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Abstract The present paper is devoted to studying the initial-boundary value problem
of a 1-D wave equation with a nonlinear memory:

utt − uxx =
1

Γ(1− γ)

∫ t

0

(t− s)−γ |u(s)|pds.

The blow up result will be established when p > 1 and 0 < γ < 1, no matter how small
the initial data are, by introducing two test functions and a new functional.
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1 Introduction

In this paper we consider the initial-boundary value problem of a wave equation with a

nonlinear memory as following:
utt − uxx =

1

Γ(1− γ)

∫ t

0

(t− s)−γ |u(s)|pds, t > 0, x ∈ (0,∞),

u(0, x) = εu0(x), ut(0, x) = εu1(x), x ∈ (0,∞),

u|x=0 = 0,

(1.1)

where 0 <γ <1, p >1, Γ denotes the Euler gamma function and ε is a positive small parameter.

We assume that the data are compact supported and satisfy

u0 ∈ C2(0,∞), u1 ∈ C1(0,∞),

supp ui ⊂ {x | 0 < x < R}, i = 0, 1,
(1.2)

where R > 0 is a constant. We also assume that the initial data (u0, u1) and the Dirichlet

boundary condition satisfy the following compatibility condition at the origin:

u0(0) = u′′
0(0) = u1(0) = 0. (1.3)
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Noting that the limit

lim
γ→1

1

Γ(1− γ)
s−γ
+ = δ(s)

holds in the distribution sense. The first equation of system (1.1) can be considered as the

approximation of the classical one-dimensional semilinear wave equation

utt − uxx = |u|p. (1.4)

It is well known that the above equation in higher dimensions is connected with the Strauss’

conjecture, which is a Cauchy problem with small data of the following:utt −∆u = utt −
n∑

i=1

uxixi = |u|p, t > 0, x ∈ Rn,

u(0, x) = εf(x), ut(0, x) = εg(x), x ∈ Rn.

(1.5)

The first work for system (1.5) is due to John [9], in which he considered the case n = 3 and

regular data with compact support and obtained two main results: (I) When 1 < p < 1+
√
2 and

the data (f, g) are nonnegative, the solution blows up in a finite time; (II) when p > 1+
√
2, the

solution exists globally in time if the data are small enough. After that, Strauss [18] conjectured

that for each n ≥ 2, there exists a critical power pc(n), which is the positive root of the quadratic

equation

(n− 1)p2 − (n+ 1)p− 2 = 0,

such that this critical power divides (1,∞) into two subintervals. If p ∈ (1, pc(n)], then solutions

with nonnegative data blow up in a finite time. When p ∈ (pc(n),∞), solutions with small initial

data will exist globally in time. Since then, this problem has become the focus of interest of

many authors and was finally well solved recently. Glassey [4–5] showed the blow up result

for 1 < p < pc(2) and global existence for p > 1 + pc(2). Sideris [16] established the blow

up result for 1 < p < pc(n) and n ≥ 4, the proof of which was quite sophisticated and was

simplified by Rammaha [14] and Jiao and Zhou [8]. Schaeffer [15] showed the blow up results

for a critical exponent p = pc(n) and n = 2, 3. The global existence for p > pc(4) was proved

by Zhou [22]. Lindblad and Sogge [13] established the global existence for all dimensions under

the assumption of radial symmetry and for n ≤ 8 without the radial symmetric assumption.

Not much later, the case of n+3
n−1 ≥ p > pc(n) and n ≥ 4 was solved by Georgiev, Lindblad

and Sogge [3]. Tataru [19] also gave a simple proof for the latter case. The remaining part

of Strauss’ conjecture is the blow up for p = pc(n) and n ≥ 4, which was solved by Yordanov

and Zhang [21] and Zhou [23] independently. Recently, the first author and Zhou [10] gave an

elementary proof of Strauss’ conjecture and obtained furthermore the sharp lifespan estimate

from below for the case 1 < p < pc(n) and n ≥ 4.

