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1 Introduction

1.1 Small covers

Small covers, or Coxeter orbifolds, were studied by Davis and Januszkiewicz [7]. They are

a class of manifolds which admit locally standard Zn
2 -actions, such that the orbit spaces are

n-dimensional simple polyhedra. The algebraic and topological properties of a small cover are

closely related to the combinatorics of the orbit polyhedron and the coloring on its boundary.

In this paper, we focus on the 3-dimensional case.

Definition 1.1 Let P be a 3-dimensional polytope, Γ be a trivalent graph in ∂P which gives

a cell decomposition of ∂P . A Z3
2-coloring is a map λ : ∂P − Γ −→ Z3

2 such that λ(fi1 ), λ(fi2 )

and λ(fi3 ) generate Z3
2 when f i1

, f i2
and f i3

are sharing a common vertex, where fij is a

connected component in ∂P − Γ and f ij
is the corresponding closure.

From a Z3
2-coloring λ and the trivial principal Z3

2-bundle over P , we can get a 3-manifold

which depends only on the coloring λ. Preparing eight copies of P , namely P × Z3
2, then a

quotient space M(P, λ) can be constructed under the following equivalent relation:

(x, α1) ∼ (y, α2) ⇔

{

x = y, α1 = α2, if x ∈ IntP ,

x = y, α1α
−1
2 ∈ Gf , if x ∈ ∂P .

(1.1)

Here Gf is the subgroup generated by λ(fi1), · · · , λ(fik), where f = f i1
∩ · · · ∩ f ik

is the only

i-face, 0 ≤ i ≤ 2, that contains x as an interior point. It is easy to see that M(P, λ) is a closed

3-manifold and we call it a small cover over P .
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For example, if we consider a coloring on a tetrahedron that the four faces are colored by e1,

e2, e3 and e1 + e2 + e3 respectively, then following the construction above, we can get a closed

orientable 3-manifold RP
3. It should be noticed that a tetrahedron admits a unique right-angled

spherical structure. And those spherical structures on the four copies of the tetrahedron are

glued together to form the unique spherical structure on RP
3.

Choi-park [6] once discussed the torsions of real topological toric manifolds. For any positive

odd number q, they constructed a real topological toric manifold N whose integral cohomology

has a q-torsion. For a large q, the manifold being constructed will be of large dimension.

What’s more, they gave a formula for the cohomology groups of real topological toric manifolds

with coefficient Zp. Even though not being stated explicitly, from [6, Theorem 4.6] we can see

that there are no odd torsions in a 3-dimensional small cover. Letting P be a 3-dimensional

polytope and M = M(P, λ) be any small cover over P with at most 2-torsion in cohomology,

Trevisan [22] gave out all the possible integral homology and cohomology groups. And it is still

unknown about the existence of any 2k-torsion for k ≥ 2 in a 3-dimensional small cover. In this

paper, we show the following result.

Theorem 1.1 Let M = M(P, λ) be a 3-dimensional small cover. Then there are only

Z2-torsions in H1(M ;Z).

1.2 Asymptotic behaviors of mod 2 Betti numbers of finite covers

Let G be an infinite group, Gi < G be a sequence of finite-index subgroups of G. If

Gi+1 < Gi, then we say {Gi}∞i=1 is a tower of G. If
∞
⋂

i=1

Gi = 1, then {Gi}∞i=1 is co-final. If

Gi ⊳G, then {Gi}∞i=1 is a regular sequence of G.

The asymptotic behavior of algebraic invariants in finite covers Mi of a 3-manifold M

depends on the sequence {Mi}∞i=1 of M . For any co-final regular tower {Mi}∞i=1 of a hyperbolic

3-manifold M , lim
i→∞

b1(Mi)
[M :Mi]

equals to the L2-Betti number of H3. And it is zero as shown in [17],

namely the normalized first Betti number converges to zero for co-final regular towers. But this

is not true for all the co-final sequences of M , see Girão [11, Theorem 3.1] as well as [9, 13]

for related topics. And Girão [10–11] also studied the rank gradients of some hyperbolic 3-

manifolds.

