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Abstract The authors study torsion in the integral cohomology of a certain family of

2n-dimensional orbifolds X with actions of the n-dimensional compact torus. Compact

simplicial toric varieties are in our family. For a prime number p, the authors find a

necessary condition for the integral cohomology of X to have no p-torsion. Then it is

proved that the necessary condition is sufficient in some cases. The authors also give an

example of X which shows that the necessary condition is not sufficient in general.
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1 Introduction

A toric variety is a normal complex algebraic variety of complex dimension n with an

algebraic action of (C∗)n having a dense orbit. A toric variety is not necessarily compact and

may have singularity. The famous theorem of Danilov-Jurkiewicz gives an explicit description

of the integral cohomology ring of a compact smooth toric variety in terms of the associated

fan. It in particular says that the integral cohomology groups are torsion-free and concentrated

in even degrees.

The analogous result holds for a compact simplicial toric variety X (simplicial means that X

is an orbifold) but with rational coefficients. Fischli and Jordan studied the integral cohomology

groups H∗(X) in their dissertations [7, 11] using spectral sequences. Their results gave an

explicit computation of Hk(X) and H2n−k(X) for k ≤ 3 under some conditions. Based on

their results, Franz developed Maple package torhom (see [8]) to compute those cohomology

groups. One can see that H∗(X) has torsion in general while it has no torsion when X is a

weighted projective space (see [12]). Therefore we are naturally led to ask when H∗(X) has

torsion or no torsion.

The orbit space Q of a compact simplicial toric variety X by the restricted action of the

n-dimensional compact torus T is a nice manifold with corners (sometimes called a manifold

with faces). All faces of Q (even Q itself) are contractible and Q is often homeomorphic to a

simple polytope as manifolds with corners. MacPherson showed that X is homeomorphic to the

quotient space (Q×T )/∼ under some equivalence relation ∼ defined using the primitive vectors

in the one-dimensional cones in the fan of X (see [9]). The one-dimensional cones correspond
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to the facets of Q so that one can think of the primitive vectors as a map

v : {Q1, Q2, · · · , Qm} → Zn (Qi’s are facets of Q).

The map v satisfies some linear independence condition and a map satisfying the condition is

called a characteristic function on Q (see Definition 2.1 in Section 2). Note that there are many

characteristic functions which do not arise from compact simplicial toric varieties.

Bahri, Sarkar and Song [1] considered the quotient space X(Q, v) = (Q × T )/∼. Although

they restricted their concern to Q being a simple polytope, the characteristic function v used to

define the equivalence relation ∼ is arbitrary; so the quotient space does not necessarily arise

from a compact simplicial toric variety. They gave a sufficient condition for H∗(X(Q, v)) to be

torsion-free in terms of Q and v. They also gave a Danilov-Jurkiewicz type description for the

ring structure of H∗(X(Q, v)) when it is torsion-free.

In this paper, we also consider the quotient space X = X(Q, v) = (Q × T )/∼ where v

is arbitrary as above but our Q is a compact connected nice manifold with corners and not

necessarily a simple polytope. When Q has a vertex (equivalently X has a T -fixed point),

our X is a torus orbifold in the sense of [10]. We give an explicit description of Hk(X) and

H2n−k(X) for k ≤ 2 under some condition on Q. Motivated by the explicit description of

H2n−1(X), we introduce a positive integer µ(QI) depending on the characteristic function v

for each QI =
⋂
i∈I

Qi, where I is a subset of {1, · · · ,m} and we understand QI = Q when I = ∅

and µ(QI) = 1 when QI = ∅. The µ(QI)’s are all one when X has no singularity. Here is a

summary of our results, which follows from Propositions 6.1, 8.1–8.3.

Theorem 1.1 Let Q be a connected nice manifold with corners of dimension n ≥ 1. Let

p be a prime number and suppose that every face of Q (even Q itself ) is acyclic with Z/p-

coefficients. If H∗(X(Q, v)) has no p-torsion, then µ(QI) is coprime to p for every QI . The

converse holds when the face poset of Q is isomorphic to the face poset of one of the following:

(1) the suspension ♦n of the (n− 1)-simplex ∆n−1, i.e., ♦n is obtained from ∆n−1 × [−1, 1]

by collapsing ∆n−1 × {1} and ∆n−1 × {−1} to a point respectively,

(2) ∆n,

(3) ∆n−1 × [−1, 1].

Remark 1.1 (1) When n ≥ 3, there are many nice manifolds with corners Q which have

the same face posets as ♦n, ∆n or ∆n−1× [−1, 1] but not homeomorphic to them. For instance,

one can produce such Q by taking connected sum of them and integral homology n-spheres

with non-trivial fundamental groups.

(2) The n-simplex ∆n and the prism ∆n−1 × [−1, 1] can be obtained from the suspension

♦n by performing a vertex cut once and twice respectively. So, the reader might think that the

converse mentioned in the theorem above would hold for Q obtained from ♦n by performing a

vertex cut repeatedly. However, we shall see in Section 9 that this is not true for Q obtained

from ♦3 by performing a vertex cut four times.

The paper is organized as follows. In Section 2, we set up notations. In Section 3, we

compute H2n−k(X) (k ≤ 2) for the quotient space X = (Q×T )/∼ using the idea in Yeroshkin’s

paper [17]. Namely, we delete a small neighborhood of the singular set in X to obtain a smooth

manifold and investigate the relation of the cohomology groups between X and the smooth

manifold. In Section 4, we show that the quotient map X → Q induces an isomorphism on
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their fundamental groups when Q has a vertex. In Section 5, we apply the results in Sections 3–4

to the case when n = 2 and 3. In Section 6, we introduce µ(QI) and find a necessary condition

for H∗(X) to have no p-torsion. In Section 7, we recall the theorem on elementary divisors and

deduce two facts used in Section 8. In Section 8, we prove that the necessary condition obtained

in Section 6 is sufficient for Q mentioned in the theorem above. Section 9 gives an example

mentioned in the remark above. In the appendix we shall observe that a result of Fischli or

Jordan on H2n−1(X) and the torsion part of H2n−2(X) agrees with our Proposition 3.1 when

X is a compact simplicial toric variety.

2 Setting and Notation

In this section, we set up some notations and give some remarks. Let Q be a connected

manifold with corners of dimension n (see [6, p. 180] for the precise definition of a manifold with

corners). Then faces are defined and a codimension-one face is called a facet. We assume that

Q is nice, which means that every codimension-k face is a connected component of intersections

of k facets. The teardrop, which is homeomorphic to the 2-disk, is a manifold with corners but

not nice (see [6, p. 181]). A simple polytope is a nice manifold with corners and any intersection

of faces is connected unless it is empty. However, intersections of faces of a nice manifold with

corners are not necessarily connected. For instance, a 2-gon, that is the suspension ♦2 in the

theorem in the introduction, is a nice manifold with corners but the intersection of the two

facets consists of two vertices.

Let S1 be the unit circle group of the complex numbers C and T be an n-dimensional

connected compact abelian Lie group. As is well-known, T is isomorphic to (S1)n. We set

N := Hom(S1, T ) ∼= Zn.

Let Q have m facets and we denote them by Q1, · · · , Qm.

Definition 2.1 A function v : {Q1, · · · , Qm} → N is called a characteristic function on Q

if it satisfies the following two conditions:

(1) v(Qi) is primitive for each i ∈ [m] := {1, · · · ,m}, and

(2) whenever QI =
⋂
i∈I

Qi is nonempty for I ⊂ [m], v(Qi)’s (i ∈ I) are linearly independent

over Q.

We denote by N̂ the sublattice of N generated by v1, · · · , vm.

We call v(Qi)’s the characteristic vectors and abbreviate v(Qi) as vi. Condition (2) above

implies that when Q has a vertex, rank N̂ = n. It also implies that when QI 6= ∅, the toral

subgroup of T generated by vi(S
1)’s (i ∈ I), denoted by TI , is of dimension |I| where |I| is the

cardinality of I.

