (B) and

∫
B ∆u1∆φdx =

∫
B ∆u∆φdx for all φ ∈ C∞

0 (B). Then u1 ≥ 0 in B
by Lemma 2.2.

Let u2 = u − u1 so that ∆2u2 = 0 in B. Define f = ∆u2. Then ∆f = 0 in B and since

f is radial, we find that f is a constant. It follows that u2 = ar2 + b. Using the boundary

conditions, we deduce a+ b ≥ 0 and a ≤ 0, which imply u2 ≥ 0.
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Now we give a notion of H2
0 (B)-weak solutions, which is an intermediate class between

classical and weak solutions.

Definition 2.1 We say that u is an H2
0 (B)-weak solution of (1.2) if (1 + u)p ∈ L1(B) and

if ∫
B
∆u∆ϕdx = λ

∫
B
ϕ(1 + u)pdx, ∀ϕ ∈ C4(B) ∩H2

0 (B).

We say that u is an H2
0 (B)-weak super-solution (resp. H2

0 (B)-weak sub-solution) of (1.2) if for

ϕ ≥ 0 the equality is replaced with ≥ (resp. ≤) and u ≥ 0 (resp. ≤), ∂u
∂ν ≤ 0 (resp. ≥) on ∂B.

We also need the following comparison principle.

Lemma 2.4 Let u1, u2 ∈ H2(BR) with (1 + u1)
p, (1 + u2)

p ∈ L1(BR). Assume that u1 is

stable and

∆2u1 ≤ λ(1 + u1)
p in BR

in the H2(BR)-weak sense, i.e.,∫
BR

∆u1∆ϕdx ≤ λ

∫
BR

(1 + u1)
pϕdx, ∀ϕ ∈ C∞

0 (BR), ϕ ≥ 0 (2.1)

and ∆2u2 ≥ λ(1 + u2)
p in BR in the similar weak sense. Suppose also

u1|∂BR
= u2|∂BR

,
∂u1

∂ν

∣∣∣
∂BR

=
∂u2

∂ν

∣∣∣
∂BR

.

Then

u1 ≤ u2 in BR.

Proof Define ω := u1−u2. Then by the Moreau decomposition (see [14]) for the biharmonic

operator, there exist ω1, ω2 ∈ H2
0 (BR), with ω = ω1+ω2, ω1 ≥ 0 a.e., ∆2ω2 ≤ 0 in the H2

0 (BR)-

weak sense and ∫
BR

∆ω1∆ω2dx = 0.

By Lemma 2.3, we have that ω2 ≤ 0 a.e. in BR.

Given now 0 ≤ φ ∈ C∞
0 (BR), we have that∫

BR

∆ω∆φdx ≤ λ

∫
BR

(f(u1)− f(u2))φdx,

where f(u) = (1 + u)p. Since u1 is semi-stable and by density, one has

λ

∫
BR

f ′(u1)ω
2
1dx ≤ λ

∫
BR

(∆ω1)
2dx = λ

∫
BR

∆ω∆ω1dx ≤ λ

∫
BR

(f(u1)− f(u2))ω1dx.

Since ω1 ≥ ω, one also has∫
BR

f ′(u1)ωω1dx ≤
∫
BR

(f(u1)− f(u2))ω1dx

which once re-arrange gives ∫
BR

f̃ω1dx ≥ 0,



820 B. S. Lai, Z. X. Yan and Y. H. Zhang

where f̃ = f(u1) − f(u2) − f ′(u1)(u1 − u2). The strict convexity of f gives f̃ ≤ 0 and f̃ < 0

whenever u1 ̸= u2. Since ω1 ≥ 0 a.e. in BR, one sees that ω ≤ 0 a.e. in BR. The inequality

u1 ≤ u2 a.e. in BR is then established.

The following variant of Lemma 2.4 also holds.

Lemma 2.5 Let u1, u2 ∈ H2(BR) be radial with (1 + u1)
p, (1 + u2)

p ∈ L1(BR). Assume

∆2u1 ≤ λ(1 + u1)
p in BR in the sense of (2.1) and ∆2u2 ≥ λ(1 + u2)

p in BR in the same weak

sense. Suppose u1|∂BR
≤ u2|∂BR

and ∂u1

∂n |∂BR
≥ ∂u2

∂n |∂BR
and suppose also that u1 is semi-stable.

