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Abstract The authors establish several estimates showing that the distance in W 1,p,

1 < p < ∞, between two immersions from a domain of Rn into R
n+1 is bounded by the

distance in Lp between two matrix fields defined in terms of the first two fundamental forms

associated with each immersion. These estimates generalize previous estimates obtained

by the authors and P. G. Ciarlet and weaken the assumptions on the fundamental forms

at the expense of replacing them by two different matrix fields.
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1 Introduction

The notation and terminology used in this paper is described in the next section.

In a recent article [6], the authors and P. G. Ciarlet established (in particular) the following

nonlinear Korn inequalities on a surface in R3: Let 1 < p < ∞, let ω ⊂ R2 be a domain, and

let θ ∈ C1(ω;R3) be an immersion such that the vector field a3(θ) := (∂1θ ∧ ∂2θ)/|∂1θ ∧ ∂2θ|
is also of class C1 over ω. Then, for each ε > 0, there exists a constant Cε such that

inf
r∈Isom+(R3)

{‖r ◦ θ̃ − θ‖W 1,p(ω) + ‖a3(r ◦ θ̃)− a3(θ)‖W 1,p(ω)}

6 Cε{‖(ãαβ)− (aαβ)‖Lp(ω) + ‖(̃bαβ)− (bαβ)‖Lp(ω)}

and

‖θ̃ − θ‖W 1,p(ω) + ‖a3(θ̃)− a3(θ)‖W 1,p(ω)

6 Cε{‖θ̃ − θ‖Lp(ω) + ‖a3(θ̃)− a3(θ)‖Lp(ω)

+ ‖(ãαβ)− (aαβ)‖Lp(ω) + ‖(̃bαβ)− (bαβ)‖Lp(ω)}

for all immersions θ̃ ∈W 1,2p(ω;R3) such that a3(θ̃) ∈W 1,2p(ω;R3) and

|R̃α(y)| > ε, |(ãαβ(y))| 6
1

ε
and |(ãαβ(y))−1| 6 1

ε
a. e. y ∈ ω,
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where ãαβ(y), b̃αβ(y) and R̃α(y), respectively, denote the covariant components of the first

fundamental form, the covariant components of the second fundamental form, and the principal

radii of curvature, of the surface θ̃(ω) at the point θ̃(y). They also showed that, if in addition

θ̃|γ0
= θ|γ0

and a3(θ̃)|γ0
= a3(θ)|γ0

on some relatively open subset γ0 6= ∅ of the boundary of ω, then

‖θ̃ − θ‖W 1,p(ω) + ‖a3(θ̃)− a3(θ)‖W 1,p(ω)

6 Cε,γ0
{‖(ãαβ)− (aαβ)‖Lp(ω) + ‖(̃bαβ)− (bαβ)‖Lp(ω)},

for some constant Cε,γ0
(depending on ε and γ0 in particular).

The objective of this paper is to generalize the above inequalities to hypersurfaces (subman-

ifolds of co-dimension 1 in Rn+1, n > 2) and to weaken the assumptions on the immersion θ̃,

in particular by eliminating the restrictions in terms of the parameter ε on its principal radii

of curvature and first fundamental form. This will be done at the expense of replacing in the

right-hand side of the above inequalities the matrix field (ãαβ) by the matrix field (ãαβ)
1
2 and

the matrix field (̃bαβ) by (ãαβ)
− 1

2 (̃bαβ).

More specifically, we establish the following nonlinear Korn inequalities on a hypersurface

in Rn+1 (cf. Theorems 3.1–3.2 and 4.1–4.2): Let 1 < p < ∞, let ω ⊂ Rn be a domain, and

let θ ∈ C1(ω;Rn+1) be an immersion whose unit normal vector field an+1(θ) := (∂1θ ∧ · · · ∧
∂nθ)/|∂1θ ∧ · · · ∧ ∂nθ| is of class C1 over ω. Then there exists a constant C such that

inf
r∈Isom+(Rn+1)

{‖r ◦ θ̃ − θ‖W 1,p(ω) + ‖an+1(r ◦ θ̃)− an+1(θ)‖W 1,p(ω)}

6 C{‖(ãαβ)
1
2 − (aαβ)

1
2 ‖Lp(ω) + ‖(ãαβ)−

1
2 (̃bαβ)− (aαβ)

− 1
2 (bαβ)‖Lp(ω)}

and

‖θ̃ − θ‖W 1,p(ω) + ‖an+1(θ̃)− an+1(θ)‖W 1,p(ω)

6 C{‖θ̃ − θ‖Lp(ω) + ‖an+1(θ̃)− an+1(θ)‖Lp(ω) + ‖(ãαβ)
1
2 − (aαβ)

1
2 ‖Lp(ω)

+ ‖(ãαβ)−
1
2 (̃bαβ)− (aαβ)

−
1
2 (bαβ)‖Lp(ω)}

for all immersions θ̃ ∈W 1,p(ω;Rn+1) such that an+1(θ̃) ∈ W 1,p(ω;Rn+1).

Furthermore, if in addition

θ̃|γ0
= θ|γ0

and an+1(θ̃)|γ0
= an+1(θ)|γ0

on some relatively open subset γ0 6= ∅ of the boundary of ω, then

‖θ̃ − θ‖W 1,p(ω) + ‖an+1(θ̃)− an+1(θ)‖W 1,p(ω)

6 Cγ0
{‖(ãαβ)

1
2 − (aαβ)

1
2 ‖Lp(ω) + ‖(ãαβ)−

1
2 (̃bαβ)− (aαβ)

−
1
2 (bαβ)‖Lp(ω)}

for some (other) constant Cγ0
(depending in particular on γ0).
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Finally, we also show that, if θ and γ0 are such that θ(γ0) is not contained in any affine

subspace of dimension 6 (n− 1) of Rn+1, then the assumption an+1(θ̃)|γ0
= an+1(θ)|γ0

above

can be dropped and the last inequality still holds, possibly with a different constant Cγ0
.

It is worth noticing that some of the results established in this paper, like Lemma 3.3,

Theorem 3.2, Lemma 4.1, and Lemma 4.3, generalize to immersions θ : ω ⊂ Rn → Rn+1

previous results due to Ciarlet and Mardare [8], like Lemma 3, Theorem 2, and Lemma 4

in ibid., about immersions Θ : Ω ⊂ Rn → Rn. To see this, it suffices to particularize the

immersions considered in this paper to immersions of the form θ :=

(
Θ

0

)
and to notice that

in this case

an+1(θ) = (0 0 · · · 0 1)T ∈ R
n+1,

so that

bαβ(θ) = 0 in ω.

Some of the results of this paper were announced in [13].

2 Preliminaries

In this article, all vector spaces are over R. Scalars and scalar functions are denoted by

normal letters, while vectors, matrices, vector fields and matrix fields are denoted by boldface

letters.

For each positive integers k and l, the notations Ml×k, Ml = Ml×l, Al, Sl, Sl>, and Ol
+,

respectively, designate the space of real matrices with l rows and k columns, the space of all

real square matrices of order l, the space of all antisymmetric matrices of order l, the space of

all symmetric matrices of order l, the set of all positive-definite symmetric matrices of order l,

and the set of all real proper orthogonal matrices of order l.

The identity matrix in Ml is denoted I.

The Euclidean norm of a vector v = (vi) ∈ Rl and the Frobenius norm of a matrix F =

(Fij) ∈ Ml×k are denoted by

|v| :=
( l∑

i=1

|vi|2
) 1

2

and |F | :=
( l∑

i=1

k∑

j=1

|Fij |2
) 1

2

.

Note that the above norms are invariant under rotations, in the sense that

|Rv| = |v| and |RF | = |F | for all R ∈ O
l
+.

The notation Isom+(R
l) designates the set of all proper isometries of Rl , i.e.,

Isom+(R
l) := {r : Rl → R

l; r(x) = a+Rx for all x ∈ R
l, a ∈ R

l, R ∈ O
l
+}.