For the Strauss’ conjecture of the initial-boundary value problem in an exterior domain,

Zhou and Han [24] established the blow up result for 1 < p < pc(n) and n ≥ 3. Li and Wang
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[12] showed the non-global existence for 1 < p < pc(2). The first author and Zhou [11] obtained

the blow up result and the upper bound of the lifespan estimate for p = pc(3). In the case of

p > pc(n), it is known that the solutions exist globally in time from the works of Du et al [1]

for n = 4, Hidano et al [7] for n = 3, 4 and Smith, Sogge and Wang [17] for n = 2. Recently,

Han [6] studied the initial-boundary value problem of (1.4) in 1-D and obtained the blow up

result for p > 1.

For the Cauchy problem of a wave equation with a nonlinear memory, Fino, Kirane and

Georgiev [2] introduced the left-handed and right-handed Riemann-Liouville fractional deriva-

tives and showed the blow up result in a finite time when the exponents γ and p satisfy some

conditions. In this paper, we will study the initial-boundary value problem (1.1) with small

initial data satisfying (1.2). We expect that the problem admits a similar result as that of the

classical semilinear wave equation for p > 1 and 0 < γ < 1. For this purpose, we will use the

test function method, which was originally due to the work of Yordanov and Zhang [20–21].

Set

ϕ0(x) = x,

ϕ(t, x) = e−tϕ1(x) = e−t(ex − e−x),

while the weighted average functional

F0(t) =

∫ ∞

0

u(t, x)ϕ0(x)dx,

where u solves the problem (1.1). The necessity for introducing the two test functions lies in that

ϕ0(x) satisfies the null Dirichlet boundary condition at x = 0, which is helpful when applying

integration by parts, and ϕ(t, x) is used to improve the lower bound of F0(t). Comparing with

the initial-boundary value problem of semilinear wave equations studied in [6], we can not

use the classical Kato-type lemma (see Lemma 4.1) directly because of the nonlinear memory

term. However, following the idea in [2], we employ an iteration method to prove the auxiliary

functional

I(t) =

∫ t

b

(t− s)αF0(s)ds

with some constant α > 0 satisfying the conditions of the Kato-type lemma and then we obtain

the desired blow up result.

We can get the local existence of the initial-boundary value problem (1.1) as following.

Theorem 1.1 Assuming that the data (u0, u1) satisfy (1.2) and the compatibility condition

(1.3). Then there exists T > 0 and a unique solution which solves problem (1.1) and belongs to

C2([0, T ]× (0,∞)). (1.6)

Proof The first step to prove the local existence theorem is to extend u0 and u1 as odd

functions on −∞ < x < ∞:

ũ0(x) =

{
u0(x), x ≥ 0,

− u0(x), x < 0,
ũ1(x) =

{
u1(x), x ≥ 0,

− u1(x), x < 0.
(1.7)
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Using the boundary condition, we can get that the solution of problem (1.1) can be obtained

by restricting the solution of the following Cauchy problem:

utt − uxx =


1

Γ(1− γ)

∫ t

0

(t− s)−γ |u(s)|pds, t > 0, x ≥ 0,

− 1

Γ(1− γ)

∫ t

0

(t− s)−γ |u(s)|pds, t > 0, x < 0.

(1.8)

The local existence of solutions to the Cauchy problem (1.8) with initial data (1.7) and 1 <

p < ∞ has been established in [2] by the contraction mapping method and we omit the details

here. Then, we can get the conclusion of Theorem 1.1.

Furthermore, we can also consider the blow up result of the initial-boundary value problem

of system (1.1) under the positive assumptions on the initial data. We can get the following

main result.

Theorem 1.2 Let 0 < γ < 1 and 1 < p < ∞. Under the assumptions that the initial data

(u0, u1) satisfy (1.2)–(1.3), we further assume

ui(x) ≥ 0, ui(x) ̸≡ 0, i = 0, 1. (1.9)

Then the solution to the initial-boundary value problem of system (1.1) in the space (1.6) must

blow up in a finite time.

This paper is organized as follows: In Section 2 we will introduce two test functions and

give some estimates about them. In Section 3, an iteration argument for F0(t) is shown. The

blow up for the function I(t) is given in Section 4.

2 Preliminaries

In this section we will introduce two test functions and give some basic estimates which play

an important role in the proof of our main result. Denote the following functions:

ϕ0(x) = x,

ϕ1(x) = ex − e−x.

