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p2 in the stable homotopy groups of spheres by the classical Adams spectral sequence.
It is represented by ap−2

0 h1 ∈ Extp−1,pq+p−2
A (Z/p,Z/p) in the E2-term of the ASS and
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1 Introduction

Let p be an odd prime. Let A be the mod p Steenrod algebra and S be the sphere spectrum

localized at p. Throughout the paper we fix q = 2(p − 1). To determine the stable homotopy

groups of spheres π∗S is one of the central problems in homotopy theory. One of the main

tools to approach it is the classical Adams spectral sequence (ASS) whose E2-term is given by

Es,t
2 = Exts,tA (Z/p,Z/p) which is the cohomology of A. The Adams differential is given by

dr : E
s,t
r → Es+r,t+r−1

r .

From [6], we know that Ext1,∗A (Z/p,Z/p) has Z/p-basis consisting of a0 ∈ Ext1,1A (Z/p,Z/p),

hi ∈ Ext1,p
iq

A (Z/p,Z/p) for all i ≥ 0 and Ext2,∗A (Z/p,Z/p) has Z/p-basis consisting of α̃2, a
2
0,

a0hi (i > 0), gi (i ≥ 0), ki (i ≥ 0), bi (i ≥ 0) and hihj (j ≥ i+2, i ≥ 0) whose internal degrees

are 2q+1, 2, piq+1, (pi+1 +2pi)q, (2pi+1 + pi)q, pi+1q and (pi+ pj)q, respectively. Aikawa [1]

obtained all the generators of Ext3,∗A (Z/p,Z/p). Here we do not list out these generators as it

being complicated. By now only partial structure of Exts,∗A (Z/p,Z/p) is known for s ≥ 4.

If a family of generators xi ∈ Es,∗
2 converges nontrivially in the ASS, then we obtain a

family of homotopy elements fi in π∗S and we say that fi has filtration s and is represented

by xi ∈ Es,∗
2 in the ASS. In order to compute π∗S by the ASS, it is critical to determine which

element in the E2-terms survives to E∞. But so far not so much has been known about this.

In known that only a0 and h0 in Ext1,∗A (Z/p,Z/p) survive to π∗S. They survive to the degree

p map and the mod p Hopf invariant one element, respectively. By the Thom map (see [9]),

it is shown that a20, α̃2, k0, a0h1 (for p = 3), bi (i ≥ 0) and h0hn+2 (n ≥ 0) can survive to
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π∗S. Among them a20, α̃2, b0 and k0 survive to the degree p2 map, the first periodic element

α2, the secondary periodic elements β1 and β2, respectively. In [2], R. Cohen showed that

h0bn−1 ∈ Ext
3,(pn+1)q
A (Z/p,Z/p) survives to an element ζn in π∗S.

In [13], it was shown that the periodic elements detected by the Adams-Novikov spectral

sequence are represented in the classical Adams spectral sequence as follows:

(1) For s 6≡ 0 mod p, the first periodic elements αs is represented by

α̃s ∈ Exts,∗A (Z/p,Z/p),

which is represented by sas−1
1 h1,0 in the May spectral sequence.

(2) For s 6≡ 0, 1 mod p, the second periodic elements βs is represented by

β̃s ∈ Exts,∗A (Z/p,Z/p),

which is represented by s(s− 1)as−2
2 h2,0h1,1 in the May spectral sequence.

(3) For s 6≡ 0, 1, 2 mod p, the third periodic elements γs is represented by

γ̃s ∈ Exts,∗A (Z/p,Z/p),

which is represented by s(s− 1)(s− 2)as−3
3 h3,0h2,1h1,2 in the May spectral sequence.

Based on the representation of the periodic maps in ASS and R. Cohen’s elements ζn several

non-trivial order p homotopy elements are detected (see [4–5, 13]). But except for ar0, all the

non-trivial elements detected by the classical Adams spectral sequence are of order p. In this

paper we will detect an order p2 element ãp by the classical ASS.