To the pair (Q, v) we associate a quotient space

X(Q, v) := (Q × T )/∼

with the equivalence relation ∼ on the product Q× T defined by

(q, t) ∼ (q′, t′) if and only if q = q′ and t−1t′ ∈ TI ,

where I is the subset of [m] such that QI is the smallest face of Q containing q = q′. The

space X(Q, v) has a T -action induced from the natural T -action on Q× T . The orbit space of
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X(Q, v) by the T -action is Q and the quotient map

π : X(Q, v) → Q = X(Q, v)/T

is induced from the projection map Q×T → Q. Then it is not difficult to see the following facts

(see [15] for example). A T -fixed point in X(Q, v) corresponds to a vertex of Q, so X(Q, v) has

a T -fixed point if and only if Q has a vertex. If vi’s (i ∈ I) are a part of a basis of N for every I

with QI 6= ∅, then X(Q, v) is a manifold but otherwise X(Q, v) is an orbifold. The singularity

of X(Q, v) lies in the union of π−1(QI) over all I with |I| ≥ 2.

As mentioned in the introduction, if X is a compact simplicial toric variety of complex

dimension n so that X has an algebraic action of (C∗)n having a dense orbit, then the orbit

space Q of X by the compact n-dimensional subtorus T of (C∗)n is a nice manifold with corners

and X is homeomorphic to X(Q, v) where vi’s are primitive edge vectors of the fan associated

to X . Moreover, faces of Q (even Q itself) are all contractible, which follows from the existence

of the residual action of (C∗)n/T on Q = X/T .

3 H2n−k(X(Q, v)) for k ≤ 2

In this section, we abbreviate X(Q, v) as X and all (co)homology groups will be taken with

Z-coefficients unless otherwise stated. When n = 1, Q is a closed interval if Q has a vertex and

a circle otherwise, and X is homeomorphic to S2 or a torus accordingly. We shall assume n ≥ 2

in this section. Remember that π : X → Q is the quotient map.

Let Q(n−2) be the union of QI over all I with |I| ≥ 2 and we assume Q(n−2) 6= ∅. The

singular set of X lies in π−1(Q(n−2)) as remarked in Section 2. Let Q′ be a “small closed tubular

neighborhood” of Q(n−2) of Q and set X ′ := π−1(Q′).

Lemma 3.1 H2n−k(X) ∼= Hk(X\ IntX ′) for k ≤ 2.

Proof Note that Hr(X ′) = 0 for r ≥ 2n − 3 because X ′ is homotopy equivalent to

π−1(Q(n−2)) and dimπ−1(Q(n−2)) = 2n− 4. Therefore, the exact sequence in cohomology for

the pair (X,X ′) yields an isomorphism

H2n−k(X,X ′) ∼= H2n−k(X) for k ≤ 2. (3.1)

On the other hand,

H2n−k(X,X ′) ∼= H2n−k(X\ IntX ′, ∂X ′) by excision

∼= Hk(X\ IntX ′) by Poincaré-Lefschetz duality. (3.2)

Note that X\ IntX ′ is a manifold with boundary ∂X ′. The lemma follows from (3.1) and (3.2).

Proposition 3.1 H2n(X) ∼= Z and H2n−1(X) ∼= H1(Q) ⊕N/N̂ . If H1(Qi) = 0 for every

i, then

H2n−2(X) ∼= Zm−rank N̂ ⊕H2(Q)⊕ (H1(Q)⊗H1(T ))⊕ (∧2N/N̂ ∧N).

Remark 3.1 When Q has a vertex, rank N̂ = n as remarked in Section 2. Moreover, when

Q has a vertex and n = 2, the last term ∧2N/N̂ ∧ N above is zero. Indeed, since we may

assume N = Z2 and N̂ = 〈e1, ae2〉 with some integer a, N̂ ∧ N = 〈e1 ∧ e2〉 = ∧2N , where

{e1, e2} denotes the standard base of Z2.
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Proof The statement for H2n(X) follows immediately from Lemma 3.1.

We shall prove the statement for H2n−1(X). Let Q0 := (IntQ) ∩ (Q\Q′) and Q1 be the

intersection of (Q\Q′) and a small open neighborhood of ∂Q in Q.

Since

π−1(Q0) ≃ Q × T, π−1(Q1) ≃
m⊔

i=1

(Qi × T/vi(S
1)),

π−1(Q0) ∩ π−1(Q1) ≃
m⊔

i=1

(Qi × T ), π−1(Q0 ∪Q1) = X\X ′,

the Mayer-Vietoris exact sequence in homology for the triple (X\X ′, π−1(Q0), π−1(Q1)) yields

the following exact sequence:

m⊕

i=1

H2(Qi × T )
f2
−→ H2(Q× T )⊕

m⊕

i=1

H2(Qi × T/vi(S
1)) → H2(X\X ′)

→
m⊕

i=1

H1(Qi × T )
f1
−→ H1(Q × T )⊕

m⊕

i=1

H1(Qi × T/vi(S
1)) → H1(X\X ′)

→
m⊕

i=1

H0(Qi × T )
f0
−→ H0(Q × T )⊕

m⊕

i=1

H0(Qi × T/vi(S
1)). (3.3)

As is easily seen, f0 is injective; so

H1(X\X ′) ∼= coker f1. (3.4)

We write f1 as (ψ1, ϕ1) according to the decomposition of the target space. Since

ϕ1 :

m⊕

i=1

H1(Qi × T ) →
m⊕

i=1

H1(Qi × T/vi(S
1)),

which is f1 composed with the projection on the second factor, is surjective, one has

coker f1 ∼= H1(Q× T )/ψ1(kerϕ1). (3.5)

Since H1(Y × T ) = H1(Y )⊕H1(T ) for any topological space Y , elements in kerϕ1 are of the

form (c1v1, · · · , cmvm) with integers ci, where H1(T ) is identified with N = Hom(S1, T ) in a
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natural way. It follows that

H1(Q× T )/ψ1(kerϕ1) ∼= H1(Q)⊕N/N̂. (3.6)

The statement for H2n−1(X) in the proposition follows from (3.4)–(3.6) and Lemma 3.1.

The computation of H2n−2(X) is similar to that of H2n−1(X). We write f2 as (ψ2, ϕ2)

similarly to f1. Since H1(Qi) = 0 for any i by assumption, ker f1 is a free abelian group of

rank m− rank N̂ as is easily seen; so it follows from (3.3) that

H2(X\X ′) ∼= Zm−rank N̂ ⊕ coker f2. (3.7)

Similar to ϕ1, the map

ϕ2 :

m⊕

i=1

H2(Qi × T ) →
m⊕

i=1

H2(Qi × T/vi(S
1)) (3.8)

is surjective; so

coker f2 ∼= H2(Q× T )/ψ2(kerϕ2). (3.9)

Here,

H2(Y × T ) = H2(Y )⊕ (H1(Y )⊗H1(T ))⊕H2(T ) (3.10)

for any topological space Y by the Künneth formula. Therefore, since H1(Qi) = 0 by assump-

tion, it follows from (3.8) and (3.10) that kerϕ2 is contained in
m⊕
i=1

H2(T ). We note that H2(T )

and H2(T/vi(S
1)) can be identified with ∧2N and ∧2(N/〈vi〉) respectively and the kernel of

the projection ∧2N → ∧2(N/〈vi〉) is 〈vi〉 ∧N . Therefore

coker f2 ∼= H2(Q)⊕ (H1(Q)⊗H1(T ))⊕ (∧2N/N̂ ∧N).

This together with (3.7) and (3.9) proves the statement for H2n−2(X) in the proposition.

4 Fundamental Groups

For a subset I of [m], we define

Tm
I := {(h1, · · · , hm) ∈ Tm | hj = 1, ∀j /∈ I}

and consider a space

ZQ := (Q× Tm)/∼e,

where ∼e is the equivalence relation on the product Q× Tm defined by

(q, s) ∼e (q
′, s′) if and only if q = q′ and s−1s′ ∈ Tm

I

and I is the subset of [m] such that QI is the smallest face of Q containing q = q′.