There are many works on the asymptotic behavior of homology torsions in finite covers

of a 3-manifold, see [4, 14, 16, 18, 21]. In particular, it is conjectured that torsion growth of a

co-final normal subgroup sequence of a hyperbolic 3-manifold M is related to the volume of

M (see [4, 18]). It is also conjectured that exponential torsion growth for any sequence (might

not be normal, even not co-final) of a fibered 3-manifold Nφ is related to the virtual homology

entropy of φ (see [14]). We show the following theorem.

Theorem 1.2 Let M be a small cover over a right-angled hyperbolic polytope. Then M has

a co-final finite-cover sequence Mi such that H1(Mi;Z2) has exponential growth.

Theorem 1.2 can be compared with Theorem 1.2 of [15], where Lackenby proved that any

finitely generated, discrete, non-elementary subgroup of PSL(2,C) with torsions has a tower of

subgroups with linear-increasing mod p homologies for some prime p. See also [19, Theorem

2.2] as well as an example in [5] where the closed hyperbolic 3-manifold M has a normal co-

final sequence Mi such that H1(Mi;Z3) is always Z3
3. In [8, p. 64], it is stated that “At the
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same time, very deep recent work of Wise on quasi-convex hierarchies combined with a theorem

of Lackenby implies that for every hyperbolic 3-manifold group G and every prime p, the p-

gradient of G is zero”. The p-gradient of G is defined as RGp(G) = inf
H

dp(H)−1
[G:H] , where H runs

over all subnormal subgroups of finite p-power index in G and dp(H) is the rank of H
[H,H]Hp . So

Theorem 1.2 shows that there are differences between subnormal sequence and general sequence

in considering their p-gradients.

2 Preliminaries

2.1 Small cover

For an n-dimensional simple polytope P in Lobachevski n-spaceHn, Davis and Januszkiewicz

showed that if there is a 2n-index torsion-free subgroup Γ of the Coxeter group over P , then

the manifold corresponding to this subgroup, namely the Clifford-Klein space form Hn/Γ, is a

small cover over P . It is a G-manifold with group action Zn
2 .

Moreover, there is another equivalent but more practical way in describing small cover by

using the language of coloring: Let F(P ) = {F1, F2, · · · , Fm} be the set of all co-dimensional

one faces of P . Such face is named as facet. Then we define a Zn
2 -coloring characteristic function

λ : F(L) = {F1, F2, · · · , Fm} −→ Z
n
2 ,

where λ(F1), λ(F2), · · · , λ(Fn) generate Z
n
2 when the facets F1, F2, · · · , Fn share a common

vertex. This condition is called the non-singular condition. And the corresponding characteristic

matrix is defined to be the matrix obtained by placing the image of facets F1, · · · , Fm under

λ column by column. By the way, such function λ is not destined to exist and its existence is

concerned with the Buchstaber invariant.

If characteristic function λ is defined successfully, then we can construct manifoldM(P, λ) :=

P × Zn
2/ ∼ by the following equivalent relation:

(x, g1) ∼ (y, g2) ⇔

{

x = y, g1 = g2, if x ∈ IntP ,

x = y, g−1
1 g2 ∈ Gf , if x ∈ ∂P,

(2.1)

where f = Fi1 ∩ · · · ∩ Fin−k
, 0 ≤ k ≤ n− 1, is the unique co-dimensional (n− k)-face that con-

tains x as an interior point, and Gf is the subgroup generated by λ(Fi1 ), λ(Fi2 ), · · · , λ(Fin−k
).

M(P, λ) is called a small cover over P . For example, defining a Z2
2-coloring characteristic func-

tion λ on the square as show in Figure 1, where (1, 0) = e1, (0, 1) = e2 are the standard basis

of Z2
2.

Figure 1 A coloring on the square.

Then by gluing the four pieces together along the facets according to the equivalent relation,

we can finally get the Klein bottle.
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3 Torsions in Small Covers

In this section, we show that there are only 2-torsions in H1(M ;Z) for a 3-dimensional

small cover M , which can be viewed as a refinement of Theorem 3.1 of [7]. We start from a

construction in [7].