Then, we have 
d2ϕ0(x)

dx2
= 0, x ≥ 0,

ϕ0(x)|x=0 = 0
(2.1)

and 
d2ϕ1(x)

dx2
= ϕ1(x), x ≥ 0,

ϕ1(x)|x=0 = 0.
(2.2)
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Set

ϕ(t, x) = e−tϕ1(x),

then it holds that

ϕt(t, x) = −ϕ(t, x), ϕtt(t, x) = ϕ(t, x), ϕxx(t, x) = ϕ(t, x). (2.3)

Lemma 2.1 Let ϕ(t, x) be as above. Then, for any p > 1 and t > 0, we have∫ t+R

0

|ϕ(t, x)|
p

p−1 dx ≤ C. (2.4)

Here and in the following, C denotes a positive constant which may change from line to line

and R is as in (1.2).

Proof It can be done by a direct computation:∫ t+R

0

|ϕ(t, x)|
p

p−1 dx = e−
pt

p−1

∫ t+R

0

(ex − e−x)
p

p−1 dx

≤ e−
pt

p−1

∫ t+R

0

e
px
p−1 dx

≤ C.

Lemma 2.2 Let ϕ(t, x) be as above. Then for p > 1, we have∫ t+R

0

x− 1
p−1 |ϕ(t, x)|

p
p−1 dx ≤ C. (2.5)

Proof We divide the left-hand side of the above integral into two parts∫ t+R

0

x− 1
p−1 |ϕ(t, x)|

p
p−1 dx

=

∫ R

0

x− 1
p−1 |ϕ(t, x)|

p
p−1 dx+

∫ t+R

R

x− 1
p−1 |ϕ(t, x)|

p
p−1 dx

, I1 + I2. (2.6)

Firstly, we will estimate the term I1. For x ∈ [0, R], it is easy to get

ϕ1(x) = ϕ1(x)− ϕ1(0) ≤ max
x∈[0,R]

ϕ′
1(x)|x− 0| ≤ Cx. (2.7)

Then

I1 =

∫ R

0

x− 1
p−1 |ϕ(t, x)|

p
p−1 dx

= e−
pt

p−1

∫ R

0

x− 1
p−1ϕ1(x)

p
p−1 dx

≤ Ce−
pt

p−1

∫ R

0

x− 1
p−1x

p
p−1 dx
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≤ C. (2.8)

For the term I2, using (2.4) in Lemma 2.1, we have

I2 =

∫ t+R

R

x− 1
p−1 |ϕ(t, x)|

p
p−1 dx

≤ R− p
p−1

∫ t+R

R

ϕ(t, x)
p

p−1 dx

≤ C

∫ t+R

0

ϕ(t, x)
p

p−1 dx

≤ C. (2.9)

3 Iteration Argument for F0(t)

For proving our main result, in this section we will give the following two functionals:

F0(t) =

∫ ∞

0

u(t, x)xdx,

F1(t) =

∫ ∞

0

u(t, x)ϕ(t, x)dx,

where u is the local solution of problem (1.1). It is easy to see that F0(t) and F1(t) are twice

continuously differentiable with respect to t. First we claim that

F1(t) ≥ C, t > 0 (3.1)

for some positive constant C.

In the following, we will give the proof of (3.1). From (2.3), it is easy to get

F ′
1(t) =

∫ ∞

0

utϕdx+

∫ ∞

0

uϕtdx

=

∫ ∞

0

utϕdx−
∫ ∞

0

uϕdx (3.2)

and

F ′′
1 (t) =

∫ ∞

0

uttϕdx+ 2

∫ ∞

0

utϕtdx+

∫ ∞

0

uϕttdx

=

∫ ∞

0

uttϕdx− 2

∫ ∞

0

utϕdx+

∫ ∞

0

uϕdx. (3.3)

Then

F ′′
1 (t) + 2F ′

1(t) =

∫ ∞

0

uttϕdx−
∫ ∞

0

uϕdx

=

∫ ∞

0

uttϕdx−
∫ ∞

0

uϕxxdx

=

∫ ∞

0

uttϕdx−
∫ ∞

0

uxxϕdx
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=

∫ ∞

0

(utt − uxx)ϕdx

=
1

Γ(1− γ)

∫ ∞

0

∫ t

0

(t− s)−γ |u(s, x)|pϕdsdx

≥ 0. (3.4)