We note that ZQ locally admits a smooth structure. Indeed, since Q is a manifold with

corners, any point of Q has a neighborhood U homeomorphic to (R≥0)
r × Rn−r for some

0 ≤ r ≤ n and it follows from the construction of ZQ that the inverse image of U by the

projection map κ : ZQ → Q is homeomorphic to Cr × Rn−r × Tm−r. Therefore ZQ locally

admits a smooth structure and hence is a topological manifold.
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Remark 4.1 When Q is a simple polytope, ZQ is called a moment-angle manifold and it

is known that ZQ admits a smooth structure and is 2-connected (see [3–4]). Moreover, the

moment-angle manifold ZQ is homotopy equivalent to Cm − Z defined in [5] (see [4, Theorem

4.7.5]), where Z is the union of coordinate subspaces in Cm determined by Q.

Lemma 4.1 The projection map κ : ZQ → Q induces an isomorphism κ∗ : π1(ZQ) ∼= π1(Q)

on the fundamental groups.

Proof In a way similar to the above argument, one can see that κ−1(Qi), where Qi is a

facet of Q, is a locally smooth closed manifold. Moreover, it is a locally smooth codimension

two submanifold of ZQ. Indeed, a closed tubular neighborhood of Qi in Q can be identified with

Qi × [0, 1], and ρi : κ
−1(Qi × {1}) → κ−1(Qi), where ρi is induced from ((q, 1), t) → (q, t) for

q ∈ Qi = Qi × {0} ⊂ Qi × [0, 1] ⊂ Q and t ∈ Tm, is a principal S1-bundle, and the total space

Ei of the associated complex line bundle can be identified with a closed tubular neighborhood

of Zi := κ−1(Qi) in ZQ.

Since Zi is a locally smooth closed codimension two submanifold of ZQ, the transversality

argument can be applied. Therefore, if a continuous map f : S1 → ZQ meets Zi, then one can

slightly push f in the fiber direction of Ei so that the deformed f does not meet Zi. Applying

this deformation to f for every i, we see that f is homotopic to a continuous map whose image

lies in κ−1(IntQ) = IntQ × Tm. This means that the inclusion map ι : IntQ × Tm → ZQ

induces an epimorphism

ι∗ : π1(IntQ× Tm) = π1(IntQ)× π1(T
m) → π1(ZQ).

Since IntQ is homotopy equivalent to Q, we may replace IntQ by Q above and we have a

sequence

π1(Q)× π1(T
m)

ι∗−→ π1(ZQ)
κ∗−→ π1(Q), (4.1)

where the composition κ∗ ◦ ι∗ agrees with the projection on the first factor, so that the kernel

of ι∗ is contained in the second factor π1(T
m).

Let Si be the i-th S1-factor of Tm and choose a point qi ∈ (Qi × {1}) ∩ IntQ. Then

ι({qi} × Si) is a fiber of the principal S1-bundle ρi : κ
−1(Qi × {1}) → Zi = κ−1(Qi), so it

shrinks to a point in Zi. Therefore π1(T
m) is in the kernel of the epimorphism ι∗ and this

implies the lemma.

We recall a result from Bredon’s book [2].

Lemma 4.2 (see [2, Corollary 6.3, p. 91]) If X is an arcwise connected G-space, G compact

Lie, and if there is an orbit which is connected (e.g., G connected or XG 6= ∅), then the quotient

map X → X/G induces an epimorphism on their fundamental groups.

The characteristic map v : {Q1, · · · , Qm} → Hom(S1, T ) defines a homomorphism Tm → T ,

denoted v again. Note that v(Tm) is a subtorus of T of dimension rank N̂ , in particular, v is

surjective if and only if rank N̂ = rankN (this is the case when Q has a vertex). The product

map id× v : Q× Tm → Q× T induces a continuous map

V : ZQ = Q× Tm/ ∼e→ Q× T/ ∼= X(Q, v) = X

and it further induces an injective continuous map

V : ZQ/ ker v → X,
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so that V is a homeomorphism if v is surjective since the spaces are compact and Hausdorff.

Proposition 4.1 If Q has a vertex, then π∗ : π1(X) ∼= π1(Q).

Proof We have a sequence

κ∗ = π∗ ◦ V∗ : π1(ZQ)
V∗−→ π1(X)

π∗−→ π1(Q).

Since κ∗ is an isomorphism by Lemma 4.1, it suffices to prove that V∗ is surjective.

Since Q has a vertex, rank N̂ = rankN and the homomorphism v : Tm → T is surjective; so

the map V : ZQ/ ker v → X above is a homeomorphism. Since N̂ is a sublattice of N of finite

index, there is a finite covering homomorphism ρ : T̂ → T corresponding to N̂ , where T̂ is also a

compact connected abelian Lie group of dimension n (precisely speaking, ρ∗(π1(T̂ )) = N̂ when

N is regarded as π1(T )) and the characteristic function v uniquely determines a characteristic

function v̂ : {Q1, · · · , Qm} → Hom(S1, T̂ ) such that ρ∗(v̂(Qi)) = v(Qi) for any i. Then we have

X̂ := X(Q, v̂) = (Q × T̂ )/∼

and v̂ induces a homomorphism Tm → T̂ , denoted v̂ again similarly to v, and X̂ = ZQ/ ker v̂.

Moreover, we have X = X̂/ kerρ. Namely, the quotient map V : ZQ → X factors as the com-

position of two quotient maps

ZQ
α

−→ ZQ/ ker v̂ = X̂
β

−→ X̂/ kerρ = X.

The theorem on elementary divisors (see Section 7) implies that since v̂(Qi)’s span N̂ , the

homomorphism v̂ : Tm → T̂ composed with a suitable automorphism of Tm can be viewed as

a projection map if we take a suitable identification of T̂ with T n; so ker v̂ is connected and

hence α∗ : π1(ZQ) → π1(X̂) is surjective by Lemma 4.2. The action of T̂ on X̂ has a fixed point

since Q has a vertex and kerρ is contained in T̂ , so the action of ker ρ on X̂ has a fixed point.

Therefore β∗ : π1(X̂) → π1(X) is also surjective again by Lemma 4.2.

Remark 4.2 As mentioned in the introduction, even if Q is a simple polytope, X =

ZQ/ ker v is not necessarily a compact toric orbifold because the characteristic map v is not

necessarily coming from primitive vectors of a complete simplicial fan.

Corollary 4.1 If Q has a vertex and H1(Q) = H2(Q) = 0, then H1(X) = 0 and H2(X) ∼=

Zm−n.

Proof By Proposition 4.1, π1(X) ∼= π1(Q) and hence H1(X) ∼= H1(Q). ThereforeH1(X) =

0 since H1(Q) = 0 by assumption and hence H1(X) = 0 and H2(X) has no torsion by the

universal coefficient theorem. On the other hand, since X is an orbifold, Poincaré duality holds

with Q-coefficients. Therefore the rank of H2(X) is equal to that of H2n−2(X), that is m− n

by Proposition 3.1 and its subsequent remark.

5 Low Dimensional Cases

A nice manifold with corners Q is called face-acyclic (see [13]) if every face of Q (even Q

itself) is acyclic. We note that if Q is face-acyclic, then Q must have a vertex. Indeed, let F

be a face of Q of minimum dimension. Then F has no boundary because the boundary of F

must consist of faces of smaller dimensions, so F is a closed manifold. But since F is acyclic,

this means that F is a point. Therefore Q has a vertex.
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We shall apply the previous results when Q is face-acyclic and n = dimQ is 2 or 3. The

following corollary follows from Proposition 3.1 and Corollary 4.1.

Corollary 5.1 Suppose that Q is face-acyclic and dimQ = 2, that is, Q is an m-gon

(m ≥ 2). Then we have

Hj(X) ∼=





Z, j = 0, 4,

Zm−2, j = 2,

N/N̂, j = 3,

0, otherwise.