Lemma 3.1 There is a presentation matrix H for H1(M ;Z), whose non-trivial entries are

either 2 or −2. Moreover, there are at most two non-trivial entries in each row. If a row has

exactly two non-trivial entries, then they must be 2 and −2.

Proof Let P be a 3-dimensional polytope and we embed P in R
3. Choosing a vector µ in

R3 which is generic to P . Then adopting a function φ : R3 → R by φ(x) = 〈x, µ〉, where 〈x, µ〉

is the inner product. Now using φ(x) as a height function, we can get a directed graph on the

1-skeleton of P .

There is a unique vertex, such that all the three adjacent edges point away from it. We

denote this vertex by I and this is the unique “bottom” vertex. There is also a unique vertex,

such that all the three adjacent edges point towards it. We denote this vertex by T and this is

the unique “top” vertex. For other vertices, say O, there are two possibilities:

Case 1 We have two of the three edges adjacent to O point away from it while one points

towards it. By h-vector and some simple combinatorial analysis, it is easy to see there are totally

m−3 such type of vertices, wherem = |F(P )|. We denote these vertices by V1, V2, V3, · · · , Vm−3.

Case 2 We have one of the three edges adjacent to O points away from it while the other

two point towards it. It is easy to see that there are still m− 3 vertices of this type. We denote

them by W1,W2,W3, · · · ,Wm−3.

For each vertex Vi, we take Ei to be the unique closed edge that runs towards Vi. Defining

G to be the union of all of these Ei. Then G is a connected graph in the 1-skeleton of P which

contains I and does not contain T . We use a cube D to explain all these notions in Figure 2.

Figure 2 Directed graph of a cube D and its union of Ei.

Considering π−1(G) in M , where π : M → P is the projection map. Now in the small cover

M = M(P, λ), π−1(G) is a graph which is a double of G along the vertex set (see [7, Lemma

1.3]. Namely, as shown in Figure 3, there are two copies of G, which are denoted by G′ and

G′′ respectively, in the corresponding small cover M . Their vertices are marked by V ′
1 , V

′
2 ,

V ′
3 ,· · · ,V

′
m−3 and V ′′

1 , V ′′
2 , V ′′

3 ,· · · ,V ′′
m−3. And their edges are labeled by E′

1, E
′
2, E

′
3,· · · ,E

′
m−3

and E′′
1 , E

′′
2 , E

′′
3 ,· · · ,E

′′
m−3. Then π−1(G) = G′

⊔

G′′/V ′
i ∼ V ′′

i , 1 ≤ i ≤ m− 3.
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Figure 3 G′, G′′ and π−1(G) of cube D.

For each edge Ei with respect to Vi, we label the colorings of faces adjacent to Vi by α, β

and γ. Among them, α and β are the two colorings of faces that are adjacent to Ei. Then

Ei × {1}, Ei × {α}, Ei × {β} and Ei × {α+ β} are glued together to form an edge in π−1(G).

This edge is what we denote by E′
i in π−1(G). Another edge in π−1(G) with the representative

Ei × {γ} is exactly what we mean by E′′
i in π−1(G).

Now for each vertex Wj , there is a 2-cell corresponding to it. Assume that the two edges

running towards Wj are l′ and l′′. The face containing l′ and l′′ is Fj . And the colorings of the

two faces which are adjacent to l′ and l′′ respectively are µ and ν. In 3-manifold M , four copies

of Fj − (∂Fj − l′ − l′′) are glued together to build an open embedded disk along pre-images of

l′ and l′′ under π, then we denoted this disk by Dj . Illustrations about all these descriptions

are shown in Figures 4–5.

Figure 4 Denotation illustrations.

Furthermore M −
(

π−1(G)
m−3
⋃

j=1

Dj

)

is an open 3-ball, which is the union of eight copies of

P − Cl(∂P − U1 − U2 − U3), where U1, U2, U3 are the three faces adjacent to the vertex T .