Integrating (3.4) over [0, t], we can get

F ′
1(t) + 2F1(t) ≥ F ′

1(0) + 2F1(0)

= ε

∫ ∞

0

(u0 + u1)ϕ1(x)dx. (3.5)

Multiplying both sides of (3.5) with e2t and integrating it over [0, t], we have

F1(t) ≥ εe−2t

∫ ∞

0

u0(x)ϕ1(x)dx+
ε

2
(1− e−2t)

∫ ∞

0

(u0 + u1)ϕ1(x)dx

≥ C. (3.6)

Then, we finish the proof of the estimate (3.1).

From the equation of system (1.1), we have

F ′′
0 (t) =

∫ ∞

0

uttxdx

=

∫ ∞

0

(
uxx +

1

Γ(1− γ)

∫ t

0

(t− s)−γ |u(s, x)|pds
)
xdx

=
1

Γ(1− γ)

∫ t

0

(t− s)−γ

∫ ∞

0

x|u(s, x)|pdxds, (3.7)

where we use the boundary condition. By Hölder inequality and the finite speed of the propa-

gation property, we can get∣∣∣ ∫ ∞

0

u(t, x)ϕ(t, x)dx
∣∣∣p

=
∣∣∣ ∫ t+R

0

u(t, x)x
1
px− 1

pϕ(t, x)dx
∣∣∣p

≤
∫ ∞

0

|u(t, x)|pxdx
(∫ t+R

0

x− 1
p−1ϕ

p
p−1 (t, x)dx

)p−1

≤ C

∫ ∞

0

|u(t, x)|pxdx, (3.8)

where we use the estimate (2.5) in Lemma 2.2. This in turn implies∫ ∞

0

|u(s, x)|pxdx ≥ C|F1(s)|p ≥ C. (3.9)

Plugging (3.9) into (3.7), one gets

F ′′
0 (t) ≥ C

∫ t

0

(t− s)−γds = Ct1−γ . (3.10)
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Integrating (3.10) over [0, t] twice, we obtain

F0(t) ≥ F0(0) + F ′
0(0)t+ Ct3−γ , (3.11)

which means

F0(t) ≥ Ct3−γ , (3.12)

due to the fact that F0(0) ≥ 0, F ′
0(0) ≥ 0 and 0 < γ < 1.

On the other hand, by Hölder inequality, we have

|F0(s)|p =
∣∣∣ ∫ ∞

0

u(s, x)xdx
∣∣∣p

≤
∫ ∞

0

|u(s)|pxdx
(∫ s+R

0

xdx
)p−1

≤ C(s+R)2(p−1)

∫ ∞

0

|u(s)|pxdx, (3.13)

which yields ∫ ∞

0

|u(s)|pxdx ≥ C(s+R)−2(p−1)|F0(s)|p. (3.14)

By combining (3.7), (3.12) and (3.14), one gets

F ′′
0 (t) ≥ C

∫ t

0

(t− s)−γ(s+R)−2(p−1)sp(3−γ)ds

≥ C

∫ t

t
2

(t− s)−γ(s+R)2+p−pγds

≥ C(t+R)3+p−pγ−γ . (3.15)

Integrating it over [0, t] twice, we conclude that for t large enough (t > a1 > 0),

F0(t) ≥ C(t+R)5+p−pγ−γ

, C(t+R)p1 . (3.16)

Lastly, using the iteration argument, we will prove the desired estimate. From (3.7) and

(3.14), it follows that

F ′′
0 (t) ≥ C

∫ t

0

(t− s)−γ(s+R)2−2p|F0(s)|pds. (3.17)

Then plugging (3.16) into (3.17) yields that for t large enough
(
a1 ≤ t

2

)
,

F ′′
0 (t) ≥ C

∫ t

a1

(t− s)−γ(s+R)2−2p+pp1ds

≥ C

∫ t

t
2

(t− s)−γ(s+R)2−2p+pp1ds
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≥ C(t+R)pp1−2p+3−γ , (3.18)

which in turn gives that for t large enough (t > a2),

F0(t) ≥ C(t+R)5+pp1−2p−γ

, C(t+R)p2 . (3.19)