Theorem 1.1 Let p be an odd prime. Then there exists a nontrivial element ãp ∈ π∗S

of order p2, which is represented by ap−2
0 h1 ∈ Extp−1,pq+p−2

A (Z/p,Z/p) in the Adams spectral

sequence and p · ãp is the first periodic element αp.

Remark 1.1 As shown in [9], when p = 3, the element a0h1 converges to an order p2

homotopy element α 3
2
of π∗S. Thus our result generalizes the case p = 3 in [9] to the case of

any odd prime.

This paper is organized as follows. In Section 2, we compute the generators of the E1-term

of the May spectral sequence (MSS) which converge to the E2-term of the ASS. In Section 3,

we give some higher May differentials related to Massey products. Then in Section 4 we give

the proof of Theorem 1.1.

2 Computation via May Spectral Sequences

In this section we will recall the construction of cobar construction which connects the E2-

terms of the ASS and the MSS. Let A∗ denote the dual algebra of the mod p Steenrod algebra

A. J. Milnor [10] showed that, as a Hopf algebra

A∗ = P [ξ1, ξ2, · · · ]⊗ E[τ0, τ1, · · · ],

where P [ ] is the polynomial algebra and E[ ] is the exterior algebra. The secondary degrees

of ξi and τi are 2(pi − 1) and 2(pi − 1) + 1, respectively. The coproduct ∆: A∗ → A∗ ⊗A∗ is

given by

∆(ξn) = ξn ⊗ 1 + 1⊗ ξn +

n−1∑

i=1

ξp
i

n−i ⊗ ξi,

∆(τn) = τn ⊗ 1 + 1⊗ τn +

n−1∑

i=0

ξp
i

n−i ⊗ τi.



A Nontrivial Homotopy Element of Order p2 Detected by ASS 3

Let ε : A∗ → Z/p be the argumentation homomorphism and let A∗ =Ker ε which is called

the argumentation ideal of A∗. It then follows a bigraded cochain complex (C∗,∗(H∗S), d) =

(C∗,∗(Z/p), d), where C∗,∗(Z/p) is the cobar construction with s-filtration

Cs,∗(Z/p) = A∗ ⊗ · · · ⊗ A∗︸ ︷︷ ︸
s

,

and the differential d: Cs,t(Z/p) → Cs+1,t(Z/p) is given by

d(α1 ⊗ · · · ⊗ αs) =

s∑

i=1

(−1)λ(i)+1α1 ⊗ · · · ⊗ (∆(αi)− αi ⊗ 1− 1⊗ αi)⊗ · · · ⊗ αs, (2.1)

where λ(i) is the total degree of α1 ⊗ · · · ⊗ α′
i if ∆(αi)− αi ⊗ 1 − 1⊗ αi = Σα′

i ⊗ α′′
i (see [7]).

For example, we have differentials d(ξp
i

2 ) = ξp
i+1

1 ⊗ ξp
i

1 and d(ξ2p
i

1 ) = 2ξp
i

1 ⊗ ξp
i

1 .

According to the above statements, the cohomology of C∗,∗(Z/p) is

Hs,t(C∗,∗(Z/p), d) = Exts,tA (Z/p,Z/p)

which is the E2-term of the ASS. From [6], we know that

a0 = {τ0}, hi = {ξp
i

1 },

α̃2 = {2ξ1 ⊗ τ1 + ξ21 ⊗ τ0},

gi =
{
ξp

i

2 ⊗ ξp
i

1 +
1

2
ξp

i+1

1 ⊗ ξ2p
i

1

}
,

ki =
{
ξp

i+1

1 ⊗ ξp
i

2 +
1

2
ξ2p

i+1

1 ⊗ ξp
i

1

}
,

bi =
{ p−1∑

j=1

(
p

j

)/
p(ξ

pi(p−j)
1 ⊗ ξp

ij
1 )

}

are generators of Exts,tA (Z/p,Z/p).