Now H1(M ;Z) can be obtained by quotienting Dj out from H1(π
−1(G)), where {(E′

i

⊔

−

E′′
i /V

′
i ∼ V ′′

i )}m−3
i=1 is a basis of H1(π

−1(G);Z) and each Dj gives a relation. For a vertex Vi in

Fj , where Fj is the face corresponding to the vertex Wj , we have
∂Wj

∂Vi
= Ei ×{1}−Ei ×{µ}+

Ei × {µ+ ν} − Ei × {ν}, following the locating relations as shown in Figure 5.

Figure 5 Building up a disk.
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Now the matrix
(∂Wj

∂Vi

)

1≤i,j≤m−3
is a presentation matrix of H1(M ;Z). We will furtherly

figure out that the non-trivial entries of
∂Wj

∂Vi
are either 2(E′

i − E′′
i ) or −2(E′

i − E′′
i ).

We picture the relative locations of Ei and Fj as well as some related colorings in Figure 6,

here Ei is on the boundary of Fj , namely Fj would contribute to the relation for quotient. We

firstly adjust the colorings of the three facets adjacent to Vi to be e1, e2 and e3. This can be

realized by simply performing a suitable coordinate transformation. And the other two faces

adjacent to Wj are denoted as d and e.

Figure 6 Relative locations with fixed coloring basis.

We list out all the possible colorings on face d and face e in Table 1 based on the non-singular

condition. There are totally 24 cases. The colorings of face e placed on the right of a certain

row are the only four choices when face d is colored by the coloring placed in the left column

of that row. For example, when d is colored by e3, then e can only be colored by e1, e1 + e2,

e1 + e3 and e1 + e2 + e3.

Table 1 All possible colorings for (d, e) and corresponding
∣

∣

∂Wj

∂Vi

∣

∣.

Colorings on face d Colorings on face c and corresponding
∣

∣

∂Wj

∂Vi

∣

∣

e3 e1 e1 + e2 e1 + e3 e1 + e2 + e3

0 0 2(E′ − E′′) 2(E′ − E′′)

e1 e3 e1 + e3 e2 + e3 e1 + e2 + e3

0 0 0 0

e1 + e2 e3 e1 + e3 e2 + e3 e1 + e2 + e3

0 0 0 0

e1 + e3 e1 e3 e2 + e3 e1 + e2

0 2(E′ − E′′) 2(E′ − E′′) 0

e2 + e3 e1 e1 + e2 e1 + e3 e1 + e2 + e3

0 0 2(E′ − E′′) 2(E′ − E′′)

e1 + e2 + e3 e1 e3 e2 + e3 e1 + e2

0 2(E′ − E′′) 2(E′ − E′′) 0

And then we can discuss all the possible
∣

∣

∂Wj

∂Vi

∣

∣. The results are placed just below the

coloring cases respectively as shown in Table 1.

Therefore, using the notations claimed before and marking them in Figure 7, we can make

the conclusion as follows.
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Figure 7 Relative locations for general case.

(1) If µ ∈ {α, β, α+ β}, then
∂Wj

∂Vi
= 0.

(2) If ν ∈ {α, β, α+ β}, then ∂Wj

∂Vi
= 0 as well.

(3) If {µ, ν} ∩ {α, β, α + β} = ∅, µ and ν both lie in {γ, α + γ, β + γ, α + β + γ}, so

µ + ν ∈ {α, β, α + β}. And then in π−1(G), Ei × {1} = Ei × {µ + ν}, Ei × {µ} = Ei × {ν}.

Thus Ei × {1} − Ei × {µ}+ Ei × {µ+ ν} − Ei × {ν} = 2(Ei × {1} − Ei × {µ}).

