Measure Estimates of Nodal Sets of Polyharmonic Functions*

Long TIAN ${ }^{1}$

Abstract

This paper deals with the function u which satisfies $\triangle^{k} u=0$, where $k \geq 2$ is an integer. Such a function u is called a polyharmonic function. The author gives an upper bound of the measure of the nodal set of u, and shows some growth property of u.

Keywords Polyharmonic function, Nodal set, Frequency, Measure estimate, Growth property
2000 MR Subject Classification 58E10, 53C50

1 Introduction

The nodal sets are zero level sets. We want to study the measure estimates of nodal sets of polyharmonic functions in this paper. In 1979, Almgren [1] introduced the frequency concept of harmonic functions. Then in 1986 and 1987, Garofalo and Lin [4-5] established the monotonicity formula of the frequency and the doubling conditions for solutions of the uniformly second order elliptic equations, and showed the unique continuation of such solutions by using the doubling conditions. In 2000, Han [6] studied the structure of the nodal sets of solutions of a class of uniformly high order elliptic equations. In 2003, Han, Hardt and Lin in [7] investigated structures and measure estimates of singular sets of solutions of high order uniformly elliptic equations. In 2014, the author and Yang in [13] gave the measure estimates of nodal sets for bi-harmonic functions.

The classical frequency of a harmonic function is defined as follows.
Definition 1.1 If u is a harmonic function in B_{1}, then for any $r \leq 1$, one can define the frequency function of u centered at the origin with radius r as follows:

$$
\begin{equation*}
N(r)=r \frac{D(r)}{H(r)}=r \frac{\int_{B_{r}}|\nabla u|^{2} \mathrm{~d} x}{\int_{\partial B_{r}} u^{2} \mathrm{~d} \sigma} \tag{1.1}
\end{equation*}
$$

where $\mathrm{d} \sigma$ means the $(n-1)$-Hausdorff measure on the sphere ∂B_{r}. Similarly, one can define the frequency centered at other point.

Based on this idea, we define the frequency of a polyharmonic function as follows. We first show some notations in this paper as follows:

$$
u_{1}=u, \quad u_{2}=\triangle u, \quad \cdots, \quad u_{k}=\triangle^{k-1} u, \quad u_{k+1}=\triangle^{k} u=0
$$

[^0]Definition 1.2 Suppose that u satisfies that $\triangle^{k} u=0$, where k is a positive integer more than or equal to 2. Such a function u is called a k-polyharmonic function in the rest of this paper. Then we define

$$
\begin{equation*}
N(r)=r \frac{D(r)+E(r)}{H(r)}, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& D(r)=\sum_{i=1}^{k} D_{i}(r), \quad E(r)=\sum_{i=1}^{k} E_{i}(r), \quad H(r)=\sum_{i=1}^{k} H_{i}(r), \\
& D_{i}(r)=\int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} x, \quad E_{i}(r)=\int_{B_{r}} u_{i} u_{i+1} \mathrm{~d} x, \quad H_{i}(r)=\int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma .
\end{aligned}
$$

The function $N(r)$ is called the frequency of u centered at the origin with radius r. Similarly, we can define the frequency centered at other point.

Remark 1.1 Noting that for any $j=1,2, \cdots, k, u_{j}$ is a $(k-j+1)$-polyharmonic function, and u_{k} is a harmonic function. Thus one can also define the frequency for u_{j} as above. We denote such frequency as $N_{j}(r)$. It is easy to see that $N_{1}(r)=N(r)$, and $N_{k}(r)$ is just the classical frequency of a harmonic function as in Definition 1.1.

Remark 1.2 This frequency is in fact the following form

$$
\begin{equation*}
N(r)=r \frac{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i} u_{i \nu} \mathrm{~d} \sigma}{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma} \tag{1.3}
\end{equation*}
$$

Here $u_{i \nu}$ is $\nabla u \cdot \nu$ and ν is the outer unit normal on ∂B_{r}.
Now we state the main results of this paper.
Theorem 1.1 Let u be a polyharmonic function in $B_{1} \subseteq \mathbb{R}^{n}$, i.e., $\triangle^{k} u=0$ in B_{1}. Then

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(\left\{x \in B_{\frac{1}{16}}: u(x)=0\right\}\right) \leq C \sum_{i=1}^{k} N_{i}(1)+C, \tag{1.4}
\end{equation*}
$$

where C is a positive constant depending only on n and k.
Theorem 1.2 Let u be a k-polyharmonic function in the whole space \mathbb{R}^{n}.
(1) If the frequency of u centered at the origin is bounded in \mathbb{R}^{n}, then u is a polynomial. Moreover, if $N(r)<N_{0}$ for any $r>0$, then it holds that

$$
\begin{equation*}
\operatorname{deg}(u) \leq C N_{0}+C \tag{1.5}
\end{equation*}
$$

where $\operatorname{deg}(u)$ means the order of degree of u and C is a positive constant depending only on n and k. In this case, for any $i=2, \cdot, k$, the functions u_{i} are also polynomials.
(2) If u is a polynomial, then the frequency of u is bounded by the order of degree of u in the whole space \mathbb{R}^{n}.