Example 5.1 Let a be a positive integer. Take Q to be a 2-simplex, N = Z2 and

v1 = (2a, 1), v2 = (0, 1), v3 = (−a,−1).

Then N̂ = 〈ae1, e2〉 and N/N̂ ∼= Z/a. The space X is not a weighted projective space when

a ≥ 2 since it has torsion in cohomology, where {e1, e2} denotes the standard base of Z2 as

before.

Corollary 5.2 Suppose that Q is face-acyclic and dimQ = 3. Then

Hj(X) ∼=





Z, j = 0, 6,

Zm−3, j = 2,

0 or some torsion group, j = 3,

Zm−3 ⊕ ∧2N/(N̂ ∧N), j = 4,

N/N̂, j = 5,

0, otherwise.

Proof Since Q is face-acyclic, Q has a vertex as remarked at the beginning of this section,

all the statements except for j = 3 follows from Proposition 3.1 and Corollary 4.1. In order to

prove the statement for j = 3, it suffices to show H3(X ;Q) = 0 and this is equivalent to show

that the Euler characteristic of X is 2m− 4 (note that we know the rank of Hj(X) except for

j = 3).

Since Q is face-acyclic and of dimension 3, the boundary of Q is a 2-sphere, every 2-face of

Q is a 2-disk and the number of 2-faces is m by definition. Let V be the number of vertices

of Q. Then the number of edges of Q is 3V
2 and hence we obtain an identity V − 3V

2 +m = 2

by Euler’s formula, which implies V = 2m− 4. On the other hand, it is known that the Euler

characteristic of X is equal to that of the T -fixed point set XT (see [2, Theorem 10.9, p.163]). In

our case XT is isolated and corresponds to the vertices of Q. Therefore, the Euler characteristic

of X is equal to V , that is 2m− 4.

Example 5.2 It happens that N̂ ∧N = ∧2N even if N̂ 6= N . For instance, take Q to be a

3-simplex, N = Z3 and

v1 = (0, 0, 1), v2 = (2, 0, 1), v3 = (0, 1, 1), v4 = (−2,−1,−1).

Then

N̂ = 〈2e1, e2, e3〉, N̂ ∧N = 〈e1 ∧ e2, e1 ∧ e3, e2 ∧ e3〉 = ∧2N,

where {e1, e2, e3} denotes the standard base of Z3.
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Corollary 5.2 says that if N̂ = N , then Hj(X) has no torsion except j = 3. However, H3(X)

can be nontrivial (so, a nontrivial torsion group) when N̂ = N . We shall give such an example

below. One can also find many such examples using Maple package Torhom.

Example 5.3 Let a be a positive integer and take the following five primitive vectors in

Z3:

v+ = (0, 0, 1),

v1 = (2a, 1, 0), v2 = (0, 1, 0), v3 = (−a,−1, 0),

v− = (1, 0,−1).

Then N̂ = N . We consider the complete simplicial fan ∆ having the following six 3-dimensional

cones

∠v+v1v2, ∠v+v1v3, ∠v+v2v3, ∠v−v1v2, ∠v−v1v3, ∠v−v2v3,

where ∠vǫvivj (ǫ ∈ {+,−}, i, j ∈ {1, 2, 3}) denotes the cone spanned by vǫ, vi and vj . Let

X be the compact simplicial toric variety associated to the fan ∆. Let ρ be the projection of

R3 on the line R corresponding to the last coordinates of R3. Then the vectors v1, v2, v3 are

in the kernel of ρ and ρ(v±) are primitive vectors and determine the complete 1-dimensional

fan. This means that we have a fibration F → X → CP 1, where the fiber F is the compact

simplicial toric variety associated to the fan obtained by projecting the fan ∆ on the plane R2

corresponding to the first two coordinates of R3. The E2-terms of the Serre spectral sequence

of the fibration are

Ep,q
2 = Hp(CP 1;Hq(F ))

and Ep,q
2 = 0 unless p = 0, 2 and q = 0, 2, 3, 4 by Corollary 5.1. Therefore all the differentials

except

d0,32 : E0,3
2 → E2,2

2 and d0,42 : E0,4
2 → E2,3

2

are trivial. Here, E0,3
2 = H0(CP 1;H3(F )) = H3(F ) is trivial or a torsion group by Corollary 5.1

while E2,2
2 = H2(CP 1;H2(F )) = H2(F ) is a free abelian group again by Corollary 5.1, so d0,32

must be trivial. Therefore E0,3
2 = E0,3

∞ . Since Ep,q
2 with p+q = 3 vanishes unless (p, q) = (0, 3),

we obtain an isomorphism H3(X) ∼= H3(F ). Here H3(F ) ∼= Z/a again by Corollary 5.1 (see

Example 5.1) and hence we have H3(X) ∼= Z/a. On the other hand, since N̂ = N as remarked

above, Hj(X) has no torsion for j 6= 3 by Corollary 5.2.

6 A Necessary Condition for no p-Torsion

Let I be a subset of [m] with QI 6= ∅. Although QI is not necessarily connected, we

understand that QI stands for a connected component of QI in this section for notational

convenience. Then the characteristic function v associates a characteristic function vI on QI as

follows. Since vi’s (i ∈ I) are linearly independent over Q, they span a |I|-dimensional linear

subspace of N ⊗R and its intersection with N is a rank |I| sublattice of N , denoted NI . Then

N(I) := N/NI is a free abelian group of rank n− |I| and we denote the projection map from

N to N(I) by πI . If QI ∩ Qj is nonempty for j ∈ [m]\I, then its connected components are

facets of QI , and any facet of QI is of this form. The element πI(vj) ∈ N(I) is not necessarily

primitive and we define vI(QI ∩ Qj) to be the primitive vector in N(I) which has the same

direction as πI(vj), where QI ∩ Qj also stands for a connected component of QI ∩ Qj. Then
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one can see that vI is a characteristic function on QI . In a way similar to N̂ , one can define

a sublattice N̂(I) of N(I) using vI . We allow I = ∅ and understand Q∅ = Q, N(∅) = N and

N̂(∅) = N̂ . We define

µ(QI) :=

{
|N(I)/N̂(I)|, when QI 6= ∅,

1, when QI = ∅.

Here |N(I)/N̂(I)| is not necessarily finite. For instance, take Q = S1 × [−1, 1] and assign

characteristic vectors (1, 0) and (−1, 0) to the facets S1×{1} and S1×{−1} respectively. Then

N/N̂ is an infinite cyclic group and hence |N(I)/N̂(I)| is infinite for I = ∅. One can easily

construct a similar example such that |N(I)/N̂(I)| is infinite for some I 6= ∅.

Remark 6.1 When |I| = n, N(I) = {0}; so µ(QI) = 1. When |I| = n − 1, N(I) is of

rank one and N̂(I) is generated by a primitive vector; so N̂(I) = N(I) and hence µ(QI) = 1 in

this case too. Another case which ensures µ(QI) = 1 is the following. Let q be a vertex of Q.

Then there is a subset J of [m] with |J | = n such that q ∈ QJ . If {vj}j∈J is a base of N , then

µ(QI) = 1 for every subset I of J , which easily follows from the definition of µ(QI).

We note that for a prime number p, H∗(X(Q, v);Z) has no p-torsion if and only if

Hodd(X(Q, v);Z/p) = 0,

which follows from the universal coefficient theorem (see [14, Corollary 56.4]).

Lemma 6.1 (see [2, Theorem 2.2, pp. 376–377]) Let a group G of prime order p act on a

finite dimensional space X with A ⊂ X closed and invariant. Suppose that G acts trivially on

H∗(X,A;Z). Then

∑

i≥0

rk Hk+2i(XG, XG ∩ A;Z/p) ≤
∑

i≥0

rk Hk+2i(X,A;Z/p).

Proposition 6.1 If Hodd(X(Q, v);Z/p) = 0, then H1(QI ;Z/p) = 0 and µ(QI) is finite

and coprime to p for every I.