Then u1 ≤ u2 in BR.

Proof We solve for û ∈ H2
0 (B) such that∫

BR

∆û∆ϕdx =

∫
BR

∆(u1 − u2)∆ϕdx, ∀ϕ ∈ C∞
0 (BR).

By Lemma 2.3 it follows that û ≥ u1−u2. Next we apply the Moreau decomposition to û, that

is û = w + v with w, v ∈ H2
0 (BR), w ≥ 0, ∆2v ≤ 0 in BR and

∫
BR

∆w∆vdx = 0. Then the

argument follows that of Lemma 2.4.

Lemma 2.6 Let u be a semi-stable H2
0 (B)-weak solution of (1.2) and U be an H2

0 (B)-super-
solution of (1.2). Then if u is a classical solution and µ1(u) = 0, we have u = U .

Proof Since u is a classical solution, it is easy to see that the infimum in µ1(u) is attained

at some φ. The function φ is then the first eigenfunction of ∆2 − λf ′(u) in H2
0 (B), where

f(u) = (1 + u)p. Now we show that ϕ is of fixed sign. Using the Moreau decomposition, one

has

ϕ = ϕ1 + ϕ2,

where ϕi ∈ H2
0 (B) for i = 1, 2, and

ϕ1 ≥ 0,

∫
B
∆ϕ1∆ϕ2dx = 0, ∆2ϕ2 ≤ 0

in the H2
0 (B)-weak sense. If ϕ changes sign, then ϕ1 ̸≡ 0 and ϕ2 < 0 in B. We can write now

0 = µ1(u) ≤

∫
B
{(∆(ϕ1 − ϕ2))

2 − λf ′(u)(ϕ1 − ϕ2)
2}dx∫

B
(ϕ1 − ϕ2)

2dx

<

∫
B
{(∆ϕ)2 − λf ′(u)ϕ2}dx∫

B
ϕ2dx

= µ1(u)

in view of ϕ1ϕ2 < −ϕ1ϕ2 in a set of positive measure, leading to a contradiction.

So we can assume ϕ ≥ 0, and by the Boggio’s principle, we have ϕ > 0 in B. For 0 ≤ t ≤ 1,

define

g(t) =

∫
B
∆(tU + (1− t)u)∆ϕdx− λ

∫
B
f(tU + (1− t)u)ϕdx,

where ϕ is the above first eigenfunction. Since f is convex, one sees that

g(t) ≥ λ

∫
B
[tf(U) + (1− t)f(u)− f(tU + (1− t)u)]ϕdx ≥ 0
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for every t ≥ 0. Since g(0) = 0 and

g′(0) =

∫
B
[∆(U − u)∆ϕ− λf ′(u)(U − u)]ϕdx = 0,

we get that

g′′(0) = −λ

∫
B
f ′′(u)(U − u)2ϕdx ≥ 0.

Since f ′′(u)ϕ > 0 in B, we finally get that U = u a.e. in B.

From this lemma, we immediately obtain the following corollary.

Corollary 2.1 (i) When u∗ is a classical solution, then µ1(u
∗) = 0 and u∗ is the unique

H2
0 (B)-weak solution of (1.2);

(ii) If v is a singular semi-stable H2
0 (B)-weak solution of (1.2), then v = u∗ and λ = λ∗.

Proof (i) Since the function u∗ is a classical solution, and by the implicit function theorem,

we have that µ1(u
∗) = 0 to prevent the continuation of the minimal branch beyond λ∗. By

Lemma 2.4, u∗ is then the unique H2
0 (B)-weak solution of (1.2).

(ii) Assume now that v is a singular semi-stable H2
0 (B)-weak solution of (1.2). If λ < λ∗,

then by the uniqueness of the semi-stable solution, we have v = uλ. So v is not singular and a

contradiction arises. By Theorem A(iii) we have that λ = λ∗. Since v is a semi-stable H2
0 (B)-

weak solution of (1.2) and u∗ is an H2
0 (B)-weak super-solution of (1.2), we can apply Lemma

2.4 to get v ≤ u∗ a.e. in B. Since u∗ is also a semi-stable solution, we can reverse the roles of

v and u∗ in Lemma 2.4 to see that v ≥ u∗ a.e. in B. So equality v = u∗ holds and the proof is

complete.