The rest of this paper is organized as follows. In the second section we introduce some interesting properties of the frequency and prove the monotonicity formula of the frequency. In the third section, the doubling conditions of the polyharmonic functions are proved. The forth section gives the measure estimates of nodal sets of polyharmonic functions, i.e., the proof of Theorem 1.1. The last section shows the growth property of polyharmonic functions.

2 Monotonicity Formula of Frequency

In this section, we will give some interesting properties for the frequency of polyharmonic functions, and then prove the monotonicity formula for this frequency function.

Lemma 2.1 If u satisfies $\triangle^{k} u=0$, where $k \in \mathbb{N}$ and the vanishing order of u at the origin is $l \geq 2(k-1)$, then

$$
\begin{equation*}
\lim _{r \rightarrow 0} N(r) \geq l-2(k-1) \tag{2.1}
\end{equation*}
$$

Proof Note that u is k-polyharmonic. So each u_{i} is analytic near the origin, thus we may assume that for each $i=1,2, \cdots, k, u_{i}(x)=P_{i}(x)+R_{i}(x)$, where $P_{i}(x)$ is a homogeneous polynomial. Assume that the order of degree of $P_{i}(x)$ is l_{i}, and then $R_{i}(x)=o\left(|x|^{l_{i}}\right)$ as $|x| \rightarrow 0$. Because the vanishing order of u at the origin is l, it is known that $l_{1}=l$, and for each $i=2,3, \cdots, k, l_{i} \geq l-2(i-1)$. Let $l_{0}=\inf \left\{l_{1}, l_{2}, \cdots, l_{k}\right\}$. Because each $P_{i}(x)$ is a homogeneous polynomial of degree $l_{i}, P_{i}(x)$ can be written as $P_{i}(x)=r^{l_{i}} \phi_{i}(\theta)$, where (r, θ) is the polar coordinate system. Then

$$
\begin{aligned}
N(r) & =r \frac{\sum_{i=1}^{k} \int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} x+\sum_{i=1}^{k} \int_{B_{r}} u_{i} u_{i+1} \mathrm{~d} \sigma}{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma}=r \frac{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i} u_{i \nu} \mathrm{~d} \sigma}{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma} \\
& =\frac{\sum_{i=1}^{k} l_{i} r^{2 l_{i}} \int_{\partial B_{r}} \phi_{i}^{2}(\theta) \mathrm{d} \sigma+\sum_{i=1}^{k} o\left(r^{2 l_{i}}\right)}{\sum_{i=1}^{k} r^{2 l_{i}} \int_{\partial B_{r}} \phi_{i}^{2}(\theta) \mathrm{d} \sigma+\sum_{i=1}^{k} o\left(r^{2 l_{i}}\right)} \\
& =\frac{l_{0} \sum_{i=1}^{k} r^{2 l_{0}} \int_{\partial B_{r}} \phi_{i}^{2}(\theta) \mathrm{d} \sigma+o\left(r^{2 l_{0}}\right)}{\sum_{i=1}^{k} r^{2 l_{0}} \sum_{\partial B_{r}} \phi_{i}^{2}(\theta) \mathrm{d} \sigma+o\left(r^{2 l_{0}}\right)},
\end{aligned}
$$

where $\mathrm{d} \sigma=r^{n-1} \mathrm{~d} \omega, \mathrm{~d} \omega$ is the $(n-1)$-Hausdorff measure on the unit sphere \mathcal{S}^{n-1}. Let $r \rightarrow 0$ in the above form, one can get $\lim _{r \rightarrow 0} N(r)=l_{0} \geq l-2(k-1)$. That is the desired result.

In order to prove some properties of the proposed frequency, we need the following two lemmas which can be seen in $[9,13]$.