Proof We abbreviate X(Q, v) as X as before. Since Hodd(X ;Z/p) = 0, we have Hodd(XG;

Z/p) = 0 for every p-subgroup G of TI by repeated use of Lemma 6.1. In fact, let G be an

order p subgroup of S1. The induced action of G on H∗(X) is trivial because G is contained

in the connected group S1. Then rk Hodd(XG;Z/p) ≤ rk Hodd(X ;Z/p) by Lemma 6.1 applied

with A = ∅. Therefore, Hodd(XG;Z/p) = 0 by assumption. Repeating the same argument

for XG with the induced action of S1/G, which is again a circle group, we conclude that

Hodd(XG;Z/p) = 0 for any p-subgroup G of S1.

For a positive integer k, let Gk be the p-subgroup of TI consisting of all elements of order

at most pk. Then Gk ⊂ Gk′ for k ≤ k′ and the union
∞⋃
k=1

Gk is dense in TI . Therefore

XGk = XTI if k is sufficiently large.1 Since XI = π−1(QI) is a connected component of XTI ,

1Detailed explanation about this assertion. Since the set of isotropy groups of X is finite, there is a positive
integer r such that XGk = XGr for every k ≥ r. Since Gr is a subgroup of TI , we have XGr ⊃ XTI . We
shall prove the opposite inclusion. Let x ∈ XGr . The isotropy subgroup Tx at x contains Gk for every k ≥ r

because XGk = XGr , but since Tx is a closed subgroup of T , Tx must contain the closure of
∞⋃

k=r

Gk, that is TI .

Therefore x ∈ XTI and hence XGr = XTI .
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this shows that Hodd(XI ;Z/p) = 0. But H2(n−|I|)−1(XI) is isomorphic to H1(QI)⊕N(I)/N̂(I)

by Proposition 3.1 and hence the universal coefficient theorem implies the proposition.

WhenHodd(X(Q, v);Z/p) = 0, Proposition 6.1 gives a constraint on the topology ofQI , that

is H1(QI ;Z/p) = 0. It is proved in [13] that if X(Q, v) is a manifold and Hodd(X(Q, v);Z) = 0,

then Q is face-acyclic. This implies that there will be more constraints on the topology of QI

when Hodd(X(Q, v);Z/p) = 0, to be more precise, we expect that Q is face p-acyclic which

means that (every component of) QI is acyclic with Z/p-coefficients for every I. Therefore, in

order to consider the converse of Proposition 6.1, it would be appropriate to assume that Q is

face p-acyclic. We shall prove in Section 8 that the converse holds in some cases while we shall

see in Section 9 that the converse does not hold in general.

7 Theorem on Elementary Divisors

We recall the theorem on elementary divisors and deduce two facts from it, which will play

a role in the next section.

Theorem 7.1 (Theorem on Elementary Divisors, see [16]) Let N ′ be a submodule of rank

n′ in N = Zn. Then there are bases {u′1, · · · , u
′
n′} of N ′ and {u1, · · · , un} of N such that u′i =

ǫiui with some integer ǫi for i = 1, 2, · · · , n′ and ǫ1|ǫ2| · · · |ǫn′ . Moreover, if A = (a1, · · · , ak) is

an n× k integer matrix whose column vectors a1, · · · , ak generate N ′ and

δi := gcd{detB | B is an i× i submatrix of A},

then δi = δi−1ǫi for i = 1, 2, · · · , n′. In particular, if n′ = n, then δn = |N/N ′|.

We deduce two facts from Theorem 7.1.

Lemma 7.1 Let A be an n × n integer matrix of rank n and Ã : Rn/Zn → Rn/Zn be the

epimorphism induced from A. Then ker Ã ∼= cokerA.

Proof By Theorem 7.1 we may think of A as the diagonal matrix with diagonal entries

ǫ1, · · · , ǫn. Then one easily sees that ker Ã and cokerA are both isomorphic to
n∏

i=1

Z/ǫi, proving

the lemma.

Let a1, · · · , an+1 be elements of Zn which generate a sublattice 〈a1, · · · , an+1〉 of rank n and

set di := | det((aj)j 6=i)| for i ∈ [n+ 1]. It follows from Theorem 7.1 that

δn = gcd(d1, · · · , dn+1) = |Zn/〈a1, · · · , an+1〉|. (7.1)

Suppose that an+1 is primitive. Let ak (k 6= n + 1) be the projection image of ak on

Zn/〈an+1〉 and let a′k be the primitive vector in the quotient lattice Zn/〈an+1〉 which has

the same direction as ak when ak is nonzero, and a′k be the zero vector when so is ak. Set

d′j := det(a′1, · · · , â
′
j, · · · , a

′
n). With this understood we have the following lemma.

Lemma 7.2 gcd(d1, · · · , dn) | dn+1, i.e., gcd(d1, · · · , dn) = gcd(d1, · · · , dn+1). Moreover,

gcd(d′1, · · · , d
′
n) | gcd(d1, · · · , dn+1).

Proof Theorem 7.1 applied withN ′ generated by an+1 says that there is a basis {u1, · · · , un}

of N = Zn such that an+1 = ǫ1u1 with some integer ǫ1. But since an+1 is primitive, we have
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ǫ1 = ±1. Therefore, we may assume that an+1 = (0, · · · , 0, 1)T through a linear transformation

of Zn. We have

dn+1 = | det(a1, · · · , an)| =
∣∣∣

n∑

j=1

anj ã
n
j

∣∣∣, (7.2)

where anj is the (n, j) entry of the matrix (a1, · · · , an) and ãnj is its cofactor. Since an+1 =

(0, · · · , 0, 1)T, ãnj agrees with dj = | det(a1, · · · , âj , · · · , an+1)| up to sign. Therefore ãnj is

divisible by gcd(d1, · · · , dn) for every j and this together with (7.2) implies the former statement

in the lemma.

Since an+1 = (0, · · · , 0, 1)T, Zn/〈an+1〉 can naturally be identified with Zn−1 and we have

dj = | det(a1, · · · , âj , · · · , an+1)| = | det(a1, · · · , âj , · · · , an)| for j = 1, 2, · · · , n, (7.3)

where ak (k = 1, 2, · · · , n) is the projection image of ak on Zn/〈an+1〉 = Zn−1. Since ak is

a positive scalar multiple of a′k, d
′
j = | det(a′1, · · · , â

′
j , · · · , a

′
n)| divides the latter term in (7.3)

above and hence dj . This together with the former statement in the lemma implies the latter

statement in the lemma.

8 Converse of Proposition 6.1 in Three Cases

In this section we show that if Q is face p-acyclic and has the same face poset as one of the

following:

Case 1 the suspension ♦n of an (n− 1)-simplex ∆n−1 (see the introduction),

Case 2 the n-simplex ∆n,

Case 3 the prism ∆n−1 × [−1, 1],

then the converse of Proposition 6.1 holds, i.e., if µ(QI) is finite and coprime to p for every I,

then Hodd(X(Q, v);Z/p) = 0.

First we establish Case 1. Then we reduce Case 2 to Case 1 by collapsing a face of Q to

a point. In Case 3, according to the characteristic function v, we collapse one or two faces of

Q to a point reducing Case 3 to Case 2 or Case 1. The argument then becomes much more

complicated than that reducing Case 2 to Case 1. It would be interesting to see whether this

inductive argument works for an arbitrary product of simplices.

Let q be a vertex of Q. Then q lies in QI for some I ⊂ [m] with |I| = n. We set

dQ(q) := | det((vi)i∈I)|,

where vi = v(Qi) as before.

Case 1 In this case Q has two vertices, say q and q′, and dQ(q) = dQ(q
′) = µ(Q).

Proposition 8.1 Suppose that Q is face p-acyclic, has the same face poset as ♦n and

µ(Q) is coprime to p. Then X(Q, v) has the same cohomology as S2n with Z/p-coefficients, in

particular Hodd(X(Q, v);Z/p) = 0.