3 Proof of Theorem 1.3

Inspired by the work of [16], we will first show the following upper bound on u∗.

Lemma 3.1 If n ≥ 13 and p > pc, then u∗ ≤ |x|−
4

p−1 − 1 for x ∈ B.

Proof Recall from Theorem 1.1 that K0 ≤ λ∗. We now claim that uλ ≤ ũ := |x|−
4

p−1 − 1

for all λ ∈ (K0, λ
∗). Indeed, fix such a λ and assume by contradiction that

R1 := inf{0 ≤ R ≤ 1 : uλ > u in the interval (R, 1)} > 0.

From the boundary conditions, one has

uλ(r) < ũ(r) as r → 1−.

Hence,

0 < R1 < 1, uλ(R1) = ũ(R1), u′
λ(R1) ≤ ũ′(R1).

Now consider the following problem:
∆2u = K0(1 + u)p in BR1 ,
u = uλ(R1) on ∂BR1 ,

∂u

∂ν
= u′

λ(R1) on ∂BR1 .
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Then uλ is a super-solution to above problem while ũ is a sub-solution to the same problem.

Moreover for n ≥ 13, we have

pK0 ≤ Hn :=
n2(n− 4)2

16

and ∫
BR1

(∆ϕ)2dx ≥ Hn

∫
BR1

ϕ2

|x|4
dx ≥ pK0

∫
BR1

(1 + ũ)p−1dx.

So ũ is semi-stable and we deduce that uλ > ũ by Lemma 2.4, and a contradiction arises in

view of the fact

|uλ|L∞(BR1
) < ∞, |ũ|L∞(BR1

) = ∞.

The proof is done.

In order to prove Theorem 1.3, we need a suitable Hardy-Rellich type inequality which was

established by Ghoussoub-Moradifam in [13]. It is stated as follows.

Lemma 3.2 Let n ≥ 5 and B be the unit ball in Rn. Then there exists C > 0, such that

the following improved Hardy-Rellich inequality holds for all φ ∈ H2
0 (B):∫

B
(∆φ)2dx ≥ n2(n− 4)2

16

∫
B

φ2

|x|4
dx+ C

∫
B
φ2dx.

Lemma 3.3 Let n ≥ 5 and B be the unit ball in Rn. Then the following improved Hardy-

Rellich inequality holds for all φ ∈ H2
0 (B):∫

B
(∆φ)2dx ≥ (n− 2)2(n− 4)2

16

∫
B

φ2dx

(|x|2 − 0.9|x|n2 +1)(|x|2 − |x|n2 )

+
(n− 1)(n− 4)2

4

∫
B

φ2dx

|x|2(|x|2 − |x|n2 )
. (3.1)

As a consequence, the following improvement of the classical Hardy-Rellich inequality holds:∫
B
(∆φ)2dx ≥ n2(n− 4)2

16

∫
B

φ2dx

|x|2(|x|2 − |x|n2 )
.

We now give the following lemma which is crucial for the proof of the Theorem 1.3.

Lemma 3.4 Suppose there exist λ′ > 0 and a radial function u ∈ H2(B) ∩W 4,∞
loc (B \ {0})

such that u ̸∈ L∞(B) and

∆2u ≤ λ′(1 + u)p for 0 < r < 1, u(1) = u′(1) = 0

and

pβ

∫
B
φ2(1 + u)p−1dx ≤

∫
B
(∆φ)2dx for all φ ∈ H2

0 (B)

for either β > λ′ or β = λ′ = Hn

p . Then u∗ is singular and

λ∗ ≤ λ′. (3.2)
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Proof First, we prove λ∗ ≤ λ′. Noting that the stability inequality (set φ = u) and

u ∈ L∞
loc(B \ {0}) yield (1 + u)p ∈ L1(B), we easily see that u is a weak sub-solution of (1.2). If

now λ′ < λ∗, by Lemma 2.5, u would necessarily be below the minimal solution uλ′ , which is a

contraction since u is singular while uλ′ is regular.