Lemma 2.2 If u is a harmonic function in B_{r}, then

$$
\begin{equation*}
\int_{B_{r}} u^{2} \mathrm{~d} x \leq \frac{r}{n} \int_{\partial B_{r}} u^{2} \mathrm{~d} \sigma . \tag{2.2}
\end{equation*}
$$

Lemma 2.3 For any $u \in W_{0}^{1,2}\left(B_{r}\right)$, it holds that

$$
\begin{equation*}
\int_{B_{r}} u^{2} \mathrm{~d} x \leq \frac{4 r^{2}}{n^{2}} \int_{B_{r}}|\nabla u|^{2} \mathrm{~d} x . \tag{2.3}
\end{equation*}
$$

Now we show some properties of such frequency.
Lemma 2.4 If $n \geq 2, r \leq 1$, and u is a k-polyharmonic function as above, then the frequency of u satisfies that

$$
N(r) \geq-C r,
$$

where C is a positive constant depending only on n.

Proof For any fixed i and r, define the function $u_{i 1}^{r}$ and $u_{i 2}^{r}$ as follows:

$$
\begin{aligned}
& \Delta u_{i 1}^{r}=u_{i+1} \quad \text { in } B_{r}, \quad u_{i 1}^{r}=0 \quad \text { on } \partial B_{r}, \\
& \triangle u_{i 2}^{r}=0 \quad \text { in } B_{r}, \quad u_{i 2}^{r}=u_{i} \quad \text { on } \partial B_{r} .
\end{aligned}
$$

So $u_{i}=u_{i 1}^{r}+u_{i 2}^{r}$. Note that for any $i=1,2, \cdots, k, u_{i 2}^{r}$ are harmonic functions, we have

$$
\begin{equation*}
\int_{B_{r}}\left|u_{i 2}^{r}\right|^{2} \mathrm{~d} \sigma \leq \frac{r}{n} \int_{\partial B_{r}}\left|u_{i 2}^{r}\right|^{2} \mathrm{~d} \sigma=\frac{r}{n} \int_{\partial B_{r}}\left|u_{i}\right|^{2} \mathrm{~d} \sigma, \tag{2.4}
\end{equation*}
$$

which is presented in [8, Chapter 2]. On the other hand, the functions $u_{i 1}^{r}$ are all in $W_{0}^{1, p}\left(B_{r}\right)$, so from the Poincaré's inequality, we have

$$
\int_{B_{r}}\left|u_{i 1}^{r}\right|^{2} \mathrm{~d} \sigma \leq \frac{4 r^{2}}{n^{2}} \int_{B_{r}}\left|\nabla u_{i 1}^{r}\right|^{2} \mathrm{~d} \sigma .
$$

Because

$$
\int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} \sigma=\int_{B_{r}}\left|\nabla u_{i 1}^{r}\right|^{2} \mathrm{~d} \sigma+\left|\nabla u_{i 2}^{r}\right|^{2}+2 \nabla u_{i 1}^{r} u_{i 2}^{r}
$$

and

$$
\int_{B_{r}} \nabla u_{i 1}^{r} \nabla u_{i 2}^{2} \mathrm{~d} \sigma=0,
$$

we have

$$
\begin{equation*}
\int_{B_{r}}\left|u_{i 1}^{r}\right|^{2} \mathrm{~d} \sigma \leq \frac{4 r^{2}}{n^{2}} \int_{B_{r}}\left|\nabla u_{i 1}^{r}\right|^{2} \mathrm{~d} \sigma \leq \int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} \sigma . \tag{2.5}
\end{equation*}
$$

We write the term $\int_{B_{r}} u_{i} u_{i+1} \mathrm{~d} \sigma$ as

$$
\begin{aligned}
\int_{B_{r}} u_{i} u_{i+1} \mathrm{~d} \sigma & =\int_{B_{r}} u_{i 1}^{r} u_{i+1,1}^{r} \mathrm{~d} \sigma+\int_{B_{r}} u_{i 1}^{r} u_{i+1,2}^{r} \mathrm{~d} \sigma+\int_{B_{r}} u_{i 2}^{r} u_{i+1,1}^{r} \mathrm{~d} \sigma+\int_{B_{r}} u_{i 2}^{r} u_{i+1,2}^{r} \mathrm{~d} \sigma \\
& =\mathrm{I}+\mathrm{II}+\mathrm{III}+\text { IV. }
\end{aligned}
$$

Now we will give the estimates of $|\mathrm{I}|,|\mathrm{II}|,|\mathrm{III}|$ and $|\mathrm{IV}|$ separately. First consider the term |I|. By using the form (2.5), we have

$$
|\mathrm{I}| \leq \frac{1}{2}\left(\int_{B_{r}}\left|u_{i 1}^{r}\right|^{2} \mathrm{~d} \sigma+\int_{B_{r}}\left|u_{i+1,1}^{r}\right|^{2} \mathrm{~d} \sigma\right) \leq \frac{4 r^{2}}{n^{2}}\left(\int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} \sigma+\int_{B_{r}}\left|\nabla u_{i+1}\right|^{2} \mathrm{~d} \sigma\right) .
$$