A domain U in Rn is a bounded, connected, open subset of Rn with a Lipschitz-continuous

boundary, the set U being locally on the same side of its boundary (see, e.g., [2] or [14]).
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Let U be an open subset of Rk and let 1 6 p < ∞. Given a smooth enough vector field

v = (vi) : U → Rl, we let ∇v(x) ∈ Ml×k denote the gradient matrix of the vector v at each

point x = (xj) ∈ U , i.e.,

∇v(x) :=
( ∂vi
∂xj

(x)
)
,

where i denotes the row index.

The usual Lebesgue and Sobolev spaces are respectively denoted by Lp(U) and W 1,p(U).

The space of vector fields v = (vi) : U → Rl with components vi ∈ Lp(U) is denoted by

Lp(U ;Rl) and the corresponding norm is defined by

‖v‖Lp(U) :=
( ∫

U

|v(x)|pdx
) 1

p

.

The space of vector fields v = (vi) : U → Rl with components vi ∈ W 1,p(U) is denoted by

W 1,p(U ;Rl) and the corresponding norm is defined by

‖v‖W 1,p(U) :=
(∫

U

(|v(x)|p + |∇v(x)|p)dx
) 1

p

.

The space of matrix fields F = (Fij) : U → Ml×k with components Fij ∈ Lp(U) is denoted

by Lp(U ;Ml×k) and the corresponding norm is defined by

‖F ‖Lp(U) :=
(∫

U

|F (x)|pdx
) 1

p

.

The notation C1(U ;Rl) designates the space of all vector fields v ∈ C1(U ;Rl) that, together

with their gradients ∇v ∈ C(U ;Ml×k), possess continuous extensions to the closure U of U . If

U is a domain, one can show, by using Whitney’s extension theorem (cf. [15]), that any vector

field v ∈ C1(U ;Rn) possesses an extension to the space C1(Rn;Rn) (cf. [7]).

In all that follows, n designates an integer > 2, Latin indices and exponents range in the set

{1, 2, · · · , n+ 1} save when they are used for indexing sequences, Greek indices and exponents

range in the set {1, 2, · · · , n}, and the summation convention for repeated indices or exponents

is used in conjunction with these rules.

Given an open subset ω of Rn, we let ∂α := ∂/∂yα, where (yα) denotes a generic point in ω.

A mapping θ ∈ C1(ω,Rn+1) is an immersion if the vectors ∂αθ(y) are linearly independent at

each point y ∈ ω. A mapping θ ∈ W 1,p(ω;Rn+1), p > 1, is an immersion if the vectors ∂αθ(y)

are linearly independent at almost all point y ∈ ω.

Given an open subset Ω of Rn+1, we let ∂i := ∂/∂xi, where (xi) denotes a generic point in

Ω. A mapping Θ ∈ C1(Ω;Rn+1) is an immersion if the vectors ∂iΘ(x) are linearly independent

at each point x ∈ Ω.

The notation [v1v2 · · ·vn] designates the matrix whose i-th column vector is vi, i = 1, 2, · · · ,
n. Given a matrix A, its component at i-th row and α-th column is denoted (A)iα. Likewise,

given a vector v, its i-th component is denoted (v)i.

Given any n vectors vα = (viα)
n+1
i=1 ∈ Rn+1, α = 1, 2, · · · , n, the exterior product

w := v1 ∧ · · · ∧ vn
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is the vector w = (wi)n+1
i=1 ∈ R

n+1 whose components are defined by

wi := (Cof V )i1,

where V is a (n+1)× (n+1) square matrix whose last n column vectors are v1, · · · ,vn (in this

order) and Cof V designates the cofactor matrix of V (Cof V := (detV )V −T if the matrix V

is invertible).

We conclude this section by enunciating two lemmas about the geometry of hypersurfaces

in Rn+1, n ≥ 2, which are straightforward generalizations of similar lemmas given in [5] in

the particular case n = 2 and p = 2. These lemmas show that some classical definitions

and properties pertaining to hypersurfaces in Rn+1 still hold under less stringent regularity

assumptions than the usual ones (these definitions and properties are traditionally given and

established under the assumptions that the immersions denoted θ in Lemmas 2.1–2.2 below

belong to the space C2(ω;Rn+1)).

Note that the functions aαβ , a
αβ , bαβ , b

σ
α appearing in these lemmas, respectively, denote

the covariant and contravariant components of the first fundamental form and the covariant and

mixed components of the second fundamental form. For such classical notions of the differential

geometry of hypersurfaces, see [1, 3–4, 11–12].

The notations (aαβ), (a
αβ), (bβα), and (gij) respectively designate matrices in Mn and Mn+1

with components aαβ , a
αβ , bβα, and gij , the index or exponent denoted here α, or i, designating

the row index.

Lemma 2.1 Let ω be a domain in R
n and let θ ∈ C1(ω;Rn+1) be an immersion such that

an+1 ∈ C1(ω;Rn+1), where

an+1 :=
a1 ∧ a2 ∧ · · · ∧ an

|a1 ∧ a2 ∧ · · · ∧ an|
and aα := ∂αθ.

Then the functions

aαβ := aα · aβ , bαβ := −∂αan+1 · aβ and bσα := aβσbαβ,

where (aαβ) := (aαβ)
−1, belong to the space C0(ω). Besides,

bαβ = bβα.

Lemma 2.2 Let 1 < p <∞, let ω be a domain in Rn and let there be given an immersion

θ ∈W 1,p(ω;Rn+1) such that an+1 ∈W 1,p(ω;Rn+1), where

an+1 :=
a1 ∧ a2 ∧ · · · ∧ an

|a1 ∧ a2 ∧ · · · ∧ an|
and aα := ∂αθ.

Then the functions

aαβ := aα · aβ and bαβ := −∂αan+1 · aβ

belong to the space L
p

2 (ω). Besides,

bαβ = bβα a. e. in ω.
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Furthermore, define the mapping Θ : ω × R → R
n+1 by

Θ(y, xn+1) := θ(y) + xn+1an+1(y) for almost all (y, xn+1) ∈ ω × R.

Then Θ ∈ W 1,p(ω×]− δ, δ[ ;Rn+1) for any δ > 0.

3 Nonlinear Korn Inequalities on a Hypersurface Without

Boundary Conditions

In this section, we establish two nonlinear Korn inequalities on a hypersurface “without

boundary conditions” (cf. Theorems 3.1 and 3.2); by “without boundary conditions”, we mean

that the values of the two immersions θ : ω → Rn+1 and θ̃ : ω → Rn+1 on the boundary of ω

are arbitrary.

The point of departure of the proofs of these nonlinear Korn inequalities on a hypersurface

is the following generalization, established in [8, Lemma 2], of a geometric rigidity lemma, due

to Friesecke, James and Müller [10] for p = 2, and later extended to p > 1 by Conti [9] (in

[9–10], the mapping Θ was the identity mapping).

For notational brevity, we shall drop the explicit dependence on the exponent p in the

various constants found in the nonlinear Korn inequalities appearing below, as well as in their

proofs.

Lemma 3.1 Let 1 < p < ∞, let Ω be a domain in Rn, and let Θ ∈ C1(Ω;Rn) be an

immersion. Then there exists a constant C1(Θ) such that, for all Θ̃ ∈W 1,p(Ω;Rn),

inf
R∈On

+

‖∇Θ̃−R∇Θ‖Lp(Ω) 6 C1(Θ)
∥∥∥ inf

R∈On
+

|∇Θ̃−R∇Θ|
∥∥∥
Lp(Ω)

.

We now generalize the above geometric rigidity lemma to hypersurfaces θ(ω) in Rn+1,

instead of open subsets Ω of Rn. The definition of the vector field an+1(θ) is given in Lemmas

2.1–2.2.