Suppose first that β = λ′ = Hn

p and that n ≥ 13. From the above we have λ∗ ≤ Hn

p . We

get from Lemma 3.1 and the improved Hardy-Rellich inequality that there exists C > 0 so that

for all ϕ ∈ H2
0 (B),∫

B
(∆ϕ)2dx− pλ∗

∫
B
ϕ2(1 + u∗)p−1dx ≥

∫
B
(∆ϕ)2dx−Hn

∫
B

ϕ2

|x|4
dx ≥ C

∫
B
ϕ2dx.

It follows that µ1(u
∗) > 0 and u∗ must therefore be singular since otherwise, one could use the

implicit function theorem to continue the minimal branch beyond λ∗.

Suppose now that β > λ′. Let λ′

β1
< γ < 1 and α :=

(
γλ∗

λ′

) 1
p+1

. Define u := α−1(1 + u)− 1.

We claim that

u∗ ≤ u in B. (3.3)

To prove this, we shall show that for every λ < λ∗,

uλ ≤ u in B. (3.4)

Indeed, we have

∆2u = α∆2u ≤ αλ′(1 + u)p = αp+1λ′(1 + u)p.

Now by the choice of α, we have αp+1λ′ < λ∗. To prove (3.4), it suffices to prove it for

αp+1λ′ < λ < λ∗. Fix such λ and assume that (3.4) is not true. Then

Λ = {0 ≤ R ≤ 1 | uλ(R) > u(R)}

is non-empty. Since u(1) = α−1 − 1 > 0 = uλ(1), we have

0 < R1 < 1, uλ(R1) = u(R1),

and u′
λ(R1) ≤ u′(R1). Now consider the following problem:

∆2u = λ(1 + u)p in BR1 ,
u = uλ(R1) on ∂BR1 ,

∂u

∂ν
= u′

λ(R1) on ∂BR1 .

Then uλ is a solution to above problem while u is a sub-solution to the same problem. Moreover,

u is stable since λ < λ∗ and

pλ(1 + u)p−1 ≤ pλ∗α−(p−1)(1 + u)p−1 = pλ′γ−1(1 + u)p−1 < pβ1(1 + u)p−1,

we deduce u ≤ uλ in BR1 , which is impossible, since u is singular while uλ is smooth. This

establishes (3.3). From (3.3) and the above inequalities, we have

pλ∗(1 + u∗)p−1 ≤ pλ′γ−1(1 + u)p−1 < pβ1(1 + u)p−1.
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Thus

inf
φ∈C∞

0 (B)

∫
B
{(∆φ)2 − pλ∗φ2(1 + u∗)p−1}dx∫

B
φ2dx

> 0.

This is not possible if u∗ is a smooth function by the implicit function theorem.

Proof Theorem 1.3 Uniqueness and the upper bound estimate of the extremal solution

u∗ have been proven by Corollary 2.1 and Lemma 3.1. Now we only prove that u∗ is a singular

solution of (1.1) for n ≥ 13. In order to achieve this, we shall find a singularH-weak sub-solution

of (1.1), denoted by ωm(r), which is stable, according to the Lemma 3.4.

Choosing

ωm = a1r
− 4

p−1 + a2r
m − 1, K0 =

8(p+ 1)

p− 1

[
n− 2(p+ 1)

p− 1

][
n− 4p

p− 1

]
,

since ωm(1) = ω′
m(1) = 0, we have

a1 =
m

m+ 4
p−1

, a2 =

4
p−1

m+ 4
p−1

.

For any m fixed, when p → +∞, we have

a1 = 1− 4

(p− 1)m
+ o(p−1), a2 = 1− a1 =

4

(p− 1)m
+ o(p−1)

and

K0 =
8(n− 2)(n− 4)

p
+ o(p−1).