For |IV|, by using (2.4), we have

$$
|\mathrm{IV}| \leq \frac{r}{2 n}\left(\int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma+\int_{\partial B_{r}} u_{i+1}^{2} \mathrm{~d} \sigma\right) .
$$

Now we focus on $|\mathrm{II}|$. Also from the forms (2.4)-(2.5), we have for any $\epsilon>0$, it holds that

$$
|\mathrm{II}| \leq \frac{\epsilon}{2} \int_{B_{r}}\left|u_{i 1}^{r}\right|^{2} \mathrm{~d} \sigma+\frac{1}{2 \epsilon} \int_{B_{r}}\left|u_{i+1,2}^{r}\right|^{2} \mathrm{~d} \sigma \leq \frac{2 \epsilon r^{2}}{n^{2}} \int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} \sigma+\frac{r}{2 \epsilon n} \int_{\partial B_{r}} u_{i+1}^{2} \mathrm{~d} \sigma .
$$

Similarly, for \mid III \mid, we have

$$
|\mathrm{III}| \leq \frac{C \epsilon r^{2}}{2} \int_{B_{r}}\left|\nabla u_{i+1}\right|^{2} \mathrm{~d} \sigma+\frac{r}{2 \epsilon n} \int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma
$$

So

$$
|E(r)| \leq\left(\frac{4 r^{2} \epsilon}{n^{2}}+\frac{2 r^{2}}{n^{2}}\right) D(r)+\left(\frac{r}{n}+\frac{2 r}{\epsilon n}\right) H(r)
$$

Choose $\epsilon=\frac{1}{4}$. Then from Lemmas 2.2-2.3 and the fact that $n \geq 2, r \leq 1$, we have

$$
\frac{4 r^{2} \epsilon}{n^{2}}+\frac{2 r^{2}}{n^{2}}=\frac{3 r^{2}}{n^{2}}<1
$$

So

$$
|E(r)| \leq C r H(r)+D(r)
$$

Thus

$$
N(r)=r \frac{D(r)+E(r)}{H(r)} \geq r \frac{D(r)-|E(r)|}{H(r)} \geq-C r
$$

which is the desired result.
Remark 2.1 It is obvious that the result of the above lemmas also hold for the frequency centered at other points.

Remark 2.2 The frequency of a harmonic function is obviously nonnegative. For a polyharmonic function, the frequency may not be nonnegative, but from Lemma 2.4, one knows that it also has a lower bound.

Next we will show the monotonicity formula for this frequency.
Theorem 2.1 Let u be a k-polyharmonic function. Then there exists two positive constants C_{0} and C depending only on n and k such that if $N(r) \geq C_{0}$, then it holds that

$$
\begin{equation*}
\frac{N^{\prime}(r)}{N(r)} \geq-C \tag{2.6}
\end{equation*}
$$

Proof It is easy to check that

$$
\begin{equation*}
\frac{N^{\prime}(r)}{N(r)}=\frac{1}{r}+\frac{D^{\prime}(r)+E^{\prime}(r)}{D(r)+E(r)}-\frac{H^{\prime}(r)}{H(r)} \tag{2.7}
\end{equation*}
$$

We calculate $D^{\prime}(r), E^{\prime}(r)$ and $H^{\prime}(r)$ separately. We write $H(r)$ as follows:

$$
H(r)=\int_{|x=r|} u^{2}(x) \mathrm{d} \sigma_{x}=r^{n-1} \int_{|y|=1} u^{2}(r y) \mathrm{d} \sigma_{y}
$$

where $\mathrm{d} \sigma_{x}$ and $\mathrm{d} \sigma_{y}$ are the $(n-1)$-Hausdorff measures on the corresponding spheres. This implies that

$$
H_{i}^{\prime}(r)=(n-1) r^{n-2} \int_{|y|=1} u_{i}^{2}(r y) \mathrm{d} \sigma_{y}+2 r^{n-1} \int_{|y|=1} u_{i}(r y) u_{i \nu}(r y) \mathrm{d} \sigma_{y}
$$

$$
=\frac{n-1}{r} H_{i}(r)+2 \int_{\partial B_{r}} u_{i} u_{i \nu} \mathrm{~d} \sigma .
$$

So

$$
\begin{equation*}
H^{\prime}(r)=2 \sum_{i=1}^{k} \int_{\partial B_{r}} u_{i} u_{i \nu} \mathrm{~d} \sigma+\frac{n-1}{r} H(r) . \tag{2.8}
\end{equation*}
$$