Lemma 3.2 Let ω be a domain in Rn, let θ ∈ C1(ω;Rn+1) be an immersion such that

an+1 = an+1(θ) ∈ C1(ω;Rn+1) and let 1 < p < ∞. Then there exists a constant C2(θ) such

that

inf
R∈O

n+1

+

(‖∇θ̃ −R∇θ‖Lp(ω) + ‖∇ãn+1 −R∇an+1‖Lp(ω) + ‖ãn+1 −Ran+1‖Lp(ω))

6 C2(θ)‖ inf
R∈O

n+1

+

(|∇θ̃ −R∇θ|+ |∇ãn+1 −R∇an+1|+ |ãn+1 −Ran+1|)‖Lp(ω)

for all immersions θ̃ ∈W 1,p(ω;Rn+1) such that ãn+1 = an+1(θ̃) ∈ W 1,p(ω;Rn+1).

Proof Given a mapping θ that satisfies all the assumptions of Lemma 3.2, define the

mapping Θ ∈ C1(ω × R;Rn+1) by

Θ(y, xn+1) := θ(y) + xn+1an+1(y) for all (y, xn+1) ∈ ω × R.
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Likewise, given any mapping θ̃ that satisfies the assumptions of Lemma 3.2, define the

mapping Θ̃ : ω × R → Rn+1 by

Θ̃(y, xn+1) := θ̃(y) + xn+1ãn+1(y) for all (y, xn+1) ∈ ω × R.

Since θ : ω → Rn+1 is an immersion of class C1, there exists ε = ε(θ) > 0 such that the

restriction, still denoted Θ for convenience, of the mapping Θ to the closure of set

Ω = Ω(θ) := ω×]− ε, ε[ ,

is an immersion of class C1. Since the restriction, still denoted Θ̃ for convenience, of the mapping

Θ̃ to the set Ω belongs to the spaceW 1,p(Ω;Rn+1) by Lemma 2.2, all the assumptions of Lemma

3.1 are satisfied. Hence there exists a constant c1(θ) such that

inf
R∈O

n+1

+

‖∇Θ̃−R∇Θ‖Lp(Ω) 6 c1(θ)
∥∥∥ inf

R∈O
n+1

+

|∇Θ̃−R∇Θ|
∥∥∥
Lp(Ω)

for any mapping θ̃ satisfying the assumptions of Lemma 3.2.

In what follows, our purpose is to find estimates of both the left-hand side and the right-hand

side of the above inequality in terms of ∇θ and ∇θ̃.

In order to find a lower bound of the left-hand side of the above inequality in terms of

Lp(ω)-norms of ∇θ̃ and ∇θ, we proceed as in the proof of Theorem 4.2 in Ciarlet, Malin, and

Mardare [6]; we deduce in this fashion that there exists a constant c2(θ) such that

inf
R∈O

n+1

+

‖∇Θ̃−R∇Θ‖Lp(Ω)

> c2(θ)ε
1
p inf

R∈O
n+1

+

(‖∇θ̃ −R∇θ‖Lp(ω)

+ ε‖∇ãn+1 −R∇an+1‖Lp(ω) + ‖ãn+1 −Ran+1‖Lp(ω)),

where ε = ε(θ) is the constant defined above.

The next step is to find an upper bound of the Lp(Ω)-norm of the

inf
R∈O

n+1

+

|∇Θ̃−R∇Θ|.

To this end, we first deduce that

∫

Ω

(
inf

R∈O
n+1

+

|∇Θ̃−R∇Θ|
)p

dx =

∫

Ω

(
inf

R∈O
n+1

+

∑

i

|∂iΘ̃−R∂iΘ|2
) p

2

dx

=

∫

ω

{∫ ε

−ε

inf
R∈O

n+1

+

(∑

α

|(∂αθ̃ −R∂αθ) + xn+1(∂αãn+1 −R∂αan+1)|2

+ |ãn+1 −Ran+1|2
) p

2

dxn+1

}
dy

6

∫

ω

{
inf

R∈O
n+1

+

∫ ε

−ε

(∑

α

|(∂αθ̃ −R∂αθ) + xn+1(∂αãn+1 −R∂αan+1)|2

+ |ãn+1 −Ran+1|2
) p

2

dxn+1

}
dy.
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To estimate the integrand appearing in the right-hand side, we note that, given any vectors

vi ∈ Rn+1, i = 1, · · · , n+ 1, we have

(∑

i

|vi|2
) p

2 ≤ (n+ 1)
p
2
−1
∑

i

|vi|p, if p ≥ 2

(
by Jensen’s inequality applied to the convex function t ∈ [0,∞) → t

p

2 ∈ R, where p
2 ≥ 1

)
and

(∑

i

|vi|2
) p

2 ≤
∑

i

|vi|p, if 0 < p < 2

(
by applying recursively the inequality (a + t)

p

2 ≤ a
p

2 + t
p

2 for all a ≥ 0 and t ≥ 0, where

0 < p
2 < 1

)
. Combining these inequalities with the previous one, we next deduce that

∫

Ω

(
inf

R∈O
n+1

+

|∇Θ̃−R∇Θ|
)p

dx

6 c3

∫

ω

{
inf

R∈O
n+1

+

∫ ε

−ε

(∑

α

|(∂αθ̃ −R∂αθ) + xn+1(∂αãn+1 −R∂αan+1)|p

+ |ãn+1 −Ran+1|p
)
dxn+1

}
dy,

where c3 = max(1, (n+ 1)
p

2
−1). To further estimate the integrand appearing in the right-hand

side, we note that, given any vectors uα ∈ R
n+1 and vα ∈ R

n+1, α = 1, · · · , n, and any x3 ∈ R,

we have

|uα + x3vα|p ≤ (|uα|+ |x3||vα|)p ≤ 2p−1(|uα|p + |x3||vα|p), if p ≥ 1

(again by Jensen’s inequality). Using this inequality to estimate the right-hand side of the

previous one, we finally deduce that
∫

Ω

(
inf

R∈O
n+1

+

|∇Θ̃−R∇Θ|
)p

dx

6 c3

∫

ω

inf
R∈O

n+1

+

(
2pε

∑

α

|∂αθ̃ −R∂αθ|p + 2p
εp+1

p+ 1

∑

α

|∂αãn+1 −R∂αan+1|p

+ 2ε|ãn+1 −Ran+1|p
)
dy.

Hence there exists a constant c4(θ) such that
∥∥∥ inf

R∈O
n+1

+

|∇Θ̃−R∇Θ|
∥∥∥
Lp(Ω)

6 c4(θ)ε
1
p

∥∥∥ inf
R∈O

n+1

+

(|∇θ̃ −R∇θ|+ ε|∇ãn+1 −R∇an+1|+ |ãn+1 −Ran+1|)
∥∥∥
Lp(ω)

.

Consequently, the announced inequality follows with

C2(θ) =
c1(θ)c4(θ)max(1, ε)

c2(θ)min(1, ε)
.

We are now in a position to establish our first nonlinear Korn inequality on a hypersurface

without boundary conditions.
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Theorem 3.1 Let ω be a domain in R
n, let θ ∈ C1(ω;Rn+1) be an immersion such that

an+1 = an+1(θ) ∈ C1(ω;Rn+1) and let 1 < p < ∞. Then there exists a constant C3(θ) such

that

inf
R∈O

n+1

+

(‖∇θ̃ −R∇θ‖Lp(ω) + ‖∇ãn+1 −R∇an+1‖Lp(ω) + ‖ãn+1 −Ran+1‖Lp(ω))

6 C3(θ)(‖(ãαβ)
1
2 − (aαβ)

1
2 ‖Lp(ω) + ‖(ãαβ)−

1
2 (̃bαβ)− (aαβ)

− 1
2 (bαβ)‖Lp(ω))

for all immersions θ̃ ∈W 1,p(ω;Rn+1) that satisfy ãn+1 = an+1(θ̃) ∈ W 1,p(ω;Rn+1).