We always see P from the outside, which means that we always orient the boundary of Fj ,

the face corresponds to Wj , anti-o’clockly. For the edge Ei, which corresponds to a vertex Vi

in ∂Fj , its orientation may or may not be the same with the orientation derived form ∂Fj . So

we should add either plus or minus sign to the absolute value of
∂Wj

∂Vi
. Namely we have

∂Wj

∂Vi

=

{

0, if {µ, ν} ∩ {α, β, α+ β} 6= ∅,

±2, if {µ, ν} ∩ {α, β, α+ β} = ∅.
(3.1)

Therefore, in the presentation matrixH =
(∂Wj

∂Vi

)

1≤i,j≤m−3
, the non-trivial entries are either

2 or −2. There are only two faces, denoted by Fj1 and Fj2 , that are adjacent to Ei. If the

orientation of Ei agrees with the orientation of ∂Fj1 , then it will definitely disagree with the

orientation of ∂Fj2 . Thus there are at most two non-trivial entries in each row. Furthermore,

if a row possesses two non-trivial entries, then they must be 2 and −2.

Proof of Theorem 1.1 By transposing H and rearranging the rows, we get a new matrix

(A(m−3)×m1
| B(m−3)×m2

| C(m−3)×m3
), where m1+m2+m3 = m−3. Here A is a zero matrix,

B has only one non-trivial entry, 2 or −2 in each column, and C is a matrix with exactly two

non-trivial entries, 2 and −2, in every column.

We first multiply (−1) if necessary to make all the non-trivial entries in B to be 2. Further-

more we suitably replace some column i by column i + (±1)×column j, wherem1+1 ≤ i ≤ m−3

m1 + 1 ≤ j ≤ m1 +m2, and reorder the columns to obtain a new matrix, also called by H , in

the following form

H =





0 0 0
0 2I 0
0 0 C1



 ,

where each column of C1 has exactly two non-trivial entries (see [20, Chapter 8]).

Let C1 = (ci,j), and assuming c1,1 = 2 and c1,2 = −2. We add C1’s first row to its second

row and get a matrix C2. Moreover by adding the first column of C2 (might times with −1) to

some other columns of C2, we obtain a matrix, denoted also by C2, of the following form

C2 =

(

2 0
0 C3

)

.
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Now we can easily see that, in each column of C3, there are still at most two non-trivial

entries, 2 and −2, in each column. By reperforming the processes that were applied for B and

C1, we can finally get a presentation matrix of the form

H =

(

0 0
0 2I

)

.

Thus there are only 2-torsions in H1(M ;Z).

Remark 3.1 Our proof above only holds in 3-dimensional small covers, and it is not true

for higher dimensions.

4 Mod 2 Betti Numbers of Finite Covers of Small Covers.

The following simple lemma is well-known, for example, see [12].

Lemma 4.1 Let P be a 3-dimensional right-angled hyperbolic polytope. Then P has at least

one pentagon face. Moreover, there is no face F of P , such that every pentagon in P is adjacent

to F .

Proof Since P is a right-angled hyperbolic polytope, by Andreev’s theorem (see [2]), there

is no triangle or quadrilateral in F(P ). Denoted by fk the number of k-gons among the faces

of P , k ≥ 5, then a simple calculation by means of Euler’s formula implies that f5 is non-zero.

Moreover, if P has a face F which is adjacent to every pentagon in P , then by doubling P

along F , we can get a right-angled hyperbolic polytope Q such that every face of it has at least

six edges, contradicting the previous fact.

Theorem 4.1 Let P be a 3-dimensional right-angled hyperbolic polytope, G(P ) be the Cox-

eter group associated to P . Then there are hyperbolic polytopes Pi, where each Pi is a doubling

of Pi−1 along a face of Pi−1, such that

lim
n→∞

log(H1(G(Pi)))

|Pi : P |
= (m− 7) log 2, (4.1)

where m is the number of faces of P , and P0 is defined to be P .

Proof The Coxeter group of P is given by

G(P ) = {x1, x2, · · · , xm | x2
i = 1, xixj = xjxi, if Fi ∩ Fj 6= ∅}.

So H1(G(P )) = Zm
2 . Now let #{P (2)} be the number of faces of P , and Pi+1 be a doubling

of Pi along a pentagon. We have #{P
(2)
i+1} = 2(#{P

(2)
i })− 7. So #{P

(2)
k } = 2km− 7(2k − 1).