Now consider $D^{\prime}(r)$ and $E^{\prime}(r)$. First note that

$$
\begin{aligned}
& D^{\prime}(r)=\sum_{i=1}^{k} D_{i}^{\prime}(r) \\
& E^{\prime}(r)=\sum_{i=1}^{k} E_{i}^{\prime}(r)
\end{aligned}
$$

where

$$
D_{i}^{\prime}(r)=\int_{\partial B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} \sigma
$$

and

$$
E_{i}^{\prime}(r)=\int_{\partial B_{r}} u_{i} u_{i+1} \mathrm{~d} \sigma
$$

For $D_{i}^{\prime}(r)$, it holds that

$$
\begin{aligned}
D_{i}^{\prime}(r) & =\int_{\partial B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} x=\frac{1}{r} \int_{\partial B_{r}}\left|\nabla u_{i}\right|^{2} \cdot x \cdot \frac{x}{r} \mathrm{~d} x=\frac{1}{r} \int_{B_{r}} \operatorname{div}\left(\left|\nabla u_{i}\right|^{2} \cdot x\right) \mathrm{d} x \\
& =\frac{n}{r} \int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} x+\frac{2}{r} \int_{B_{r}} \frac{\partial u_{i}}{\partial x_{j}} \cdot \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{l}} \cdot x_{l} \mathrm{~d} x \\
& =\frac{n}{r} D_{i}(r)+\frac{2}{r} \int_{B_{r}} \frac{\partial}{\partial x_{j}}\left(\frac{\partial u_{i}}{\partial x_{l}}\right)\left(\frac{\partial u_{i}}{\partial x_{j}} \cdot x_{l}\right) \mathrm{d} x \\
& =\frac{n}{r} D_{i}(r)+\frac{2}{r} \int_{\partial B_{r}} \frac{\partial u_{i}}{\partial x_{l}} \frac{\partial u_{i}}{\partial x_{j}} \frac{x_{j}}{r} \cdot x_{l} \mathrm{~d} \sigma-\frac{2}{r} \int_{B_{r}} \frac{\partial u_{i}}{\partial x_{l}} \cdot \frac{\partial}{\partial x_{j}}\left(\frac{\partial u_{i}}{\partial x_{j}} \cdot x_{l}\right) \mathrm{d} x \\
& =\frac{n-2}{r} D_{i}(r)+2 \int_{\partial B_{r}} u_{i \nu}^{2} \mathrm{~d} \sigma-\frac{2}{r} \int_{B_{r}} \nabla u_{i} \cdot x \cdot u_{i+1} \mathrm{~d} x
\end{aligned}
$$

For $E_{i}^{\prime}(r)$, we have

$$
\begin{aligned}
E_{i}^{\prime}(r) & =\int_{\partial B_{r}} u_{i} u_{i+1} \mathrm{~d} \sigma=\frac{1}{r} \int_{\partial B_{r}} u_{i} u_{i+1} x \cdot \frac{x}{r} \mathrm{~d} x=\frac{1}{r} \int_{B_{r}} \operatorname{div}\left(u_{i} u_{i+1} x\right) \mathrm{d} x \\
& =\frac{n}{r} \int_{B_{r}} u_{i} u_{i+1} \mathrm{~d} x+\frac{1}{r} \int_{B_{r}} u_{i+1} \nabla u_{i} \cdot x \mathrm{~d} x+\frac{1}{r} \int_{B_{r}} u_{i} \nabla u_{i+1} \cdot x \mathrm{~d} x \\
& =\frac{n}{r} E_{i}(r)+\frac{1}{r} \int_{B_{r}} u_{i+1} \nabla u_{i} \cdot x \mathrm{~d} x+\frac{1}{r} \int_{B_{r}} u_{i} \nabla u_{i+1} \cdot x \mathrm{~d} x
\end{aligned}
$$