Based on [11, Theorem 3.2.5], we set a May filtration on A∗ by M(τi−1) = M(ξp
j

i ) = 2i− 1.

It induces a corresponding filtration

F 0 ⊆ F 1 ⊆ · · · ⊆ FM−1 ⊆ FM ⊆ · · · ⊆ A∗. (2.2)

This shows that for the associated bigraded Hopf algebra

E0A∗ = ⊕(FM/FM−1),

there is an isomorphism

E0A∗
∼= E[τi | i > 0]⊗ T [ξi,j | i > 0, j > 0],

where T [ ] denotes the truncated polynomial algebra of height p on the indicated generators, τi

and ξi,j are the projections of τi and ξp
i

i respectively. Applying the filtration (2.2) to the cobar

construction C∗,∗(Z/p), we obtain a filtration

F ∗,∗,0 ⊆ F ∗,∗,1 ⊆ · · · ⊆ F ∗,∗,M−1 ⊆ F ∗,∗,M ⊆ · · · ⊆ C∗,∗(Z/p). (2.3)

Then we have a tri-graded exact couple which induces the so-called May spectral sequence

(MSS)

{Es,t,M
r , dr} =⇒ Ext∗,∗A (Z/p,Z/p),
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where dr : E
s,t,M
r → Es+1,t,M−r

r is the r-th differential of the MSS. Since the MSS con-

verges to the E2-term of the ASS, to show the nontriviality of the elements in the Ext-group

Ext∗,∗A (Z/p,Z/p) is equivalent to showing that its representation in the MSS is an infinite cycle.

This is the base of proving our main theorem.

The E0-term of the MSS is C∗,∗(E0A∗) = ⊕(F ∗,∗,M/F ∗,∗,M ) and the E1-term E1 =

H∗(E0A∗, d0) is isomorphic to

E[hi,j | i > 0, j > 0]⊗ P [bi,j | i > 0, j > 0]⊗ P [ai | i > 0],

where

hi,j ∈ E
1,2(pi−1)pj ,2i−1
1 , bi,j ∈ E

2,2(pi−1)pj+1,p(2i−1)
1 , ai ∈ E

1,2(pi−1)+1,2i+1
1 .

In the filtrated cobar complexes, hi,j , bi,j and ai are represented by

ξp
j

i ,

p−1∑

k=1

(
p

k

)/
pξkp

j

i ⊗ ξ
(p−k)pj

i and τi

respectively. It is known that the generators h1,i, b1,i and a0 converge to hi, bi, a0 ∈ Ext∗,∗A (Z/p,

Z/p) respectively.

In the May spectral sequence, one has

dr(xy) = dr(x)y + (−1)s+txdr(y)

for x ∈ Es,t,∗
r . The first May differential d1 is given by

d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j , d1(ai) =
∑

0≤k<i

hi−k,kak, d1(bi,j) = 0.

Given an element x ∈ Es,t,M
1 , we define dim(x) = s, deg(x) = t and M(x) = M , which are the

homological dimension, inner degree and May filtration of x, respectively. Then we have

dim(hi,j) = dim(ai) = 1,

dim(bi,j) = 2,

M(hi,j) = M(ai−1) = 2i− 1,

M(bi,j) = (2i− 1)p,

deg(hi,j) = 2(pi − 1)pj = (pj + · · ·+ pi+j−1)q,

deg(bi,j) = 2(pi − 1)pj+1 = (pj+1 + · · ·+ pi+j)q,

deg(ai) = 2pi − 1 = (1 + · · ·+ pi−1)q + 1,

deg(a0) = 1,

where i > 1 and j > 0.