Proof When n = 1, Q is a closed interval and X(Q, v) is homeomorphic to S2; so the

proposition holds when n = 1. In the following we assume n ≥ 2, so that Q has n facets.

Let T n = (S1)n. Then Hom(S1, T n) is naturally isomorphic to Zn and we identify them.

Let {ei}ni=1 be the standard basis of Zn and e : {Q1, · · · , Qn} → Zn = Hom(S1, T n) be the
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characteristic function assigning ei to Qi. Then we have a T n-space X(Q, e) which is actually

a manifold because {ei}ni=1 is a basis of Zn.

The characteristic vectors vi ∈ N = Hom(S1, T ) define an epimorphism ṽ : T n → T sending

(h1, · · · , hn) to
n∏

i=1

vi(hi). One can see that the surjective map from Q× T n to Q × T sending

(q, t) to (q, ṽ(t)) descends to a ṽ-equivariant map from X(Q, e) to X(Q, v) and further descends

to a homeomorphism

X(Q, e)/ ker ṽ ≈ X(Q, v).

Here | ker ṽ| = |N/N̂ | by Lemma 7.1 and it is coprime to p by assumption. Moreover, since

ker ṽ is a subgroup of the connected group T n acting on X(Q, e), the induced action of ker ṽ

on H∗(X(Q, e);Z/p) is trivial. Therefore we have

H∗(X(Q, e)/ ker ṽ;Z/p) ∼= H∗(X(Q, e);Z/p)

(see [2, Theorem 2.4 in p. 120]) and hence it suffices to prove that X(Q, e) has the same

cohomology as S2n with Z/p-coefficients.

Since Q has the same face poset as ♦n and every face of ♦n is contractible, there is a face

preserving map f : Q → ♦n which induces an isomorphism on the face posets. Since Q is face

p-acyclic, f induces an isomorphism on cohomology with Z/p-coefficients at each face. In a way

similar to the definition of e, one has a characteristic function on ♦n, also denoted by e. Then

the map from Q× T n to ♦n × T n sending (q, t) to (f(q), t) descends to a map

X(Q, e) → X(♦n, e),

which induces an isomorphism on cohomology with Z/p-coefficients. Since X(♦n, e) is homeo-

morphic to S2n, this proves the desired result.

Case 2 Since Q has the same face poset as the n-simplex ∆n, Q has n + 1 facets

Q1, · · · , Qn+1 and n + 1 vertices q1, · · · , qn+1. We number them in such a way that qi is

the unique vertex not contained in Qi. It follows from (7.1) and Lemma 7.2 that

µ(Q) = gcd(dQ(q1), · · · , dQ(qn+1)) = gcd(dQ(q1), · · · , d̂Q(qi), · · · , dQ(qn+1)) and

µ(Qi) divides µ(Q) for any i ∈ [n+ 1].
(8.1)

In fact, the former identity in (8.1) follows from (7.1). The latter identity with i = n+1 follows

from Lemma 7.2 but the same proof of Lemma 7.2 works for any i and proves the desired

identity. Similarly, the last assertion in (8.1) also follows from (the proof of) Lemma 7.2.

Proposition 8.2 Suppose that Q is face p-acyclic, has the same face poset as ∆n and µ(Q)

is coprime to p. Then Hodd(X(Q, v);Z/p) = 0.

Proof We abbreviate X(Q, v) as X . We prove the proposition by induction on n. When

n = 1, Q is a closed interval and X is homeomorphic to S2; so the proposition holds in

this case. We assume that the proposition holds for any face p-acyclic (n − 1)-dimensional

manifold with corners satisfying the assumption in the proposition. For every i, Qi has the

same face poset as ∆n−1 and µ(Qi)|µ(Q) by (8.1), so Hodd(Xi;Z/p) = 0 by the induction

assumption, where Xi = π−1(Qi) and π : X → Q is the quotient map. On the other hand, since

µ(Q) = gcd(dQ(q1), · · · , dQ(qn+1)) is coprime to p by assumption, dQ(qi) is coprime to p for

some i. For such i, Q/Qi is face p-acyclic, has the same face poset as ♦n and µ(Q/Qi) = dQ(qi)
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is coprime to p, so Hodd(X/Xi;Z/p) = 0 by Proposition 8.1. These together with the exact

sequence

→ Hodd(X/Xi;Z/p) → Hodd(X ;Z/p) → Hodd(Xi;Z/p) →

show Hodd(X ;Z/p) = 0.

Case 3 We denote the facets of Q corresponding to ∆n−1×{±1} by Q± and the others by

Q1, · · · , Qn. Accordingly, we abbreviate the characteristic vectors v(Q±) as v± and v(Qi) as

vi. We denote the vertices in Qǫ by q
ǫ
1, · · · , q

ǫ
n for ǫ = ± in such a way that qǫi is not contained

in Qi.

Lemma 8.1 Suppose that Q is face p-acyclic and has the same face poset as ∆n−1× [−1, 1].

If µ(Q) is coprime to p and either µ(Q+) or µ(Q−) is coprime to p, then there is a vertex q of

Q such that dQ(q) is coprime to p.

We shall prove this lemma later. It suffices to prove the following for our purpose in Case

3.

Proposition 8.3 Suppose that Q is face p-acyclic, has the same face poset as ∆n−1×[−1, 1]

and µ(Q), µ(Q±) are coprime to p. Then Hodd(X(Q, v);Z/p) = 0.

Proof We abbreviate X(Q, v) as X and denote by Xǫ (ǫ = + or −) the inverse image of

Qǫ by the quotient map π : X → Q. Since Qǫ is face p-acyclic, has the same face poset as ∆n−1

and µ(Qǫ) is coprime to p by assumption, we have

Hodd(Xǫ;Z/p) = 0 (8.2)

by Proposition 8.2.

By Lemma 8.1 there is a vertex q of Q such that dQ(q) is coprime to p. Without loss of

generality, we may assume q = q−n , i.e., dQ(q
−
n ) is coprime to p. Since we have (8.2) and the

exact sequence

→ Hodd(X/X+;Z/p) → Hodd(X ;Z/p) → Hodd(X+;Z/p) →,

it suffices to prove

Hodd(X/X+;Z/p) = 0. (8.3)

We consider two cases.

Case a The case where det(v1, · · · , vn) 6= 0. In this case, the characteristic function v

on Q induces a characteristic function on Q/Q+, denoted v+, and X/X+ = X(Q/Q+, v
+).

We note that Q/Q+ is face p-acyclic and has the same face poset as ∆n since Q is face p-

acyclic and has the same poset as ∆n−1 × [−1, 1]. Moreover, since q−n is a vertex of Q/Q+ and

dQ/Q+
(q−n ) = dQ(q

−
n ) is coprime to p, µ(Q/Q+) is coprime to p. Therefore, (8.3) follows from

Proposition 8.2.

Case b The case where det(v1, · · · , vn) = 0.

Claim There is a vertex q of Qn such that dQn
(q) is coprime to p, so µ(Qn) is coprime to

p.

Proof Write vi = (v1i , · · · , v
n
i )

T and v− = (v1−, · · · , v
n
−)

T. Since vn is primitive, we may

assume vn = (0, · · · , 0, 1)T by Theorem 7.1. Denote by vi and v− the projection images of vi
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and v− on Zn/〈vn〉 and by v′i and v
′
− the primitive vectors which have the same directions as

vi and v− respectively. Then

dQn
(q−i ) = | det(v′1, · · · , v̂

′
i, · · · , v

′
n−1, v

′
−)|

by definition and hence

dQn
(q−i ) | det(v1, · · · , v̂i, · · · , vn−1, v−). (8.4)

On the other hand, since vn = (0, · · · , 0, 1)T, we have

det(v1, · · · , vn) = det(v1, · · · , vn−1)

and the left-hand side above is zero by assumption. It follows that

dQ(q
−
n ) = | det(v1, · · · , vn−1, v−)|

=
∣∣∣vn− det(v1, · · · , vn−1) +

n−1∑

j=1

vnj (−1)n−j det(v1, · · · , v̂j , · · · , vn−1, v−)
∣∣∣

=
∣∣∣
n−1∑

j=1

vnj (−1)n−j det(v1, · · · , v̂j , · · · , vn−1, v−)
∣∣∣,

where the second identity above is the expansion of det(v1, · · · , vn−1, v−) with respect to the

n-th row. By (8.4) gcd(dQn
(q−1 ), · · · , dQn

(q−n−1)) divides the last term above. Since dQ(q
−
n ) is

coprime to p, this means that dQn
(q−i ) is coprime to p for some i, proving the claim.