Thus

$$
\begin{aligned}
D_{i}^{\prime}(r)+E_{i}^{\prime}(r)= & \frac{n-2}{r}\left(D_{i}(r)+E_{i}(r)\right)+2 \int_{\partial B_{r}} u_{i \nu}^{2} \mathrm{~d} \sigma \\
& +\frac{1}{r} \int_{B_{r}} \nabla u_{i+1} \cdot x \cdot u_{i} \mathrm{~d} x-\frac{1}{r} \int_{B_{r}} u_{i} \cdot x \cdot u_{i+1} \mathrm{~d} x
\end{aligned}
$$

$$
+\frac{2}{r} \int_{B_{r}} u_{i} u_{i+1} \mathrm{~d} x
$$

So

$$
\begin{aligned}
\frac{D^{\prime}(r)+E^{\prime}(r)}{D(r)+E(r)}= & \frac{n-2}{r}+2 \frac{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i \nu}^{2} \mathrm{~d} \sigma}{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i} u_{i \nu} \mathrm{~d} \sigma} \\
& +\frac{1}{r} \frac{\sum_{i=1}^{k}\left(\int_{B_{r}} \nabla u_{i+1} \cdot x \cdot u_{i} \mathrm{~d} x-\int_{B_{r}} \nabla u_{i} \cdot x \cdot u_{i+1} \mathrm{~d} x+2 \int_{B_{r}} u_{i} u_{i+1} \mathrm{~d} x\right)}{\sum_{i=1}^{k}\left(\int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} x+\int_{B_{r}} u_{i} u_{i+1} \mathrm{~d} x\right)} \\
= & \frac{n-2}{r}+2 \frac{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i \nu}^{2} \mathrm{~d} \sigma}{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i} u_{i \nu} \mathrm{~d} \sigma}+\frac{1}{r} \frac{\mathrm{R}_{1}-\mathrm{R}_{2}+2 \mathrm{R}_{3}}{D(r)+E(r)} .
\end{aligned}
$$

Then we will estimate $\left|\mathrm{R}_{1}\right|,\left|\mathrm{R}_{2}\right|$ and $\left|\mathrm{R}_{3}\right|$ separately.

$$
\begin{aligned}
\left|\mathrm{R}_{1}\right| & \leq \sum_{i=1}^{k}\left|\int_{B_{r}} \nabla u_{i+1} \cdot x \cdot u_{i} \mathrm{~d} x\right| \leq \frac{r}{2}\left(\sum_{i=1}^{k} \int_{B_{r}}\left|\nabla u_{i+1}\right|^{2} \mathrm{~d} x+\sum_{i=1}^{k} \int_{B_{r}} u_{i}^{2} \mathrm{~d} x\right) \\
& \leq C r \sum_{i=1}^{k}\left(\int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} x+\int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma\right)
\end{aligned}
$$

From the similar arguments, we have

$$
\begin{aligned}
\left|\mathrm{R}_{2}\right| & \leq \sum_{i=1}^{k}\left|\int_{B_{r}} \nabla u_{i} \cdot x \cdot u_{i+1} \mathrm{~d} x\right| \leq \frac{r}{2} \sum_{i=1}^{k}\left(\int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} x+\int_{B_{r}}\left|u_{i+1}\right|^{2} \mathrm{~d} x\right) \\
& \leq C r \sum_{i=1}^{k}\left(\int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} x+\int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\mathrm{R}_{3}\right| & \leq \sum_{i=1}^{k}\left|\int_{B_{r}} u_{i} u_{i+1} \mathrm{~d} x\right| \leq \frac{1}{2} \sum_{i=1}^{k}\left(\int_{B_{r}} u_{i}^{2} \mathrm{~d} x+\int_{B_{r}} u_{i+1}^{2} \mathrm{~d} x\right) \\
& \leq C r\left(\int_{B_{r}}\left|\nabla u_{i}\right|^{2} \mathrm{~d} x+\int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma\right) .
\end{aligned}
$$

From the assumption that $N(r) \geq C_{0}$ and the proof of Lemma 2.4, we have

$$
|E(r)| \leq C H(r)+\frac{3}{4} D(r) \leq \frac{C}{C_{0}}(D(r)+|E(r)|)+\frac{3}{4} D(r),
$$

where C is the constant in Lemma 2.4. Choose C_{0} large enough such that

$$
\left(\frac{C}{C_{0}+\frac{3}{4}}\right) \frac{C_{0}}{C_{0}-C}=\frac{7}{8}
$$

Then

$$
D(r)+E(r) \geq \frac{1}{8} D(r) .
$$

So

$$
\frac{\left|\mathrm{R}_{1}-\mathrm{R}_{2}+2 \mathrm{R}_{3}\right|}{D(r)+E(r)} \leq \frac{C D(r)+C H(r)}{D(r)+E(r)} \leq C .
$$

Thus

$$
\frac{D^{\prime}(r)+E^{\prime}(r)}{D(r)+E(r)} \geq-C+\frac{n-2}{r}+2 \frac{\sum_{i=1}^{n} \int_{\partial B_{r}} u_{i \nu}^{2} \mathrm{~d} \sigma}{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i} u_{i \nu} \mathrm{~d} \sigma}
$$