Now we consider the convergence of the element ap−2
0 h1 ∈ Extp−1,pq+p−2

A (Z/p,Z/p). Since

a0 converges to the degree p map in π∗S, in order to show that ap−2
0 h1 converges to a nontrivial

element of order p2 in π∗S, we plan to do it in two steps: (i) To show that ap−2
0 h1 and ap−1

0 h1

converge to two nontrivial elements in π∗S; (ii) To show that ap0h1 vanishes in the Adams

spectral sequence. We will complete these two steps via the May spectral sequence. In what

follows, we give some computation results which are needed to prove Theorem 1.1.
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Theorem 2.1 Let r ≥ 2 and k = 1 or 2. Then we have

(1) Ep−k+r+1,pq+p−k+r−1,∗
1 = Z/p{ap−k+r−1

0 b1,0};

(2) Ep−k−r+1,pq+p−k−r+1,∗
1 = 0;

(3) Ep−1,pq+p−1,∗
1 = Ep−2,pq+p−2,∗

1 = 0;

(4) E
p−1,(q+1)(p−1),∗
1 = Z/p{ap−1

1 }.

Proof Considering the degree of each above Es,t,∗
1 -term, the possible generators must have

the form

ax1

0 ax2

1 hx3

1,0h
x4

1,1b
x5

1,0,

where a0 ∈ E1,1,1
1 , a1 ∈ E1,q+1,3

1 , h1,0 ∈ E1,q,1
1 , h1,1 ∈ E1,pq,1

1 , b0 ∈ E2,pq,p
1 . For the total degree

t− s, we have

qx2 + (q − 1)x3 + (pq − 1)x4 + (pq − 2)x5 = t− s,

i.e.,

(x2 + x3 + px4 + px5)q − (x3 + x4 + 2x5) = t− s.

(1) In this case, we have t− s = pq − 2. Then there is the following group of equations:





x1 + x2 + x3 + x4 + 2x5 = p− k + r + 1,
x2 + x3 + px4 + px5 = p,
x3 + x4 + 2x5 = 2.

We get the solutions as

x1 = p− k + r − 1, x2 = x3 = x4 = 0, x5 = 1

or

x1 = r − k + 1, x2 = p− 2, x3 = 2, x4 = x5 = 0.

One gets the generators ap−k+r−1
0 b1,0 and ar−k+1

0 ap−2
1 h2

1,0. The second one is zero due to

h2
1,0 = 0.

For (2) and (3), we can obtain a similar group of equations as (1) and find out that there

are no solutions. For (4), the corresponding group of equations has the solution

x1 = 0, x2 = p− 1, x3 = x4 = x5 = 0.

Then the generator ap−1
1 follows.

3 Higher May Differentials Related to Massey Products

Let us first recall the definition of Massey products.

Recalling from [8, Section 1], let R be a differential graded algebra. We assume that the

differentials have degree +1 and d(x · y) = d(x) · y + (−1)degxx · d(y), where deg x denotes the

total degree of x. If V ∈ R, we define

V = (−1)1+degV V.

Let V and W be two elements in R or H(R). we have the following relations:

d(V ) = −d(V ), V ·W = −V ·W and d(V ·W ) = d(V ) ·W − V · d(W ). (3.1)
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Let V1, V2, · · · , Vn be a sequence of homology classes inH(R). Let Ai−1,i ∈ R be a representative

cycle for Vi, abbreviated {Ai−1,i} = Vi. Suppose that V iVi+1 = 0. Then there exists Ai−1,i+1 ∈

R such that d(Ai−1,i+1) = Ai−1,iAi,i+1 and

Ai−1,iAi,i+2 +Ai−1,i+1Ai+1,i+2

is a cycle in R, and we say that its homology class belongs to 〈Vi, Vi+1, Vi+2〉.

Inductively suppose that we get Ai,j ∈ R for 0 6 i < j 6 n and (i, j) 6= (0, n) such that

{Ai−1,i} = Vi, d(Ai,j) = wAi,j =

j−1∑

k=i+1

Ai,kAk,j . (3.2)

Then

Ã0,n =

n−1∑

k=1

A0,kAk,n (3.3)

is a cycle in R. We say that {Ã0,n} ∈ 〈V1, V2 · · · , Vn〉.