Proof The proof consists in finding an upper bound of the right-hand side of the inequality

of Lemma 3.2 featuring the fundamental forms of θ and θ̃ instead of ∇θ, ∇an+1, ∇θ̃ and

∇ãn+1. So, we begin by expressing each term |∇θ̃−R∇θ|, |∇ãn+1−R∇an+1|, |ãn+1−Ran+1|
in terms of (aαβ), (bαβ), (ãαβ), (̃bαβ).

Let θ and θ̃ satisfy the assumptions of the theorem. Then

F := [∇θ an+1] ∈ C0(ω;Mn+1) and F̃ := [∇θ̃ ãn+1] ∈ Lp(ω;Mn+1),

which in turn imply that

FTF =

[
(aαβ) 0

0 1

]
∈ C0(ω; Sn+1

> ) and F̃
T
F̃ =

[
(ãαβ) 0

0 1

]
∈ L

p

2 (ω; Sn+1
> ).

The matrix polar decomposition theorem shows that

F = QU in ω and F̃ = Q̃Ũ a. e. in ω,

where

U := (FTF )
1
2 ∈ C0(ω; Sn+1

> ) and Q := FU−1 ∈ C0(ω;On+1
+ ),

Ũ := (F̃
T
F̃ )

1
2 ∈ Lp(ω; Sn+1

> ) and Q̃ := F̃ Ũ
−1 ∈ L∞(ω;On+1

+ ).

Hence

|∇θ̃ −R∇θ|2 + |ãn+1 −Ran+1|2 = |F̃ −RF |2 = |Q̃Ũ −RQU |2 = |Ũ − Q̃T
RQU |2.

Next, combining the Weingarten equations

∇an+1 = −(∇θ)S, where S := (bσα) = (aαβ)
−1(bαβ),

∇ãn+1 = −(∇θ̃)S̃, where S̃ := (̃bσα) = (ãαβ)
−1(̃bαβ)

with the relations

∇θ = Q

[
(aαβ)

1
2

0

]
and ∇θ̃ = Q̃

[
(ãαβ)

1
2

0

]
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(deduced from the above expressions of F , U , F̃ and Ũ) implies that

|∇ãn+1 −R∇an+1| =
∣∣∣∣∣Q̃
[

(ãαβ)
1
2

0

]
S̃ −RQ

[
(aαβ)

1
2

0

]
S

∣∣∣∣∣

=

∣∣∣∣∣

[
(ãαβ)

1
2

0

]
S̃ − Q̃T

RQ

[
(aαβ)

1
2

0

]
S

∣∣∣∣∣.

Then we infer from the above relations that

inf
R∈O

n+1

+

(|∇θ̃ −R∇θ|+ |∇ãn+1 −R∇an+1|+ |ãn+1 −Ran+1|)

6
√
3 inf
R∈O

n+1

+

(|∇θ̃ −R∇θ|2 + |ãn+1 −Ran+1|2 + |∇ãn+1 −R∇an+1|2)
1
2

=
√
3 inf
R∈O

n+1

+

(
|Ũ − Q̃T

RQU |2 +
∣∣∣∣∣

[
(ãαβ)

1
2

0

]
S̃ − Q̃T

RQ

[
(aαβ)

1
2

0

]
S

∣∣∣∣∣

2) 1
2

.

Consequently, we get

inf
R∈O

n+1

+

(|∇θ̃ −R∇θ|+ |∇ãn+1 −R∇an+1|+ |ãn+1 −Ran+1|)

6
√
3

(
|Ũ −U |2 +

∣∣∣∣∣

[
(ãαβ)

1
2

0

]
S̃ −

[
(aαβ)

1
2

0

]
S

∣∣∣∣∣

2) 1
2

6
√
3(|(ãαβ)

1
2 − (aαβ)

1
2 |+ |(ãαβ)−

1
2 (̃bαβ)− (aαβ)

−
1
2 (bαβ)|).

Then the announced inequality is obtained with C3(θ) =
√
3 C2(θ) by using the above inequality

in the right-hand side of the inequality of Lemma 3.2.

In the remaining of this section, we establish our second nonlinear Korn inequality on a

hypersurface without boundary conditions. It shows that the infimum in the left-hand side of

the nonlinear Korn inequality of Theorem 3.1 can be dropped if a weaker norm of (θ̃ − θ) and
(ãn+1 − an+1) is added to its right-hand side.

The key for proving such a nonlinear Korn inequality is the following lemma.

Lemma 3.3 Let ω be a domain in Rn, let 1 < p < ∞, let θ ∈ W 1,p(ω;Rn+1) and let

U ⊂ M
n+1 be any non-empty set. Then there exists a constant C4(θ) such that, for all θ̃ ∈

W 1,p(ω;Rn+1),

‖θ̃ − θ‖W 1,p(ω) 6 C4(θ)
(
‖θ̃ − θ‖Lp(ω) + inf

R∈U

‖∇θ̃ −R∇θ‖Lp(ω)

)
.

Proof Assume on the contrary that, for each k ∈ N∗, there exists a vector field θ̃k ∈
W 1,p(ω;Rn+1) such that

‖θ̃k − θ‖W 1,p(ω) > k
(
‖θ̃k − θ‖Lp(ω) + inf

R∈U

‖∇θ̃k −R∇θ‖Lp(ω)

)
.

Let

ηk := ‖θ̃k − θ‖W 1,p(ω) and uk :=
1

ηk
(θ̃k − θ).
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Then, for each k > 1,

ηk > 0, ‖uk‖W 1,p(ω) = 1,

‖uk‖Lp(ω) + inf
R∈U

∥∥∥
1

ηk
(∇θ̃k −R∇θ)

∥∥∥
Lp(ω)

<
1

k
.

Since the space W 1,p(ω;Rn+1) (1 < p < ∞) is reflexive and its inclusion in Lp(ω;Rn+1) is

compact, it follows that there exists a subsequence (l) of (k) such that, as l → ∞,

ul → u in Lp(ω;Rn+1) and ∇ul ⇀∇u in Lp(ω;M(n+1)×n).

Then the above inequality implies that u = 0 in ω and that there exists a sequence (Rl) ⊂ U

such that, as l → ∞,

∇ul +
1

ηl
(I −Rl)∇θ → 0 in Lp(ω;M(n+1)×n).

The above relation combined with the weak convergence ∇ul ⇀ 0 in Lp(ω;M(n+1)×n)

implies that

F l :=
1

ηl
(I −Rl)∇θ ⇀ 0 in Lp(ω;M(n+1)×n).

Since the sequence (F l) belongs to a subspace of Lp(ω;M(n+1)×n) of finite dimension, namely

{F∇θ; F ∈ M
n+1},

it follows that

F l → 0 in Lp(ω;M(n+1)×n).

Hence

∇ul → 0 in Lp(ω;M(n+1)×n).

Since in addition ul → 0 in Lp(ω;Rn+1), it follows that

ul → 0 in W 1,p(ω;Rn+1) as l → ∞.

This contradicts that ‖ul‖W 1,p(ω) = 1 for all l > 1. Therefore, the announced inequality holds.

We are now in a position to establish our second nonlinear Korn inequality on a hypersurface

without boundary conditions.

Theorem 3.2 Let ω be a domain in Rn, let θ ∈ C1(ω;Rn+1) be an immersion such that

an+1 = an+1(θ) ∈ C1(ω;Rn+1), and let 1 < p < ∞. Then there exists a constant C5(θ) such

that

‖θ̃ − θ‖W 1,p(ω) + ‖ãn+1 − an+1‖W 1,p(ω)

6 C5(θ)(‖θ̃ − θ‖Lp(ω) + ‖ãn+1 − an+1‖Lp(ω)

+ ‖(ãαβ)
1
2 − (aαβ)

1
2 ‖Lp(ω) + ‖(ãαβ)−

1
2 (̃bαβ)− (aαβ)

−
1
2 (bαβ)‖Lp(ω))

for all immersions θ̃ ∈W 1,p(ω;Rn+1) that satisfy ãn+1 = an+1(θ̃) ∈ W 1,p(ω;Rn+1).