From (2.8), we have

$$
\frac{H^{\prime}(r)}{H(r)}=\frac{n-1}{r}+2 \frac{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i} u_{i \nu} \mathrm{~d} \sigma}{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma}
$$

So we finally get

$$
\frac{N^{\prime}(r)}{N(r)} \geq 2\left(\frac{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i \nu}^{2} \mathrm{~d} \sigma}{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i} u_{i \nu} \mathrm{~d} \sigma}-\frac{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i} u_{i \nu} \mathrm{~d} \sigma}{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma}\right)-C \geq-C
$$

This ends the proof.
Remark 2.3 The above theorem also holds for the frequency centered at other point, i.e., if u is a polyharmonic function and $N(p, r)$ is the frequency of u centered at the point p with radius r, then it holds that

$$
\begin{equation*}
\frac{\mathrm{d} N(p, r)}{\mathrm{d} r} \cdot \frac{1}{N(p, r)} \geq-C \tag{2.9}
\end{equation*}
$$

if $N(p, r) \geq C_{0}$, where C_{0} and C are two positive constants depending only on n and k.
Lemma 2.5 For any $p \in \overline{B_{\frac{1}{4}}}$, we have

$$
\begin{equation*}
N\left(p, \frac{1}{2}(1-|p|)\right) \leq C_{1} N(1)+C_{2} \tag{2.10}
\end{equation*}
$$

where C_{1} and C_{2} are positive constants depending only on n and k.
Proof We only prove the case that $|p|=\frac{1}{4}$. Other cases are similar. Note that $B_{\frac{3}{4}}(p) \subseteq B_{1}$ and $B_{\frac{1}{4}} \subseteq B_{\frac{1}{2}}(p)$. From Theorem 2.1, we have

$$
\begin{equation*}
\sum_{i=1}^{k} \int_{B_{\frac{3}{4}}(p)} u_{i}^{2} \mathrm{~d} x \leq 4^{C N(1)+C} \sum_{i=1}^{k} \int_{B_{\frac{1}{2}}(p)} u_{i}^{2} \mathrm{~d} \sigma . \tag{2.11}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{\left|\partial B_{\frac{5}{8}}(p)\right|} \int_{\partial B_{\frac{5}{8}}(p)} u_{i}^{2} \mathrm{~d} \sigma \leq 4^{C N(1)+C} \sum_{i=1}^{k} \frac{1}{\left|\partial B_{\frac{1}{2}}(p)\right|} \int_{\partial B_{\frac{1}{2}}(p)} u_{i}^{2} \mathrm{~d} \sigma . \tag{2.12}
\end{equation*}
$$

In fact, from (1.3), (2.8), Lemma 2.4 and some direct calculation, we know that

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} r} \log \left(\sum_{i=1}^{k} \frac{1}{\left|\partial B_{r}(p)\right|} \int_{\partial B_{r}(p)} u_{i}^{2} \mathrm{~d} \sigma\right) & =\frac{1-n}{r}+\frac{\mathrm{d}}{\mathrm{~d} r} \log (H(p, r)) \\
& =\frac{1-n}{r}+\frac{H^{\prime}(p, r)}{H(p, r)} \\
& =\frac{n-1}{r}+\frac{n-1}{r}+2 \frac{\sum_{i=1}^{k} \int_{\partial B_{r}(p)} u_{i} u_{i \nu} \mathrm{~d} \sigma}{H(p, r)} \\
& =\frac{2}{r} N(p, r) \geq-C . \tag{2.13}
\end{align*}
$$

Thus

$$
\begin{aligned}
\sum_{i=1}^{k} \int_{B_{\frac{3}{4}}^{4}(p)} u_{i}^{2} \mathrm{~d} x & \geq \sum_{i=1}^{k} \int_{B_{\frac{3}{4}}^{4}(p)-B_{\frac{5}{8}}(p)} u_{i}^{2} \mathrm{~d} \sigma \\
& =\sum_{i=1}^{k} \int_{\frac{5}{8}}^{\frac{3}{4}} r^{n-1} \frac{1}{\left|\partial B_{r}(p)\right|} \int_{\partial B_{r}(p)} u_{i}^{2} \mathrm{~d} \sigma \\
& \geq C \sum_{i=1}^{k} \frac{1}{\left|\partial B_{\frac{5}{8}}(p)\right|} \int_{\partial B_{\frac{5}{8}}(p)} u_{i}^{2} \mathrm{~d} \sigma,
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=1}^{k} \int_{B_{\frac{1}{2}}(p)} u_{i}^{2} \mathrm{~d} x & =\sum_{i=1}^{k} \int_{0}^{\frac{1}{2}} r^{n-1} \frac{1}{\left|\partial B_{r}(p)\right|} \int_{\partial B_{r}(p)} u_{i}^{2} \mathrm{~d} \sigma \\
& \leq C \sum_{i=1}^{k} \frac{1}{\left|\partial B_{\frac{1}{2}}(p)\right|} \int_{\partial B_{\frac{1}{2}}(p)} u_{i}^{2} \mathrm{~d} \sigma
\end{aligned}
$$

