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Abstract Let X be a closed, simply-connected, smooth, spin 4-manifold whose inter-
section form is isomorphic to 2k(−E8) ⊕ lH , where H is the hyperbolic form. In this
paper, the authors prove that if there exists a locally linear pseudofree Z3-action on X,
then Sign(g,X) ≡ −k mod 3. They also investigate the smoothability of locally linear
Z3-action satisfying above congruence. In particular, it is proved that there exist some
nonsmoothable locally linear Z3-actions on certain elliptic surfaces.
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1 Introduction

Let G be a finite group, and X be an n-dimensional manifold. If Top(G,X) denotes the set

of equivalent classes of topological G-actions on X . Recall that two topological G-actions on X

are equivalent if there exists a homeomorphism f of X such that one action is conjugate to the

other by f . A topological finite group G-action on an n-dimensional manifold X is called locally

linear if for any point x ∈ X , there exists a Gx-invariant neighborhood Vx of x such that Vx is

homeomorphic to Rn, and Gx acts on Vx in a linear orthogonal way, where Gx is the isotropy

group of x. Similarly, LL(G,X) denotes the set of equivalent classes of locally linear G-actions

on X . If a smooth structure on X is specified, C∞(X,G) denotes the set of equivalent classes

of smooth G-actions on X with respect to differmorphisms preserving the smooth structure. It

is well known that the three classes of group actions have the relation

Top(G,X) ⊃ LL(G,X)
ϕ
←− C∞(X,G),

where ϕ is the map forgetting the smooth structure. For a 4-dimensional manifold X the map

ϕ is not surjective. An action is called pseudofree if it is free outside of a finite set of points.

It is proved by Kwasik and Vogel [11] that the existence of nontrivial locally linear involutions

on simply-connected closed topological 4-manifolds implies that the vanishing of the Kirby-

Siebenmann obstruction. In the present paper, for a topological Z3-action on 4-dimensional

manifold X , we obtain the following necessarily condition for it to be locally linear.
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Theorem 1.1 Let X be a closed, simply-connected, smooth, spin 4-manifold whose inter-

section form is isomorphic to 2k(−E8) ⊕ lH, where H is the hyperbolic form. If a pseudofree,

topological Z3-action on X is locally linear, then Sign(g,X) ≡ −k mod 3.

The proof of the above theorem is based on the properties of Kirby-Sibenmann invariant

and Rochlin invariant in [7].

The smoothability of a locally linear orientation preserving pseudofree action on a smooth

4-manifold has been an open question. Kwasik and Lawson [10] provided the first example

answering this question in the negative mainly by gauge theory, and in some cases of involutions,

Rohlin’s µ-invariant is used. In recent years, many nonsmoothable group actions on 4-manifolds

are constructed by many authors (see [3–4, 9–14, 16]). For example, the authors proved the

existence of nonsmoothable involutions on a large class of spin 4-manifolds in [16], where we

use the Rochlin’s theorem. In [13–14], Liu and Nakamura constructed groups actions on elliptic

surfaces which are not smooth with respect to infinitely many smooth structures including

the standard smooth structure. They used the mod p vanishing theorem of Seiberg-Witten

invariants in [6] to get nonsmoothable group actions on elliptic surfaces.

In this paper, we restrict our attention to Z3-actions on spin 4-manifolds and provide an

example of nonsmoothable locally linear Z3-actions on certain elliptic surfaces (see Theorem

4.2).

2 Preliminaries

In this section, a constraint on smooth Z3-actions and some method of constructing locally

linear Z3-actions are given. We also collect some fomulae which will be used in calculation.

Let G be the cyclic group of order 3 (G = Z3), and suppose that G acts locally linearly

and pseudofreely on a spin 4-manifold X . Now let bi be the i-th Betti number of X , and b+

(resp. b−) be the rank of a maximal positive (resp. negative) definite subspace H+(X ;R) (resp.

H−(X ;R)) of H2(X ;R). For any G-space V , let V G be the fixed point set of the G-action. Let

bG• = dimH•(X ;R)G, where • = 2,+,−. The Euler number of X is denoted by χ(X) and the

signature of X by Sign(X).

When we fix a generator g of G, the representation at a fixed point can be described by a

pair of nonzero integers (a, b) modulo 3 which is well-defined up to order and changing the sign

of both together. Hence, there are two types of fixed points:

(1) The type (+): (1, 2) = (2, 1).

(2) The type (−): (1, 1) = (2, 2).

Let m+ be the number of fixed points of the type (+), and m− be the number of fixed

points of the type (−).

2.1 The realization theorem of locally linear Z3-actions

To construct locally linear Z3-actions, we use the following special case of the realization

theorem by Edmonds and Ewing [5].