Now we shall prove (8.3) by induction on the dimension n of Q. When n = 1, Q is a closed

interval, X is S2 and X+ is a point; so (8.3) holds in this case. We assume n ≥ 2 in the

following. Let Xn be the inverse image of Qn by the quotient map π : X → Q. The face poset

of Qn is the same as that of ∆n−2× [−1, 1] and Qn is face p-acyclic. The facets corresponding to

∆n−2×{±1} are Qn∩Q± and µ(Qn∩Q±) are coprime to p by (8.1) because µ(Q±) are coprime

to p by assumption. Moreover, µ(Qn) is also coprime to p by the claim above. Therefore

Hodd(Xn/(Xn ∩X+);Z/p) = 0 (8.5)

by the induction assumption.

The quotient Q/(Qn∪Q+) =: Q̃ is face p-acyclic and Q̃ has the same face poset as ♦n. The

characteristic function v on Q induces a characteristic function on Q̃, denoted ṽ, because q−n is

a vertex of Q̃ and dQ̃(q
−
n ) = dQ(q

−
n ) is coprime to p, in particular nonzero. The quotient space

Xn/(Xn ∩X+) is a subspace of X/X+ and

(X/X+)/(Xn/(Xn ∩X+)) = X(Q̃, ṽ). (8.6)

Since dQ̃(q
−
n ) = µ(Q̃) is coprime to p, Hodd(X(Q̃, ṽ);Z/p) = 0 by Proposition 8.1. This together

with (8.6), (8.5) and the exact sequence

→ Hodd((X/X+)/(Xn/(Xn ∩X+));Z/p) → Hodd(X/X+;Z/p)

→ Hodd(Xn/(Xn ∩X+);Z/p) →

implies (8.3).
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Now it remains to prove Lemma 8.1.

Proof of Lemma 8.1 We may assume that µ(Q+) is coprime to p. We may also assume

that v+ = (0, · · · , 0, 1)T by Theorem 7.1 through some identification of N with Zn. Suppose

that

p | dQ(q) for all vertices q of Q (8.7)

and we shall deduce a contradiction in the following.

By Lemma 7.2, det(v1, · · · , vn) is divisible by gcd(dQ(q
ǫ
1), · · · , dQ(q

ǫ
n)), so it follows from

(8.7) that

p | det(v1, · · · , vn). (8.8)

We write vi = (v1i , · · · , v
n
i )

T ∈ Zn for i = 1, 2, · · · , n.

Claim 1 There is an i ∈ [n] such that p | vji for all j 6= n.

Proof Since v+ = (0, · · · , 0, 1)T, we naturally identify the quotient lattice Zn/〈v+〉 with

Zn−1 and then the projection image vi of vi on the quotient lattice Zn−1 is (v1i , · · · , v
n−1
i ). Set

si = gcd(v1i , · · · , v
n−1
i ). Then vi/si =: v′i is primitive. Since dQ(q) is assumed to be divisible

by p for all vertices q of Q, we have

p | det(vi1 , · · · , vin−1 , v+) for every subset {i1, · · · , in−1} of [n]. (8.9)

Here, since v+ = (0, · · · , 0, 1)T, we have

det(vi1 , · · · , vin−1 , v+) = det(vi1 , · · · , vin−1) =
( n−1∏

k=1

sik

)
det(v′i1 , · · · , v

′
in−1

). (8.10)

Now suppose that si is not divisible by p for any i. Then it follows from (8.9)–(8.10) that

p | det(v′i1 , · · · , v
′
in−1

) for every subset {i1, · · · , in−1} of [n]. Since µ(Q+) agrees with the

greatest common divisor of all det(v′i1 , · · · , v
′
in−1

) by (7.1), this shows that p | µ(Q+) which

contradicts the assumption that µ(Q+) is coprime to p. Therefore p | si for some i, proving the

claim.

Claim 2 p | det(vi1 , · · · , vin−2 , v−, v+) for every subset {i1, · · · , in−2} of [n].

Proof Since v+ = (0, · · · , 0, 1)T, we have

det(vi1 , · · · , vin−2 , v−, v+) = det(vi1 , · · · , vin−2 , v−), (8.11)

where v− = (v1−, · · · , v
n−1
− )T is the projection image of v− on the quotient Zn/〈v+〉 = Zn−1.

We shall observe that the right-hand side in (8.11) is divisible by p. Without loss of generality,

we may assume that the i in Claim 1 is n, so that p | vjn for all j 6= n. We consider two cases.

Case a The case where n ∈ {i1, · · · , in−2}. Since vn = (v1n, · · · , v
n−1
n )T and p | vjn for all

j 6= n, the right-hand side in (8.11) is divisible by p.

Case b The case where n /∈ {i1, · · · , in−2}. In this case, we consider the expansion of

det(vi1 , · · · , vin−2 , v−, vn) with respect to the last column. Since vn = (v1n, · · · , v
n
n)

T and p | vjn
for all j 6= n, we have

| det(vi1 , · · · , vin−2 , v−, vn)| ≡ |vnn det(vi1 , · · · , vin−2 , v−)| (mod p). (8.12)
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Here the left-hand side above is dQ(q) for q =
( n−2⋂
k=1

Qik

)
∩Q− ∩Qn, so it is divisible by p by

(8.7). Moreover, vnn is not divisible by p because otherwise every entry of vn is divisible by p

and this contradicts the fact that vn is primitive. It follows from (8.12) that the right-hand

side in (8.11) is divisible by p in this case, too.

This completes the proof of the claim.

Now (8.7)–(8.8) and Claim 2 show that all n× n minors of (v1, · · · , vn, v−, v+) are divisible

by p and hence p | µ(Q)(= |N/N̂ |) by Theorem 7.1. This contradicts the assumption that µ(Q)

is coprime to p, and the lemma is proved.

9 Example

In this section we shall give an example of a compact simplicial toric variety showing that

the converse of Proposition 6.1 does not hold in general.

Let Q be the 3-dimensional simple polytope with the 7 facets Q+, Q−, Q1, · · · , Q5, where

Q4 and Q5 are triangles obtained by cutting two vertices of a prism, shown in Figure 1 below.

The polytope Q can be obtained from ♦3 by performing a vertex cut four times.

Figure 1

Let d be a positive integer. To the 7 facets Q1, · · · , Q5, Q+, Q−, we respectively assign the

following vectors

v1 = (1, 0, 0), v2 = (−1, d,−d), v3 = (−1,−d, 0),

v4 = (0, 1, 0), v5 = (d, 1 − d,−d),

v+ = (0, 0, 1), v− = (1,−1,−1),

giving a characteristic function v on Q. There are ten vertices in Q. At each vertex, there are

exactly three facets meeting and the determinant of the three vectors assigned to the facets is

nonzero, indeed their absolute values are as follows:

| det(v1, v4, v+)| = | det(v2, v4, v+)| = | det(v1, v5, v−)| = 1,

| det(v1, v2, v4)| = | det(v1, v3, v+)| = | det(v1, v3, v−)| = d,

| det(v1, v2, v5)| = d(2d− 1), | det(v2, v5, v−)| = d+ 1,

| det(v2, v3, v−)| = d(d+ 3), | det(v2, v3, v+)| = 2d.
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(Precisely speaking, the vectors are regarded as column vectors here by taking transpose.)