Proof The proof is an immediate consequence of Theorem 3.1 combined with the inequality

of Lemma 3.3 with U = O
n+1
+ (applied twice, to estimate both ‖θ̃ − θ‖W 1,p(ω) and ‖ãn+1 −

an+1‖W 1,p(ω)).
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4 Nonlinear Korn Inequality on a Hypersurface with Boundary

Conditions

In this section, we establish a nonlinear Korn inequality on a hypersurface for mappings

subjected to specific boundary conditions (cf. Theorems 4.1–4.2 below). We consider two types

of boundary conditions, one corresponding to the case where the hypersurface is kept fixed on

a portion of its boundary, and one corresponding to the case where both the hypersurface and

its positively-oriented unit normal vector field are kept fixed on a portion of the boundary of

the hypersurface.

We begin by showing that it is possible to drop the term ‖θ̃ − θ‖Lp(ω) in the right-hand

side of the inequality of Lemma 3.3 by imposing a boundary condition on a portion γ0 of ∂ω.

Note however the stronger assumptions of Lemma 4.1 compared with those of Lemma 3.3: The

extra regularity for θ and the particular choice U = O
n+1
+ .

Lemma 4.1 Let ω be a domain in Rn, let 1 < p <∞, let θ ∈ C1(ω;Rn+1) be an immersion,

and let γ0 be a relatively open subset of ∂ω such that θ(γ0) is not contained in any affine subspace

of Rn+1 of dimension 6 (n− 1). Then there exists a constant C6(γ0, θ) such that

‖θ̃ − θ‖W 1,p(ω) 6 C6(γ0, θ) inf
R∈O

n+1

+

‖∇θ̃ −R∇θ‖Lp(ω)

for all θ̃ ∈ W 1,p(ω;Rn+1) that satisfies θ̃ = θ on γ0.

Proof Assume on the contrary that for all k ∈ N∗, there exists θ̃k ∈ W 1,p(ω;Rn+1)

satisfying θ̃k = θ on γ0 such that

‖θ̃k − θ‖W 1,p(ω) > k inf
R∈O

n+1

+

‖∇θ̃k −R∇θ‖Lp(ω).

It follows that ‖θ̃k − θ‖W 1,p(ω) > 0 and there exists Rk ∈ O
n+1
+ such that ‖θ̃k − θ‖W 1,p(ω) >

k‖∇θ̃k −Rk∇θ‖Lp(ω).

Let

ηk := ‖θ̃k − θ‖W 1,p(ω) and uk :=
1

ηk
(θ̃k − θ).

Then, for all k ∈ N∗,

‖uk‖W 1,p(ω) = 1 and
1

k
>
∥∥∥∇uk +

1

ηk
(I −Rk)∇θ

∥∥∥
Lp(ω)

.

Consequently, there exist u ∈W 1,p(ω;Rn+1) and a subsequence (l) of (k) such that, as l → ∞,

‖ul‖W 1,p(ω) = 1, ul → u in Lp(ω;Rn+1),

∇ul ⇀∇u and ∇ul +
1

ηl
(I −Rl)∇θ → 0 in Lp(ω;M(n+1)×n).

As in the proof of Lemma 3.3, the last two convergences together imply that

∇ul → ∇u and
1

ηl
(I −Rl)∇θ → −∇u in Lp(ω;M(n+1)×n).
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Since then ul → u in W 1,p(ω;Rn+1), we deduce that ‖u‖W 1,p(ω) = 1.

We now prove that u = 0, which will end the proof since it contradicts that ‖u‖W 1,p(ω) = 1.

Let η ∈ [0,∞] and let R ∈ O
n+1
+ be such that, for some subsequence (m) of (l),

ηm → η and Rm → R as m→ ∞.

We distinguish three cases: η = ∞, 0 < η <∞ and η = 0.

First, if η = ∞, then 1
ηm

(I − Rm)∇θ → 0 in Lp(ω;M(n+1)×n). Hence −∇u = 0 in

Lp(ω;M(n+1)×n). But u = 0 on γ0 since ul = 0 on γ0 and ul → u inW 1,p(ω;Rn+1). Therefore

u = 0.

Second, if 0 < η < ∞, then 1
η
(I −R)∇θ = −∇u in Lp(ω;M(n+1)×n). Hence there exists

a ∈ Rn+1 such that u = a+ 1
η
(R − I)θ in W 1,p(ω;Rn+1). Since θ̃k = θ on γ0 for all k ∈ N∗,

and since ul = 1
ηl
(θ̃l − θ) → u in W 1,p(ω;Rn+1), we have that u = 0 on γ0. Therefore

a+ 1
η
(R− I)θ = 0 on γ0. Consequently,

ηa + (R− I)θ(y) = 0 for all y ∈ γ0.

This means that the isometry r : Rn+1 → Rn+1, r(x) := ηa +Rx for all x ∈ Rn+1, satisfies

r(x) = x for all x ∈ θ(γ0). Since the set of all fixed points of an isometry of Rn+1 is either Rn+1

(if the isometry is the identity mapping) or an affine subspace of Rn+1 of dimension 6 (n− 1)

(otherwise), the assumption on θ(γ0) of Lemma 4.1 implies that r(x) = x for all x ∈ Rn+1.

Therefore, ηa = 0 and R = I. Since η > 0, this next implies that u = 0.

Finally, assume that η = 0. Then the convergence

1

ηm
(I −Rm)∇θ → −∇u

in Lp(ω;M(n+1)×n) implies that each component of the matrix (I − R)∇θ vanishes almost

everywhere in ω. Hence the matrix (I −R)∇θ(y) coincides with the zero matrix M(n+1)×n for

almost all y ∈ ω. This means that

Rv = v for all v ∈ S := {∂1θ(y), · · · , ∂nθ(y); y ∈ ω \N}

for some negligible subset N of ω. Since the set S contains (at least) n linearly independent

vectors (recall that θ is an immersion by assumption), one has R = I.

Furthermore, there exists a subsequence of
(

1
ηm

(I − Rm)∇θ
)
m
, still indexed by m for

simplicity, that converges almost everywhere in ω. Since θ is an immersion, there exist n linearly

independent vectors v1,v2, · · · ,vn (for example, ∂1θ(y), · · · , ∂nθ(y) at some point y ∈ ω) such

that, for all α ∈ {1, · · · , n}, as m→ ∞,

1

ηm
(I −Rm)vα → wα in R

n+1 for some wα ∈ R
n+1.

It follows that, for each v ∈ E := span {v1, · · · ,vn},

1

ηm
(I −Rm)v converges in R

n+1.



526 M. Malin and C. Mardare

Hence, given any orthonormal basis {e1, · · · , en} in E, for all α ∈ {1, 2, · · · , n},

1

ηm
(I −Rm)eα converges in R

n+1.

In order to prove that the sequence 1
ηm

(I − Rm) converges in Mn+1, it suffices to prove

that the sequence 1
ηm

(I − Rm)en+1, where en+1 ∈ E⊥ is the unique unit vector such that

{e1, · · · , en+1} is a positive basis in Rn+1, converges in Rn+1. Let

rmi := Rmei ∈ R
n+1 for all i ∈ {1, 2, · · · , n+ 1}.

Then, for all α ∈ {1, 2, · · · , n}, there exists fα ∈ Rn+1 such that

1

ηm
(eα − rmα ) → fα in R

n+1.