Theorem 2.1 (see [5]) Suppose that we are given a fixed point data

D = {(a0, b0), (a1, b1), · · · , (an, bn), (an+1, bn+1)},
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where ai, bi ∈ Z3\{0}, and a Z3-invariant bilinear unimodular even form Ψ : V × V → Z,

where V is a finitely generated Z-free Z[Z3]-module. Then the data D and the form (V,Ψ) are

realizable by a locally linear, pseudofree, G-action on a closed, simply-connected, topological

4-manifold if and only if they satisfy the following two conditions:

(1) The condition REP : As a Z[Z3]-module, V ∼= T ⊕F , where T is a trivial Z[Z3]-module

with rankZT = n, and F is a free Z[Z3]-module.

(2) The condition GSF : The G-signature formula is satisfied, i.e.,

Sign(g, (V,Ψ)) =

n+1
∑

i=0

(ζai + 1)(ζbi + 1)

(ζai − 1)(ζbi − 1)
,

where ζ = exp
(

2πi
3

)

.

Note that the realization theorem for all cyclic groups of prime order provided by Edmonds

and Ewing [5] also has a condition TOR. However, the TOR condition is redundant for prime

numbers p less than 23. Since the form Ψ is assumed even, the homeomorphism type of X is

unique by Freedman’s theorem (see [7]).

Set
⋃

i

Ci is invariant under the action of G.

2.2 The Lefschetz fixed points theorem and the G-signature theorem

Here we collect some classical formulae. We refer the reader to see [1–2] and the excellent

exposition in [4] for more details. Let X be a closed, oriented smooth 4-manifold, and let cyclic

group G ≡ Zp of prime order act on X effectively via orientation-preserving diffeomorphisms.

Then the fixed-point set F , if nonempty, will consist of isolated points and surfaces. If a

generator g of G is fixed, each fixed point m ∈ F is associated with a nonzero integers pair

(am, bm), where −p < am, bm < p, and they are uniquely determined up to a change of order

or a change of sign simultaneously, such that the induced g-action on the tangent space at m

is given by the complex linear transformation (z1, z2) 7→ (ξamz1, ξ
bmz2), where ξ = exp

(

2πi
p

)

.

For each connected surface Y ⊂ F , the action of g on the normal bundle of Y in X is given by

z 7→ ξcY z for an integer cY with 0 < cY < p, which is uniquely determined up to a sign modulo

p.

Theorem 2.2 (Lefschetz Fixed Point Theorem) Let T : X → X generate an action of Zp

on X, a closed, oriented smooth 4-manifold. Then L(T,X) = χ(F ), where χ(F ) is the Euler

characteristic of the fixed-point set F and L(T,X) is the Lefschetz number of the map T , which

is defined by

L(T,X) =

4
∑

k=0

(−1)ktr(g)|Hk(X;R).

For a simply-connected 4-manifold X , the formula is χ(F ) = 2 + tr(g)|H2(X;R).

Theorem 2.3 (G-Signature Theorem) Set

Sign(g,X) = tr(g)|H2,+(X;R) − tr(g)|H2,−(X;R).

Then

Sign(g,X) =
∑

m∈F

− cot
(amπ

p

)

· cot
(bmπ

p

)

+
∑

Y⊂F

csc2
(cY π

p

)

· (Y · Y ),
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where Y · Y denotes the self-intersection number of Y.

The weaker version of the G-signature theorem is used more often since the convenient for

calculation.

Theorem 2.4 (G-Signature Theorem—The Weaker Version)

|G| · Sign(X/G) = Sign(X) +
∑

m∈F

defm +
∑

Y⊂F

defY ,

where the terms defm and defY are called signature defects. They are given by the following

formulae:

defm =

p−1
∑

k=1

(1 + ξk)(1 + ξkq)

(1− ξk)(1 − ξkq)

if the local representation of G at m is given by (z1, z2) 7→ (ξkz1, ξ
kqz2), and

defY =
p2 − 1

3
· (Y · Y ).

Note that the G-signature theorem is also valid for locally linear, topological actions of

prime orders in dimension 4. The actions in this paper are pseudofree, i.e., the fixed point set

only contains isolated fixed points, so the above formulae will be more concise. Set
⋃

i

Ci is

invariant under the action of G.

2.3 Kirby-Siebenmann invariant and Rochlin invariant

Let us review some properties of Kirby-Siebenmann invariant and Rochlin invariant in this

part (see [4, 7] for more details).

Let X be a compact topological 4-manifold whose boundary has a unique smooth structure.