Therefore, at each vertex, the cone spanned by the three vectors is 3-dimensional and has the

origin as the apex. One can also check that

v4 =
v1 + v2 + dv+

d
, v5 =

(d+ 1)v1 + v2 + d(2d− 1)v−
2d

,

v+ = −
2v1 + v2 + v3

d
, v− =

(d+ 3)v1 + v2 + 2v3
d

.

Since d is a positive integer, this shows that −v+ is in the cone ∠v1v2v3, v4 is in the cone

∠v1v2v+ while v− is in the cone ∠v1v2v3, and v5 is in the cone ∠v1v2v− (see Figure 2), where

∠uvw denotes the cone spanned by vectors u, v, w. This implies that the ten 3-dimensional

cones have no overlap and cover the entire R3, giving a complete simplicial fan so that the

quotient space X = X(Q, v) is homeomorphic to a compact simplicial toric variety.

Figure 2 Each vector vi is denoted by a point in R2 ∪{∞} and a segment connecting vi, vj corre-

sponds to the 2-dimensional cone spanned by them and a triangle formed by vi, vj , vk corresponds

to the 3-dimensional cone spanned by them.

We shall check that µ(QI) = 1 for each face QI of Q, where µ(QI) is defined in Section 6.

As remarked in Section 6, µ(QI) = 1 when |I| = 2 or 3. Clearly N̂ = N(= Z3). Therefore

it suffices to check µ(QI) = 1 when |I| = 1. At vertices Q1 ∩ Q4 ∩ Q+, Q2 ∩ Q4 ∩ Q+ and

Q1 ∩Q5 ∩Q−, we have

| det(v1, v4, v+)| = | det(v2, v4, v+)| = | det(v1, v5, v−)| = 1

and hence µ(QI) = 1 for every I with |I| = 1 except I = {3} again by the remark in Section 6.

In order to see µ(Q3) = 1, we note that {v3, v4, v+} is a base of N and

v1 = −v3 − dv4, v2 = v3 + 2dv4 − dv+.

Therefore, the images of v1 and v2 by the quotient map π{3} : N → N({3}) = N/〈v3〉 are (−d, 0)

and (2d,−d) with respect to the base {π{3}(v4), π{3}(v+)}. Thus the corresponding primitive

vectors are (−1, 0) and (2,−1) which form a base of N({3}). Hence µ(Q3) = 1.
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We shall computeH3(X). Take a plane inR3 which meets the facetsQ1, Q2, Q3 transversally

and does not meet the other facets of Q. Cutting Q along the plane, we divide Q into two

polytopes, denoted P+ and P− containing Q+ and Q− respectively. Let π : X → Q be the

quotient map and set

Yǫ := π−1(Pǫ) for ǫ = ±, Y := Y+ ∩ Y−, P := P+ ∩ P−.

The quotient space Pǫ/P can be regarded as a prism. The characteristic function v on Q induces

a characteristic function on Pǫ/P , denoted wǫ, and X/Y+ = Y−/Y (resp. X/Y− = Y+/Y ) is

homeomorphic to X(P−/P,w−) (resp. X(P+/P,w+)). The same argument as above shows

that µ takes 1 on all faces of the prism Pǫ/P , so

H∗(X,Yǫ) and H
∗(Yǫ, Y ) are torsion free and vanish in odd degrees (9.1)

by Proposition 8.3.

Let Q̃ be a nice manifold with corners obtained from Q by collapsing Q4 ∪Q+ and Q5 ∪Q−

to a point respectively. The Q̃ has three facets coming from Q1, Q2, Q3 and the characteristic

function v on Q induces a characteristic function ṽ on Q̃. Since

v1 = (1, 0, 0), v2 = (−1, d,−d), v3 = (−1,−d, 0),

one can see that H4(X(Q̃, ṽ)) ∼= Z/d by Corollary 5.2, and since X(Q̃, ṽ) is homeomorphic to

the suspension of Y , we obtain

H3(Y ) ∼= Z/d. (9.2)

Now, consider the exact sequence in cohomology for the pair (Y+, Y ):

→ H3(Y+, Y ) → H3(Y+) → H3(Y ) → H4(Y+, Y ) → . (9.3)

Since H3(Y+, Y ) = 0 and H4(Y+, Y ) is torsion free by (9.1) and H3(Y ) is a torsion group by

(9.2), it follows from the exact sequence (9.3) that

H3(Y+) ∼= H3(Y ) ∼= Z/d. (9.4)

Next, consider the exact sequence in cohomology for the pair (X,Y+):

→ H3(X,Y+) → H3(X) → H3(Y+) → H4(X,Y+) → . (9.5)

Similarly to the above argument, H3(X,Y+) = 0 and H4(X,Y+) is torsion free by (9.1) and

H3(Y+) is a torsion group by (9.4), so it follows from the exact sequence (9.5) that

H3(X) ∼= H3(Y+) ∼= Z/d.

Thus X = X(Q, v) is the desired example when d ≥ 2.

10 Appendix

In this appendix, we observe that when X is a compact simplicial toric variety of com-

plex dimension n, a result of Fischli [7] or Jordan [11] implies that H2n−1(X) ∼= N/N̂ and
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TorH2n−2(X) ∼= ∧2N/(N̂ ∧ N), where TorH2n−2(X) denotes the torsion part of H2n−2(X).

This result agrees with Proposition 3.1 since Q is contractible in this case.

Let ∆ be a simplicial complete fan of dimension n and let X be the associated compact

simplicial toric variety. Let M be the free abelian group dual to N . Since N = Hom(S1, T ), M

can be thought of as Hom(T, S1). According to [7, Theorem 2.3] or [11, Theorem 2.5.5],

H2n−1(X) ∼= coker δ1, TorH2n−2(X) ∼= coker δ2,

where

δr :
⊕

τ∈∆(1)

∧n−r(τ⊥ ∩M) → ∧n−rM, r = 1, 2 (10.1)

is the sum of inclusion maps with signs, ∆(1) denotes the set of one-dimensional cones in ∆ and

τ⊥ denotes the subspace of M ⊗ R which vanish on τ .

We shall interpret the above in terms of N . Let σ be a cone of dimension n− k in ∆. Then

we have

∧ℓ(σ⊥ ∩M) ∼= Hom(∧k−ℓ(σ⊥ ∩M),Z) (∵ rankσ⊥ ∩M = k)

∼= ∧k−ℓ(N/Nσ) (∵ N/Nσ is dual to σ⊥ ∩M)

∼= (∧n−kNσ) ∧ (∧k−ℓN), (10.2)

where Nσ is the intersection of N with the subspace of N ⊗R spanned by σ. The last isomor-

phism above is given as follows. Choose a base ρ1, · · · , ρn−k of Nσ. Since Nσ is of rank n− k,

∧n−kNσ is a free abelian group of rank one and ρ1 ∧ · · · ∧ ρn−k is its generator. For w ∈ N , we

denote by [w] the element of N/Nσ determined by w. Then the following correspondence

[w1] ∧ · · · ∧ [wk−ℓ] → ρ1 ∧ · · · ∧ ρn−k ∧ w1 ∧ · · · ∧ wk−ℓ

is well defined and gives the desired isomorphism from ∧k−ℓ(N/Nσ) to (∧n−kNσ) ∧ (∧k−ℓN).

This isomorphism is independent of the choice of the base ρ1, · · · , ρn−k up to sign. Namely,

the isomorphism (10.2) depends only on the choice of orientations on M (or N) and σ.

Applying (10.2) to σ = τ ∈ ∆(1) and σ = 0, we obtain

∧n−1 (τ⊥ ∩M) ∼= Nτ , ∧n−1 M ∼= N,

∧n−2 (τ⊥ ∩M) ∼= Nτ ∧N, ∧n−2 M ∼= ∧2N.

Since δr is the sum of inclusion maps with signs, the image of δ1 (resp. δ2) in (10.1) can be

identified with N̂ (resp. N̂ ∧N) and hence

H2n−1(X) ∼= En,n−1
2

∼= N/N̂, TorH2n−2(X) ∼= En,n−2
2

∼= ∧2N/(N̂ ∧N).
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