Since Rm ∈ O
n+1
+ , one has rmn+1 = rm1 ∧ rm2 ∧ · · · ∧ rmn . Consequently,

1

ηm
(I −Rm)en+1

=
1

ηm
(en+1 − rmn+1) =

1

ηm
(e1 ∧ · · · ∧ en − rm1 ∧ · · · ∧ rmn )

=
1

ηm
(e1 − rm1 ) ∧ e2 ∧ · · · ∧ en +

1

ηm
rm1 ∧ (e2 − rm2 ) ∧ e3 ∧ · · · ∧ en

+ · · ·+ 1

ηm
rm1 ∧ · · · ∧ rmn−1(en − rmn ).

Therefore, since rmα = Rmeα → Ieα = eα as m→ ∞, we have

1

ηm
(I −Rm)en+1 → f1 ∧ e2 ∧ · · · ∧ en + e1 ∧ f2 ∧ e3 ∧ · · · ∧ en + · · ·+ e1 ∧ · · · ∧ en−1 ∧ fn.

The above convergences show that there exists a matrix A ∈ Mn+1 such that, on the one

hand,
1

ηm
(I −Rm) → A as m→ ∞.

On the other hand, the relation RT
mRm = I implies that, for all m,

RT
m

[ 1

ηm
(I −Rm)

]
=

1

ηm
(RT

m − I) = −
[ 1

ηm
(I −Rm)

]T
.

Letting m → ∞ in the above equality (recall that Rm → I as m → ∞) we get ITA = −AT,

which means that A is antisymmetric.

To summarize, we proved that, if ηm → η = 0 as m→ ∞, then, even if it means extracting

a subsequence,

1

ηm
(I −Rm)∇θ → −∇u in Lp(ω;M(n+1)×n) as m→ ∞,

1

ηm
(I −Rm) → A ∈ A

n+1 as m→ ∞.
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Hence −∇u = A∇θ almost everywhere in ω, which in turn implies that there exists a ∈
Rn+1 such that

u(y) = a−Aθ(y) for almost all y ∈ ω.

Besides, the trace of u on γ0 vanishes (since ul → u in W 1,p(ω;Rn+1) as l → ∞ and ul :=
1
ηl
(θ̃l − θ) vanishes on γ0). Therefore the infinitesimal isometry µ : Rn+1 → Rn+1, µ(x) =

a−Ax for all x ∈ Rn+1 vanishes on the set θ(γ0). In other words,

θ(γ0) ⊂ Kerµ := {x ∈ R
n+1; Ax = a}.

Then the assumption on θ(γ0) of Lemma 4.1 implies that u = 0, since the set Kerµ is either

Rn+1 (if a = 0 and A = 0) or an affine subspace of Rn+1 of dimension 6 (n− 1) (otherwise).

To prove the last assertion, one notices on the one hand that either Kerµ = ∅ or Kerµ = x0 +

KerA, where x0 is a particular solution ofAx = a; but on the other hand KerA⊕ImA = R
n+1,

so dim(KerA) = (n + 1) − ImA, and dim(ImA) is either 0 (if A = 0) or dim(ImA) > 2 if

A 6= 0.

In order to prove our first nonlinear Korn inequality of this section (cf. Theorem 4.1 below),

where ãn+1 and an+1 do not necessarily coincide on γ0, we need to supplement the estimate of

‖θ̃ − θ‖W 1,p(ω) provided by Lemma 4.1 by an estimate of ‖ãn+1 − an+1‖W 1,p(ω). This is the

object of the following lemma.

Lemma 4.2 Let ω, p, θ and γ0 satisfy the assumptions of Lemma 4.1. Assume in addition

that an+1 = an+1(θ) belongs to C1(ω;Rn+1). Then there exists a constant C7(γ0, θ) such that

‖θ̃ − θ‖W 1,p(ω) + ‖ãn+1 − an+1‖W 1,p(ω)

6 C7(γ0, θ) inf
R∈O

n+1

+

(‖∇θ̃ −R∇θ‖Lp(ω)

+ ‖∇ãn+1 −R∇an+1‖Lp(ω) + ‖ãn+1 −Ran+1‖Lp(ω))

for all immersions θ̃ ∈W 1,p(ω;Rn+1) that satisfy ãn+1 = an+1(θ̃) ∈W 1,p(ω;Rn+1) and θ̃ = θ

on γ0.

Proof Assume that this assertion is false. Then for all k ∈ N∗, there exist θ̃
k ∈ W 1,p(ω;Rn+1)

and Rk ∈ O
n+1
+ such that ãkn+1 = an+1(θ̃

k
) ∈W 1,p(ω;Rn+1), θ̃

k
= θ on γ0 and

‖θ̃k − θ‖W 1,p(ω) + ‖ãkn+1 − an+1‖W 1,p(ω)

> k(‖∇θ̃k −Rk∇θ‖Lp(ω) + ‖∇ãkn+1 −Rk∇an+1‖Lp(ω) + ‖ãkn+1 −Rkan+1‖Lp(ω)).

Let

µk := ‖θ̃k − θ‖W 1,p(ω) + ‖ãkn+1 − an+1‖W 1,p(ω),

ξ̃k :=
1

µk

(θ̃
k − θ), η̃k :=

1

µk

(ãk
n+1 − an+1).

Then ‖ξ̃k‖W 1,p(ω)+ ‖η̃k‖W 1,p(ω) = 1 for all k ∈ N∗ and, by using the same arguments as in the

proof of Lemma 4.1, there exists a subsequence (l) of (k) such that, for some ξ̃ ∈W 1,p(ω;Rn+1),
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η̃ ∈W 1,p(ω;Rn+1), µ ∈ [0,∞] and R ∈ O
n+1
+ ,

ξ̃l → ξ̃ and η̃l → η̃ in W 1,p(ω;Rn+1),

1

µl

(I −Rl)∇θ → −∇ξ̃ in Lp(ω;M(n+1)×n),

1

µl

(I −Rl)an+1 → −η̃ in Lp(ω;Rn+1).

On the other hand, Lemma 4.1 shows that, for some constant C6(γ0, θ), ‖θ̃l − θ‖W 1,p(ω) 6

C6(γ0, θ)‖∇θ̃l −Rl∇θ‖Lp(ω), which in turn implies that

‖ξ̃l‖W 1,p(ω) 6 C6(γ0, θ)
∥∥∥∇ξ̃l +

1

µl

(I −Rl)∇θ
∥∥∥
Lp(ω)

.

Hence ‖ξ̃l‖W 1,p(ω) → 0 as l → ∞, so that ξ̃ = 0. Therefore, as l → ∞,

1

µl

(I −Rl)∇θ → 0 in Lp(ω;M(n+1)×n).

Since θ is an immersion, the above relation implies (as in the proof of Lemma 4.1) that, as

l → ∞,
1

µl

(I −Rl) → 0 in M
n+1.

Therefore, η̃ = − lim
l→∞

(
1
µl
(I −Rl)an+1

)
= 0. Hence

0 = ‖ξ̃‖W 1,p(ω) + ‖η̃‖W 1,p(ω) = lim
l→∞

(‖ξ̃l‖W 1,p(ω) + ‖η̃l‖W 1,p(ω)) = 1,

a contradiction.

We are now in a position to establish our first nonlinear Korn inequality on a hypersurface

with boundary conditions: It is similar to the one established in Theorem 3.2, but without the

terms ‖θ̃ − θ‖Lp(ω) and ‖ãn+1 − an+1‖Lp(ω) in its right-hand side.

Theorem 4.1 Let ω be a domain in Rn, let 1 < p < ∞, let θ ∈ C1(ω;Rn+1) be an

immersion such that an+1 = an+1(θ) ∈ C1(ω;Rn+1), and let γ0 be a relatively open subset of

∂ω such that θ(γ0) is not contained in any affine subspace of Rn+1 of dimension 6 (n − 1).