There is an obstruction in ks(X) ∈ H4(X, ∂X ;Z2) to extend the smooth structure to a smooth

structure onX×R. Each component ofX hasH4(−, ∂X ;Z2) ∼= Z2. Define ks(X) to be the sum

of these invariants in Z2 over all components. The ks(X) is the stable smoothing obstruction if

X is connected. Suppose (M, τ) is a closed spin 3-manifold, where τ is a spin structure. There

is a smooth spin 4-manifold (W, τ ′) bounded by (M, τ) since the 3-dimensional smooth bordism

group is trivial. Then Rochlin invariant roc(M, τ) is defined to be the signature of W , mod

16. This invariant may depend on the spin structure. The invariant is well defined if there is a

unique spin structure.

Suppose that a smooth, simply-connected, spin 4-manifold X admits a locally linear, topo-

logical action of a finite group G. Then the quotient space X/G is a spin 4-orbifold with only

isolated singular points. By removing a regular neighborhood of the singular set, we get a

spin 4-manifold with boundary which denoted by N , and the boundary of N inherits a spin

structure from that of N which denoted by ∂η. Then, the Kirby-Siebenmann invariant of N

and the Rochlin invariant of (∂N, ∂η) are constrained as follows.

Theorem 2.5 (see [7]) 8 · ks(N) ≡ Sign(N) + roc(∂N, ∂η) mod 16.

By the results about the Kirby-Siebenmann invariant in [3], it is very easy to get the following

theorem.
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Theorem 2.6 The Kirby-Siebenmann invariant ks(N) = 0 is a necessary condition for the

G-action to be smoothable.

3 The Proof of Theorem 1.1

Let X be a closed, simply-connected, smooth, spin 4-manifold which has the intersection

form isomorphic to 2k(−E8) ⊕ lH , where k and l are positive integers. Therefore l ≥ 2k + 1

by Furuta’s inequality (see [8]). Suppose there is a locally linear pseudofree Z3-acttion on X .

The fixed points of a pseudofree Z3-action on X can be divided into two types by considering

their local representation: the type (+) and the type (−), and let k+, k− be the numbers of

the fixed points of the type(+), type(−) in the fixed point set separately. We can see that the

corresponding 4-manifold N has k+ + k− boundary components: There are k+ L(3, 2) and k−

L(3, 1).

Lemma 3.1 The Rochlin invariants of L(3, 1) and L(3, 2) are 2 and −2, mod 16, respec-

tively.

Proof Since lens space L(3, 1) bounds a spin 4-manifold Y obtained by plumbing on a chain

which has two vertices both weighted by 2, the signature of Y is 2. Note that L(3, 2) = −L(3, 1).

Then, the Rochlin invariants of L(3, 1) and L(3, 2) can be obtained by definition.

Lemma 3.2 For any locally linear Z3-acttion on X, ks(N) ≡ 0 mod 2.

Proof Since the obstruction in question is natural for coverings and in this case can be

thought of as a multiple of the “top class” in H4(N, ∂N ;Z2).

For a pseudofree Z3-action on X , we have the following constraint on Kirby-Siebenmann

invariant and Rochlin invariant.

Theorem 3.1 8 · ks(N) ≡ − 16
3 (k + Sign(g,X)) mod 16.

Proof By the G-Signature formula, we have

Sign(X/Z3) =
1

3

(

Sign(X) +
∑

m∈F

defm

)

=
1

3
[−16k + 2 · Sign(g,X)].

Here we use the facts that the signature defect of a type(+) fixed point is def+ = 2
3 , and that

of a type(−) fixed point is def− = − 2
3 , and Sign(g,X) = 1

3 (k+ − k−).

By the additivity of the Rochlin invariant, we have

roc(∂N, ∂η) ≡ −2(k+ − k−) mod 16.

Hence

roc(∂N, ∂η) ≡ −6 · Sign(g,X) mod 16.

Note that Sign(X/Z3) = Sign(N) for the standard choices of orientations. The proof is done.

Taking into account Lemma 3.2, and the formula in Theorem 3.1, then we have the next

proposition.

Proposition 3.1 For a generator g ∈ Z3, Sign(g,X) ≡ −k mod 3.
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4 Nonsmoothable Z3-Actions

In this section, an example of nonsmoothable locally linear Z3-actions on 4-dimensional

manifolds X satisfying k ≡ 1 mod 3 will be provided.

Let X be a 4-manifold as above, its intersection form isomorphic to 2k(−E8) ⊕ lH , where

k ≡ 1 mod 3. Recall that if there is a locally linear pseudofree Z3-action on X , Sign(g,X) =
1
3 (m+ −m−). By Proposition 3.1, m+ −m− ≡ −3 mod 9. Note that #XG = m+ +m− and

2 + tr(g|H2(X)) ≤ χ(X). By the Lefschetz fixed point theorem,

m+ +m− ≤ 16k + 2l+ 2.