We say that the Massey product 〈V1, V2, · · · , Vn〉 is defined if there exist Ai,j ∈ R, 0 6

i < j 6 n and (i, j) 6= (0, n), which satisfies (3.2). The set of elements {Ai,j} is said to be

a defining system for 〈V1, V2, · · · , Vn〉. We say that 〈V1, V2, · · · , Vn〉 is strictly defined if each

〈Vi, · · · , Vj〉, 1 6 j− i 6 n−2 is defined and contains only the zero matrix. In particular, every

defined triple product is strictly defined.

Consider the Massey product in the E1-term of the May spectral spectral sequence where

Es,t,∗
1 is a differential graded algebra. One has the following result.

Theorem 3.1 In the May spectral sequence, up to nonzero scalar there is a nontrivial May

differential d1 : E
p−1,(q+1)(p−1),∗
1 → E

p,(q+1)(p−1),∗
1 given by

d1

( 1

(p− 1)!
ap−1
1

)
= 〈ap−1

0 , h1,0, h1,0, · · · , h1,0〉.

Proof According to the defining system of the Massey product 〈ap−1
0 , h1,0, h1,0, · · · , h1,0〉 in

the E1-term of the May spectral sequence (see [7–8]), we obtain 〈ap−1
0 , h1,0, h1,0〉 = ap−2

0 a1h1,0

from d1(a1) = a0h1,0 and h1,0 · h1,0 = 0 in the E1-term of the May spectral sequence. Thus in

the May spectral sequence, one has

d1

(1
2
ap−3
0 a21

)
= ap−2

0 a1h1,0 = 〈ap−1
0 , h1,0, h1,0〉.

By induction one obtains

d1

( 1

(p− 1)!
ap−1
1

)
=

1

(p− 2)!
a0a

p−2
1 h1,0 = 〈ap−1

0 , h1,0, h1,0, · · · , h1,0〉

from the fact that the k-fold Massey product 〈h1,0, h1,0, · · · , h1,0〉 = 0 for k < p.

4 Proof of Theorem 1.1

Before giving the proof of our main result, we first need two lemmas.

Lemma 4.1 Let k = 1 or 2. Then the element ap−k
0 h1 ∈ Extp−k+1,pq+p−i

A (Z/p,Z/p) is

nonzero.
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Proof First we know that the element ap−k
0 h1 ∈ Extp−k+1,pq+p−k

A (Z/p,Z/p) is represented

by ap−k
0 h1,1 ∈ Ep−k+1,pq+p−k,∗

1 in the E1-term of the May spectral sequence. According to

Theorem 2.1(3), one has Ep−k,pq+p−k,∗
1 = 0. It follows that Ep−k,pq+p−k,∗

r = 0 for r ≥ 1.

Thus ap−k
0 h1,1 can not be hit by any May differential. Then it can converge nontrivially to

ap−k
0 h1 ∈ Extp−k+1,pq+p−k

A (Z/p,Z/p).

Lemma 4.2 Let k = 1 or 2. Then Extp−k+r+1,pq+p−k+r−1
A (Z/p,Z/p) = 0.

Proof According to Theorem 3.1, there is a May differential

d1

( 1

(p− 1)!
ap−1
1

)
= 〈ap−1

0 , h1,0, · · · , h1,0〉,

from which follows that 〈ap−1
0 , h1,0, · · · , h1,0〉 = 0 ∈ E

p,q(p−1)+p−1,∗
p . Since 〈ap−1

0 , h1,0, · · · , h1,0〉

represents 〈ap−1
0 , h0, · · · , h0〉 ∈ Ext

p,q(p−1)+p−1
A (Z/p,Z/p) in the ASS, we have

〈ap−1
0 , h0, · · · , h0〉 = 0 ∈ Ext

p,q(p−1)+p−1
A (Z/p,Z/p).