Then there exists a constant C8(γ0, θ) such that

‖θ̃ − θ‖W 1,p(ω) + ‖ãn+1 − an+1‖W 1,p(ω)

6 C8(γ0, θ)(‖(ãαβ)
1
2 − (aαβ)

1
2 ‖Lp(ω) + ‖(ãαβ)−

1
2 (̃bαβ)− (aαβ)

−
1
2 (bαβ)‖Lp(ω))

for all immersions θ̃ ∈W 1,p(ω;Rn+1) that satisfy ãn+1 = an+1(θ̃) ∈W 1,p(ω;Rn+1) and θ̃ = θ

on γ0.

Proof This inequality is an immediate consequence of Theorem 3.1 and Lemma 4.2.

In the remaining of this section, we show that the Korn inequality on a hypersurface of

Theorem 4.1 holds different set of assumptions. Specifically, it shows that the assumption
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on θ(γ0) can be dropped provided the mappings θ̃ satisfy the additional boundary condition

ãn+1 = an+1 on γ0.

To do so, we first need to prove the next lemma, which removes the restriction on γ0 imposed

in Lemma 4.2 at the expense of adding boundary conditions for the normal vector fields an+1

and ãn+1 to the hypersurfaces θ(ω) and θ̃(ω).

Lemma 4.3 Let ω be a domain in Rn, let 1 < p < ∞, let γ0 be any non-empty relatively

open subset of ∂ω and let θ ∈ C1(ω;Rn+1) be an immersion that satisfies an+1 = an+1(θ) ∈
C1(ω;Rn+1). Then there exists a constant C9(γ0, θ) such that

‖θ̃ − θ‖W 1,p(ω) + ‖ãn+1 − an+1‖W 1,p(ω)

6 C9(γ0, θ) inf
R∈O

n+1

+

(‖∇θ̃ −R∇θ‖Lp(ω)

+ ‖∇ãn+1 −R∇an+1‖Lp(ω) + ‖ãn+1 −Ran+1‖Lp(ω))

for all immersions θ̃ ∈W 1,p(ω;Rn+1) that satisfy ãn+1 = an+1(θ̃) ∈ W 1,p(ω;Rn+1), θ̃ = θ on

γ0, and ãn+1 = an+1 on γ0.

Proof Assume that such a constant does not exist. Then for all k ∈ N∗, there exists θ̃
k ∈

W 1,p(ω;Rn+1) satisfying ãk
n+1 = an+1(θ̃

k
) ∈ W 1,p(ω;Rn+1), θ̃

k
= θ on γ0 and ãk

n+1 = an+1

on γ0, such that

‖θ̃k − θ‖W 1,p(ω) + ‖ãkn+1 − an+1‖W 1,p(ω)

> k inf
R∈O

n+1

+

(‖∇θ̃k −R∇θ‖Lp(ω) + ‖∇ãk
n+1 −R∇an+1‖Lp(ω) + ‖ãkn+1 −Ran+1‖Lp(ω)).

Let

µk := ‖θ̃k − θ‖W 1,p(ω) + ‖ãkn+1 − an+1‖W 1,p(ω).

The previous inequality shows that, for each k ∈ N∗, µk > 0 and there exists Rk ∈ O
n+1
+ such

that

∥∥∥
1

µk

(ãk
n+1 −Rkan+1)

∥∥∥
Lp(ω)

+
∥∥∥∇
( 1

µk

(θ̃
k −Rkθ)

)∥∥∥
Lp(ω)

+
∥∥∥∇
( 1

µk

(ãk
n+1 −Rkan+1)

)∥∥∥
Lp(ω)

<
1

k
.

Let

ξ̃k :=
1

µk

(θ̃
k − θ) and η̃k :=

1

µk

(ãkn+1 − an+1).

Clearly,

‖ξ̃k‖W 1,p(ω) + ‖η̃k‖W 1,p(ω) = 1 for all k ∈ N
∗.

Since the space W 1,p(ω;Rn+1) is reflexive (recall that 1 < p < ∞) and its inclusion in

Lp(ω;Rn+1) is compact, the above inequality implies that there exist ξ̃, η̃ ∈ W 1,p(ω;Rn+1),

µ ∈ [0,∞], R ∈ O
n+1
+ and a subsequence (l) of (k) such that, as l → ∞,

ξ̃l → ξ̃ and η̃l → η̃ in Lp(ω;Rn+1),
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∇ξ̃l ⇀∇ξ̃ and ∇η̃l ⇀∇η̃ in Lp(ω;M(n+1)×n),

µl → µ in R and Rl → R in M
n+1.

Since in addition, as k → ∞,

∇ξ̃k +
1

µk

(I −Rk)∇θ → 0 and ∇η̃k +
1

µk

(I −Rk)∇an+1 → 0 in Lp(ω;M(n+1)×n),

the sequences (∇ξ̃k) and (∇η̃l) converge strongly in Lp(ω;M(n+1)×n) (cf. the proof of Lemma

3.3). Hence

ξ̃l → ξ̃ and η̃l → η̃ in W 1,p(ω;Rn+1),

1

µl

(I −Rl)∇an+1 → −∇η̃ in Lp(ω;M(n+1)×n),

1

µl

(I −Rl)∇θ → −∇ξ̃ in Lp(ω;M(n+1)×n),

η̃l +
1

µl

(I −Rl)an+1 → 0 in Lp(ω;Rn+1).

In what follows, we will show that the last two convergences imply that

ξ̃ = 0 and η̃ = 0 a. e. in ω,

which will yield a contradiction with

‖ξ̃‖W 1,p(ω) + ‖η̃‖W 1,p(ω) = lim
l→∞

(‖ξ̃l‖W 1,p(ω) + ‖η̃l‖W 1,p(ω)) = 1.

To this end, we distinguish three cases: µ = ∞, 0 < µ <∞, µ = 0.

First, assume that µ = ∞. Then 1
µl
(I −Rl) → 0 in Mn+1, which combined with the last

two convergences above implies that

∇ξ̃ = 0 and η̃ = 0 a. e. in ω.

Since in addition ξ̃ = 0 on γ0, ξ̃ also vanishes a.e. in ω.

Second, assume that 0 < µ <∞. Then the convergences

1

µl

(I−Rl)∇θ → −∇ξ̃ in Lp(ω;M(n+1)×n) and η̃l+
1

µl

(I−Rl)an+1 → 0 in Lp(ω;Rn+1)

imply that
1

µ
(I −R)∇θ = −∇ξ̃ and

1

µ
(I −R)an+1 = −η̃.

Hence there exists a ∈ Rn+1 such that

ξ̃(y) = a+
1

µ
(R − I)θ(y) for almost all y ∈ ω,

η̃(y) =
1

µ
(R− I)an+1(y) for almost all y ∈ ω.
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Since ξ̃ = 0 on γ0 and η̃ = 0 on γ0, the above relations imply that there exists y∗ ∈ γ0 such

that

a+
1

µ
(R− I)τα(y∗) = 0 and

1

µ
(R − I)an+1(y∗) = 0,

where τα(y∗), α = 1, 2, · · · , n − 1, denote a (n − 1)-tuple of linearly independent vectors in

Rn+1 that are orthogonal to an+1(y∗).

More specifically, since ω is a domain in Rn, ∂ω is locally the graph of a Lipschitz function.

In particular, there exist 1 6 j 6 n and a Lipschitz function ψj : U → R, where U is an open

set of Rn−1, and an open ball V in Rn, such that

V ∩ γ0 = {y = (y1, · · · , yn) ∈ R
n; yj = ψj(y

′); y′ := (y1, · · · , yj−1, yj+1, · · · , yn) ∈ U}.

It is well-known that ψj is differentiable at almost all points y′ ∈ U . Define the mapping

ψ : U → Rn by letting

ψ(y′) :=




y1
...

yj−1

ψj(y
′)

yj+1

...
yn




for all y′ ∈ U.

Let y′∗ denote any point where ψj is differentiable and let y∗ := ψ(y′∗). Then the (n−1) vectors

∂αψ(y
′
∗), α ∈ {1, · · · , n} \ {j} are well defined, and they are linearly independent.