Note that

λ′K0(1 + ωm(r))p −∆2ωm(r) = λ′K0(1 + ωm(r))p − a1K0r
− 4p

p−1 − a2K1r
m−4

= λ′K0(a1r
− 4

p−1 + a2r
m)p − a1K0r

− 4p
p+1 − a2K1r

m−4

= K0r
− 4p

p−1 [λ′(a1 + a2r
m+ 4

p−1 )p − a1 − a2K1K
−1
0 r

4p
p−1+m−4]

= K0r
− 4p

p−1 [λ′(a1 + a2r
m+ 4

p−1 )p − a1 − a2K1K
−1
0 rm− 4

p−1 ]

= K0r
− 4p

p−1 (a1 + a2r
m+ 4

p−1 )p[λ′ −H(rm+ 4
p−1 )] (3.5)

with

H(x) = (a1 + a2x)
p[a1 + a2K1K

−1
0 x], K1 = m(m− 2)(m+ n− 2)(m+ n− 4). (3.6)

(1) Let m = 2 and n ≥ 32, then we can prove that

sup
[0,1]

H(x) = H(0) = a1−p
1 −→ e2, as p −→ +∞.

So (3.5) ≥ 0 is valid as long as

λ′ = e2.
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At the same time, we have (since a1 + a2r
m+ 4

p−1 ≤ a1 + a2 ≤ 1 in [0, 1])

n2(n− 4)2

16

1

r4
− pβnr

−4(a1 + a2r
2+ 4

p−1 )p−1 ≥ r−4
[n2(n− 4)2

16
− pβ

]
. (3.7)

Let β = (λ′ + ε)K0, where ε is arbitrary sufficienty small. We need finally here

n2(n− 4)2

16
− pβ =

n2(n− 4)2

16
− p(λ′ + ε)K0 > 0.

For that, it is sufficient to have for p −→ +∞,

n2(n− 4)2

16
− 8(e2 + ε)(n− 2)(n− 4) + o

(1
p

)
> 0.

So (3.7) ≥ 0 holds only for n ≥ 32 when p −→ +∞. Moreover, for p large enough

8e2(n− 2)(n− 4)

∫
B
φ2(1 + ω2)

p−1dx ≤ Hn

∫
B

φ2

|x|4
dx ≤

∫
B
|∆φ|2dx.

Thus it follows from Lemma 3.4 that u∗ is singular with λ′ = e2K0, β = (e2K0 + ε(n, p)) and

λ∗ ≤ e2K0.

(2) Assume 13 ≤ n ≤ 31. We shall show that u = ω3.5 satisfies the assumptions of Lemma

3.4 for each dimension 13 ≤ n ≤ 31. Using Maple, for each dimension 13 ≤ n ≤ 31, one can

verify that inequality (3.5) ≥ 0 holds for λ′ given by Table 1. Then, by using Maple again, we

show that there exists β > λ′ such that

(n− 2)2(n− 4)2

16

1

(|x|2 − 0.9|x|n2 +1)(|x|2 − |x|n2 )
+

(n− 1)(n− 4)2

4

1

|x|2(|x|2 − |x|n2 )
≥ pβ(1 + w3.5)

p−1.

The above inequality and the improved Hardy-Rellich inequality (3.1) guarantee that the sta-

bility condition holds for β > λ′. Hence by Lemma 3.4 the extremal solution is singular for

13 ≤ n ≤ 31, where the value of λ′ and β are shown in Table 1.

Table 1

n λ′ β
31 3.06K0 4.05K0

30-19 4.6K0 10K0

18 3.5K0 3.78K0

17 3.26K0 3.60K0

16 3.13K0 3.78K0

15 2.76K0 3.12K0

14 2.34K0 2.96K0

13 2.03K0 2.15K0

Remark 3.1 The improved Hardy-Rellich inequality (3.1) is crucial to prove that u∗ is

singular in dimensions n ≥ 13. Indeed by the classical Hardy-Rellich inequality and u := w2,

Lemma 3.4 only implies that u∗ is singular n dimensions (n ≥ 32).
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[17] Dàvila, J., Dupaigne, L., Guerra, I. and Montenegro, M., Stable solutions for the bilaplacian with expo-
nential nonlinearity, Siam J. Math. Anal., 39(2), 2007, 565–592.