Then

lim
n→∞

log(2km− 7(2k − 1))

2k
= (m− 7) log 2. (4.2)

Remark 4.1 Comparing to Girão’s approaches (see [10–11]) on rank gradients of small

covers, Atkinson’s result (see [3]) on the relationship between volume and the number of vertices

of a hyperbolic polytope is not necessary in our proof.
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We now make a refinement of the proof and result of Theorem 4.1.

Theorem 4.2 Let P be a 3-dimensional right-angled hyperbolic polytope, G(P ) be the Cox-

eter group associated to P . Then there are hyperbolic polytopes Pi, where each Pi is a doubling

of Pi−1 along a face of Pi−1, such that G(Pi) is a co-final sequences in G(P ) with

lim
n→∞

log(H1(G(Pi)))

|Pi : P |
= (m− 7) log 2, (4.3)

where m is the number of faces of P and P0 is defined to be P . That is, the homology torsion

of finite covers grows exponentially.

Proof We embed P in H3 and fix a point x in the interior of P . Denoted by F1, F2, · · · , Fm

the faces of P and it is satisfied that d(F1, x) ≤ d(F2, x) · · · ≤ d(Fm, x). We assume that F1 has

a edges. If F1 is a pentagon, then we double P along F1 and denote the resulting polyhedron

by Q1. Otherwise, from Lemma 4.1, there will be a minimum i such that Fi is a pentagon and

not adjacent to F1.

We now double P along Fi while the initial F1 remains in Q1. Then there is another face

of Q1 which is a pentagon and is not adjacent to F1. We double Q1 along that face and get a

polyhedron Q2. Denote the polyhedron, that results from doubling P for k times, by Qk. For

an arbitrary ǫ, we can make k large enough to satisfy a+7
2k ≤ ǫ

4 . It can be calculated that Qk

has 2km − (2k − 1)7 faces. We now double Qk along F1 and denote the resulting polyhedron

by P1. Then P1 has 2(2km− (2k − 1)7)− a− 2 faces. We have

2(2km− (2k − 1)7)− a− 2

2k+1
≥ (m− 7)−

ǫ

2
. (4.4)

Now x is also in the interior of P1, and the interior of F1 lies in the interior of P1. We take

the minimum i when Fi lies in the boundary of P1 and double P1 along pentagons many times

as above to obtain a polytope Q. Furthermore we double Q along the face that contains F1

and obtain a polytope P2, such that

#(P
(2)
2 )

vol(P2) : vol(P )
≥ (m− 7)−

( ǫ

4
+

ǫ

8

)

. (4.5)

As d(x, ∂P ) ≥ d(x, ∂P1) ≥ d(x, ∂P2), we can get a polytope R by repeating the above

process for at most m times, such that

#(R(2))

vol(R) : vol(P )
≥ (m− 7)−

ǫ

2
. (4.6)

Now we have d(x, ∂P ) ≥ d(x, ∂R). Then by taking R as the initial P and applying previous

operations, we can have a polytope S, such that

#(S(2))

vol(S) : vol(P )
≥ (m− 7)−

( ǫ

2
+

ǫ

4

)

. (4.7)

In fact, the distance between x and the boundary of above polytopies diverges to infinite

by repeating the above process, then as in [11, Section 5] (which is contributed by Agol [1]),

the Coxeter groups related to the polytopies we construct form a co-finial sequence. Now the

sequence above have torsion growth (m− 7) log 2 by the arbitrariness of ǫ.
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Proof of Theorem 1.2 We proved in Theorem 4.1 that for a right-angled hyperbolic

polytope P and the Coxeter group G(P ) associated to P , there are hyperbolic polytopes Pi,

where each Pi is a doubling of Pi−1 along a face of Pi−1 and P0 = P , such that G(Pi) is a

co-final sequence in G(P ) with the numbers of facets of Pi growing exponentially. Thus for

any small cover Mi over Pi, by [7, Theorem 3.1], H1(Mi;Z2) has an exponential torsion growth

with π1(Mi) a co-final sequence.

Acknowledgement The authors would like to thank Zhi Lü for introducing them to the

topic on small covers.
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