If we do the same iteration k times, we then get that for t large enough

F0(t) ≥ C(t+R)pk+1 (3.20)

with

pk+1 = ppk + 2− 2p+ 1− γ + 2

= ppk + 5− 2p− γ. (3.21)

Hence by the knowledge of geometric series, we have

pk+1 =
p2(1− γ) + 2p

p− 1
pk − 5− 2p− γ

p− 1
, (3.22)

which implies that due to the fact p > 1 and 0 < γ < 1,

lim
k→∞

pk+1 = ∞. (3.23)

In conclusion, for any n > 0, if t is large enough (t > b > 0), then we have

F0(t) ≥ Cn(t+R)n (3.24)

and

F ′′
0 (t) ≥ C

∫ t

0

(t− s)−γ(s+R)2−2p|F0(s)|pds

≥ C

∫ t

b

(t− s)−γ(s+R)2−2p|F0(s)|pds

≥ C

∫ t

b

(t− s)−γ |F0(s)|qds, (3.25)

where Cn > 0 is a constant depending on n and 1 < q < p.

4 Proof of Theorem 1.2

In this section, using the above estimates obtained in Section 3, we will give the proof of

Theorem 1.2. Set

I(t) =

∫ t

b

(t− s)αF0(s)ds

with

α >
1− γ

q − 1
− 1 > 0. (4.1)
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By Hölder inequality and the condition (4.1), we have

I(t) ≤
(∫ t

b

(t− s)1−γ+α|F0(s)|q
) 1

q
(∫ t

b

(t− s)α−
1−γ
q−1 ds

) q−1
q

≤ C(t+R)
(α+1)(q−1)

q − 1−γ
q

(∫ t

b

(t− s)1−γ+α|F0(s)|qds
) 1

q

, (4.2)

which yields ∫ t

b

(t− s)1−γ+α|F0(s)|qds ≥ C(t+R)1−γ−(α+1)(q−1)I(t)q. (4.3)

We compute I ′(t) and use the integration by parts

I ′(t) =

∫ t

b

d

dt
(t− s)αF0(s)ds

= −
∫ t

b

d

ds
(t− s)αF0(s)ds

= F0(b)(t− b)α +

∫ t

b

(t− s)αF ′
0(s)ds. (4.4)

In the same way, we have

I ′′(t) = αF0(b)(t− b)α−1 + F ′
0(b)(t− s)α +

∫ t

b

(t− s)αF ′′
0 (s)ds

≥
∫ t

b

(t− s)αF ′′
0 (s)ds, (4.5)

where the fact F0(t) ≥ 0 and F ′
0(t) ≥ 0 has been used.

Combining (3.25) and (4.5), we can get

I ′′(t) ≥ C

∫ t

b

(t− s)α
∫ s

b

(s− τ)−γ |F0(τ)|qdτds

= C

∫ t

b

|F0(τ)|q
∫ t

τ

(t− s)α(s− τ)−γdsdτ. (4.6)

Since (s− τ)−γ ≥ (t− τ)−γ for 0 < γ < 1, it holds that

I ′′(t) ≥ C

∫ t

b

|F0(τ)|q(t− τ)−γ

∫ t

τ

(t− s)αdsdτ

≥ C

∫ t

b

|F0(τ)|q(t− τ)1+α−γdτ

≥ C(t+R)1−γ−(α+1)(q−1)I(t)q, (4.7)

where we use the inequality (4.3).

On the other hand, for any n > 0, we have, for large t
(
t
2 > b

)
,

I(t) =

∫ t

b

(t− s)αF0(s)ds
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≥ Cn

∫ t

b

(t− s)α(t+R)nds

≥ Cn

∫ t

t
2

(t− s)α(t+R)nds

≥ Cn(t+R)n. (4.8)

By Lemma 4.1 stated below, we conclude that I(t) will blow up in a finite time and hence we

finish the proof of Theorem 1.2.

Lemma 4.1 (see [16, Lemma 4]) Suppose that F (t) ∈ C2[a, b) and for a ≤ t < b,

F (t) ≥ C0(k + t)i,

F ′′(t) ≥ C1(k + t)−qF (t)p,

where C0, C1, k > 0. If p > 1, i ≥ 1 and (p− 1)i > q − 2, then b must be finite.
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