Since

a+
1

µ
(R− I)θ(ψ(y′)) = 0 for all y′ ∈ U,

we have in particular that

1

µ
(R − I)∂α(θ ◦ψ)(y′∗) = 0, α ∈ {1, · · · , n} \ {j},

⇔ 1

µ
(R− I)∇θ(y∗)∂αψ(y′∗) = 0, α ∈ {1, · · · , n} \ {j},

⇔ 1

µ
(R− I)τα(y∗) = 0, α = 1, 2, · · · , n− 1,

where

τ 1(y∗) := ∇θ(y∗)∂1ψ(y
′
∗), · · · , τ j−1(y∗) := ∇θ(y∗)∂j−1ψ(y

′
∗),

τ j(y∗) := ∇θ(y∗)∂j+1ψ(y
′
∗), · · · , τn−1(y∗) := ∇θ(y∗)∂nψ(y

′
∗).

Note that the vectors τ 1(y∗), · · · , τn−1(y∗) are linearly independent since θ is an immersion

at y∗, so the vectors ∂1θ(y∗), · · · , ∂nθ(y∗) are linearly independent. Indeed, since

[τ 1(y∗) · · · τn−1(y∗)] = ∇θ(y∗)[∂1ψ(y
′
∗) · · · ∂j−1ψ(y

′
∗) ∂j+1ψ(y

′
∗) · · · ∂nψ(y′∗)],

the rank of the matrix in the left-hand side is (n− 1).
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Note also that the vectors τα(y∗) are orthogonal to an+1(y∗) since

τ 1(y∗) =

n∑

β=1

[∂1ψ(y
′
∗)]

β∂βθ(y∗), · · · , τn−1(y∗) =

n∑

β=1

[∂nψ(y
′
∗)]

β∂βθ(y∗),

and ∂βθ(y∗) · an+1(y∗) = 0 for all β ∈ {1, · · · , n} by the definition of an+1(y∗).

So we just proved that

Rv = v for all v ∈ E := span{τ 1(y∗), · · · , τn−1(y∗),an+1(y∗)}.

Since dimE = n and R ∈ O
n+1
+ , it follows that R = I, because, if {e1, · · · , en+1} is an

orthogonal basis in Rn+1 such that E = span{e1, · · · , en} and det [e1 · · · en+1] > 0, then, for

all α = 1, · · · , n,

Ren+1 · eα = en+1 ·RTeα = en+1 ·RT(Reα) = en+1 · eα = 0,

so thatRen+1⊥E. Therefore, eitherRen+1 = en+1, orRen+1 = −en+1. But,Ren+1 = −en+1

implies that

−1 = det [e1 · · · en (−en+1)] = det (R[e1 · · ·en+1]) = 1,

a contradiction. Consequently, R = I and so

ξ̃(y) = a and η̃(y) = 0 a. e. y ∈ ω.

Besides, ξ̃ = 0 on γ0, so that a = 0.

Third, assume that µ = 0. We then infer from the convergence

1

µl

(I −Rl)∇θ → −∇ξ̃ in Lp(ω;M(n+1)×n) as l → ∞,

which implies in particular that

∫

ω

( 1

µl

)p
|(I −Rl)∇θ|pdy →

∫

ω

|∇ξ̃|pdy as l → ∞,

that the limit R = lim
l→∞

Rl satisfies R = I. Indeed, if on the contrary R 6= I, then

|(I −Rl)∇θ(y)| > |(I −R)∇θ(y)| − |Rl −R||∇θ(y)| for all l.

Furthermore, let y∗ ∈ ω and let ε := |(I −R)∇θ(y∗)|. Then ε > 0 (since rank∇θ(y∗) = n

and dim Ker(I − R) 6 n − 1). Since θ ∈ C1(ω;Rn+1) and Rl → R as l → ∞, there exists

δ > 0 and l0 ∈ N∗ such that

|(I −Rl)∇θ(y)| >
ε

2
and |Rl −R||∇θ(y)| 6 ε

4

for all y ∈ B(y∗, δ) and all l > l0. Therefore, for all l > l0,

∫

ω

( 1

µl

|(I −Rl)∇θ|
)p

dy >

∫

B(y∗,δ)

( 1

µl

|(I −Rl)∇θ|
)p

dy >

∫

B(y∗,δ)

( 1

µl

ε

4

)p
dy,
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which implies that
∫
ω
|∇ξ̃|pdy = +∞, a contradiction.

Next, using that the column vector fields of ∇θ ∈ C0(ω;Rn+1) are linearly independent

at each point of ω, we deduce (as in the proof of Lemma 3.3) from the convergence 1
µl
(I −

Rl)∇θ → −∇ξ̃ in Lp(ω;M(n+1)×n) that there exists an antisymmetric matrix A ∈ An+1

and a subsequence (m) of (l) such that

1

µm

(I −Rm) → A in M
n+1 as m→ ∞.

Hence

−∇ξ̃ = A∇θ a. e. in ω,

which in turn implies that there exists a ∈ Rn+1 such that

ξ̃(y) = a−A∇θ(y) for almost all y ∈ ω.

Besides, since

η̃ = lim
m→∞

η̃m = lim
m→∞

1

µm

(Rm − I)an+1 = −Aan+1 in Lp(ω;Rn+1),

we have

η̃(y) = −Aan+1(y) for almost all y ∈ ω.

Therefore, using that ξ̃ = 0 on γ0 and η̃ = 0 on γ0, the same argument as that used in the

case 0 < µ <∞ shows that there exists y∗ ∈ γ0 such that

−Aτα(y∗) = 0 and −Aan+1(y∗) = 0

for some vectors τα(y∗) ∈ Rn+1, α = 1, 2, · · · , n− 1, that are linearly independent and orthog-

onal to an+1(y∗). Thus the antisymmetric matrix A ∈ An+1 satisfies

Av = 0 for all v ∈ E,

where E denotes the subspace of dimension n of Rn+1 spanned by the vectors τ 1(y∗), · · · ,
τn−1(y∗), an+1(y∗). Hence A = 0. To see this, let w ∈ E⊥, w 6= 0. Then R

n+1 = E ⊕ (Rw)

and

Aw · v = w ·ATv = −w ·Av = 0 for all v ∈ E,

Aw ·w = w ·ATw = −w ·Aw = 0.

Hence, Av = 0 for all v ∈ Rn+1, which means that A = 0.

Finally, since ξ̃(y) = a−A∇θ(y) = a for almost all y ∈ ω and since ξ̃ = 0 on γ0, the vector

a vanishes. Therefore,

ξ̃ = 0 and η̃ = −Aan+1 = 0 a. e. in ω.

We are now in a position to establish our second nonlinear Korn inequality on a hypersurface

with boundary conditions.
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Theorem 4.2 Let ω be a domain in R
n, let 1 < p <∞, let γ0 be any non-empty relatively

open subset of ∂ω, and let θ ∈ C1(ω;Rn+1) be an immersion such that an+1 = an+1(θ) ∈
C1(ω;Rn+1). Then there exists a constant C10(γ0, θ) such that

‖θ̃ − θ‖W 1,p(ω) + ‖ãn+1 − an+1‖W 1,p(ω)

6 C10(γ0, θ)(‖(ãαβ)
1
2 − (aαβ)

1
2 ‖Lp(ω) + ‖(ãαβ)−

1
2 (̃bαβ)− (aαβ)

− 1
2 (bαβ)‖Lp(ω))

for all immersions θ̃ ∈W 1,p(ω;Rn+1) that satisfy ãn+1 = an+1(θ̃) ∈ W 1,p(ω;Rn+1), θ̃ = θ on

γ0 and ãn+1 = an+1 on γ0.

Proof It suffices to estimate the left-hand side in Theorem 3.1 by applying Lemma 4.3.
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