For the spin 4-manifold X , the G = Z3-action can lifts to a G-action on the Spinc structure

naturally. Then, the G-index of the Dirac operator DX can be written as indGDX =
2
∑

j=0

kjCj ∈

R(G) ∼= Z[t]/(t3 = 1), where Cj is the complex 1-dimensional weight j representation of G and

R(G) is the representation ring of G. The following mod p vanishing theorem can be used to

prove the existence of certain nonsmoothable locally linear Z3-actions.

Theorem 4.1 (see [6]) Let Y be a smooth closed oriented 4-dimensional Zp-manifold with

b1 = 0 and b+ ≥ 2, where p is a prime. Suppose that c is a Spinc-structure on which Zp-action

lifts, and that b+ = bG+. If 2kj ≤ b+ − 1 for j = 0, · · · , p− 1, then

SWY (c) ≡ 0 mod p.

As in [12], the coefficients kj are calculated by the G-spin theorem. For a generator g ∈ G,

the Lefschetz number is calculated by the formula as

indgDX =

2
∑

j=0

ζjkj ,

where ζ = exp
(

2π
√
−1

3

)

. We obtain

indgDX = k0 + ζk1 + ζ2k2 =
1

3
(m+ −m−),

indg2DX = k0 + ζ2k1 + ζk2 =
1

3
(m+ −m−),

ind1DX = k0 + k1 + k2 = −
Sign(X)

8
= 2k.

Then, we have

k0 =
1

9
6k + 2(m+ −m−),

k1 = k2 =
1

9
6k − (m+ −m−).

We can see that the condition 2kj ≤ b+ − 1 in Theorem 3.1 is equivalent to

6k − 9(l + 1) ≤ m+ −m− ≤
9

2
(l + 1)− 3k.

At last, we give a result that there exist some nonsmoothable locally linear Z3-actions on

certain elliptic surfaces.
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An elliptic surface is a compact, complex surface E which comes with a holomorphic pro-

jection π : E → C onto a compact, connected complex curve, such that the generic fibers of

π are elliptic curves. We will always assume that E is minimal elliptic, i.e., not a blow-up of

another elliptic surface.

The projection π (or elliptic fibration) of an elliptic surface has well-understood local behav-

ior. It has only finitely many critical values, and away from these it is a bundle projection with

torus fibers (called regular fibers). The singular fibers, or preimages of critical values, come in

various types. For minimal elliptic surfaces, we may smoothly change π so that only two types of

singular fibers occur: cusp fibers and (smooth) multiple fibers. A cusp fiber is a PL-embedded

sphere with a unique non-locally flat point, which is locally a cone on a (right-handed) trefoil

knot.

Simply connected minimal elliptic surfaces without multiple fibers are completely classified

up to diffeomorphism by a positive integer n. Each such manifold E(n) has a projection with

exactly 6n cusp fibers and no multiple fibers. It follows that E(n) has Euler characteristic 12n.

A smooth multiple fiber is a smoothly embedded torus which is multiply covered by nearby

regular fibers. In fact, it is essentially a Seifert multiple fiber crossed with S1. It follows that any

elliptic surface can be obtained from one without multiple fibers by a process called logarithmic

transform, which is essentially Dehn surgery along a fiber.

Now let E(n) be the relatively minimal simply-connected elliptic surface without multiple

fibers, and with geometric genus pg = n − 1. Note that Sign(E(n)) = −8n and χ(E(n)) =

12n. Thus E(2) = E(1)♯T2E(1) is the K3 surface. To see this just note that the Euler

characteristic are additive under taking fiber connected sums over a torus. Hence Sign(E(2)) =

−16 and χ(E(2)) = 24 which characterizes K3 surface. Besides, the general surface E(n) can

be constructed as a fiber connected sum E(n) = E(n − 1)♯T2E(1). So the intersection form

of E(n) isomorphic to n(−E8) ⊕ (2n − 1)H . Suppose n is even and n ≥ 2. The condition

2kj ≤ b+ − 1 in Theorem 3.1 is equivalent to

−15n ≤ m+ −m− ≤
15

2
n.

Recall that the Seiberg-Witten invariant of the E(n) is cn−2 := C
n−2

2

n−2 . By the mod p vanishing

theorem of the Seiberg-Witten invariants, we have the following theorem.

Theorem 4.2 If cn−2 6≡ 0 mod 3 and n ≡ 2 mod 6, then there exists a locally linear

Z3-action on E(n) stisfying the following conditions, which is nonsmoothable with respect to

infinitely many smooth structures on E(n):

(1) −15n ≤ m+ −m− ≤
15
2 n,

(2) m+ −m− ≡ −3 mod 9.

The proof of above theorem is divided into two steps. In the first step, to construct a locally

linear action, we use the realization theorem due to Edmonds and Ewing [5]. In the second

step, we use the mod p vanishing theorem of the Seiberg-Witten invariants to give a constraint

on smooth Z3-action. In fact the proof can be done by imitating the method in [13], so we omit

here.
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