Then it follows in Ext-group of the ASS that

0 = 〈ap−1
0 , h0, · · · , h0〉h0 = ap−1

0 〈h0, · · · , h0, h0〉 = ap−1
0 b0,

where b0 = 〈h0, · · · , h0, h0〉 is the p-fold Massey product (see [11]).

Since r ≥ k, we also have ap−k+r−1
0 b0 = 0 ∈ Extp−k+r+1,pq+p−k+r−1

A (Z/p,Z/p). The desired

result then follows from Theorem 2.1(1).

Proof of Theorem 1.1 For k = 1 or 2, we have

ap−k
0 h1 ∈ Extp−k+1,pq+p−k

A (Z/p,Z/p),

which is nonzero due to Lemma 4.1. From Lemma 4.2, we see that the Adams differential

dr : E
p−k+1,pq+p−k
r → Ep−k+r+1,pq+p−k+r−1

r

is trivial for r ≥ 2. Thus ap−k
0 h1 is a permanent cycle in the ASS. From Theorem 2.1(2), we

know that Ep−k−r+1,pq+p−k−r+1,∗
1 = 0. It follows that Extp−k−r+1,pq+p−k−r+1

A (Z/p,Z/p) = 0

and then Ep−k−r+1,pq+p−k−r+1
r = 0 in the ASS for r ≥ 2. Thus the Adams differential

dr : E
p−k−r+1,pq+p−k−r+1
r → Ep−k+1,pq+p−k

r

is also trivial. Thus ap−k
0 h1 can not be hit by any Adams differential. It then follows that

ap−k
0 h1 is a permanent element in the ASS.

Consider the Adams-Novikov spectral sequence with E2-term

Es,t
2 = Exts,tBP∗BP (BP∗, BP∗) =⇒ π∗S

that converges to π∗S. By the method of infinite descent (see [3, 11–12]), we get that

Exts,tBP∗BP (BP∗, BP∗) with t− s = pq − 1

is the Z/p2 module generated by α p

2
which converges to an order p2 homotopy element ãp of

π∗S. According to the above result, we see that in the ASS ap−2
0 h1 exactly represents the

element α p

2
in the ANSS. This implies that ap−2

0 h1 represents an order p2 homotopy element

of πpq−1S.
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It is known that between the Brown-Peterson spectrum and the Eilenberg-MacLane spec-

trum, there is the Thom map Φ : BP → KZ/p which induces Φ: BP∗BP → A∗ and the Thom

map

Φ: Exts,tBP∗BP (BP∗, BP∗) → Exts,tA (Z/p,Z/p)

between the Adams-Novikov spectral sequence and the classical Adams spectral sequence. The

map Φ: BP∗BP → A∗ sends ti and vi to ξi and zero, respectively. From the definition of the

first periodic element, we know that

αp =
ηR(v

p
1)− vp1
p

=
(v1 + pt1)

p − vp1
p

=
∑(

p

j

)
·
1

p
· vj1p

p−jtp−j
1 + pp−1tp1.

Now pp−1tp1 corresponds to τ⊗p−1
0 ⊗ ξp1 which represents the filtration p element ap−1

0 h1 in the

ASS, meanwhile vp−1
1 pt1 corresponds to ap−1

1 a0h0 which is a filtration p+1 element. It follows

that the filtration p element ap−1
0 h1 converges to αp. Since in the ASS ap−1

0 h1 converges to

p · ãp as what we have shown, the desired result then follows.

As we think: Except for the Thom map, there is a correspondence between the ANSS and

the classical ASS where vi ∈ BP∗ corresponds to τi in the cobar complex of A. Based on this,

we give a conjecture which is a general version of our results.

Conjecture In the classical ASS, ap
n−n−1

0 hn ∈ Extp
n−n,∗

A (Z/p,Z/p) converges to the pn+1

order element α pn

n+1

, meanwhile ap
n−1

0 hn converges to the first periodic element αpn = pnα pn

n+1

.
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