So the claim (2.12) holds. Integrating (2.13) from $\frac{1}{2}$ to $\frac{5}{8}$, we obtain

$$
\log \left(\sum_{i=1}^{k} \frac{1}{\left|\partial B_{\frac{5}{8}}(p)\right|} \int_{\partial B_{\frac{5}{8}}(p)} u_{i}^{2} \mathrm{~d} \sigma\right)-\log \left(\sum_{i=1}^{k} \frac{1}{\left|\partial B_{\frac{1}{2}}(p)\right|} \int_{\partial B_{\frac{1}{2}}(p)} u_{i}^{2} \mathrm{~d} \sigma\right)=\int_{\frac{1}{2}}^{\frac{5}{8}} \frac{2 N(p, r)}{r} \mathrm{~d} r .
$$

From Theorem 2.1, we know that

$$
\int_{\frac{1}{2}}^{\frac{5}{8}} \frac{2 N(p, r)}{r} \mathrm{~d} r \geq C N\left(p, \frac{1}{2}\right)-C
$$

So

$$
N\left(p, \frac{1}{2}\right) \leq C N(1)+C
$$

Then from Theorem 2.1 again, we get

$$
N(p, r) \leq C N(1)+C
$$

for any $r \leq \frac{1}{2}$, and that is the desired result.

3 Doubling Conditions

In this section, we will show the doubling condition of a polyharmonic function u. In fact, from the proof of Lemma 2.5, it is easy to see that the following doubling condition holds.

Lemma 3.1 Let u be a k-polyharmonic function, and assume that $2 r<1$. Then it holds that

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{\left|\partial B_{2 r}\right|} \int_{\partial B_{2 r}} u_{i}^{2} \mathrm{~d} \sigma \leq 2^{C N(1)+C} \sum_{i=1}^{k} \frac{1}{\left|\partial B_{r}\right|} \int_{\partial B_{r}} u_{i}^{2} \mathrm{~d} \sigma \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{\left|B_{2 r}\right|} \int_{B_{2 r}} u_{i}^{2} \mathrm{~d} x \leq 2^{C^{\prime} N(1)+C^{\prime}} \sum_{i=1}^{k} \frac{1}{\left|B_{r}\right|} \int_{B_{r}} u_{i}^{2} \mathrm{~d} x \tag{3.2}
\end{equation*}
$$

where C and C^{\prime} are two positive constants depending only on n and k.
Proof We only need to prove the form (3.1). Because one can simply integrate (3.1) from 0 to r to get (3.2).

Integrating (2.13) from r to $2 r$, we know that

$$
\log \left(\frac{H(2 r)}{(2 r)^{n-1}}\right)-\log \left(\frac{H(r)}{r^{n-1}}\right)=2 \int_{r}^{2 r} \frac{N(t)}{t} \mathrm{~d} t
$$

and thus

$$
H(2 r) \leq 2^{n} H(r) \mathrm{e}^{2 \int_{r}^{2 r} \frac{N(t)}{t} \mathrm{~d} t}
$$

From Theorem 2.1, we know that $N(t) \leq \max \left\{C N(2 r), C_{0}\right\} \leq C N(2 r)+C$ for any $t \in(r, 2 r)$. Here C is some positive constant depending only on n and k, and C_{0} is the same constant as in Theorem 2.1. So

$$
H(2 r) \leq 2^{n} H(r) \mathrm{e}^{C N(2 r)+C}=2^{C N(2 r)+C} H(r),
$$

which is the desired result.
It is known that the doubling condition for harmonic functions and bi-harmonic functions as follows.

Lemma 3.2 Let u be a harmonic function and $2 r<1$. Then

$$
\begin{equation*}
\frac{1}{\left|B_{2 r}\right|} \int_{B_{2 r}} u^{2} \mathrm{~d} x \leq 2^{C N(1)+C} \frac{1}{\left|B_{r}\right|} \int_{B_{r}} u^{2} \mathrm{~d} x, \tag{3.3}
\end{equation*}
$$

where $N(r)$ is the frequency of u and C is a positive constant depending only on n.
Lemma 3.3 Let u be a bi-harmonic function and $2 r<1$. Then

$$
\begin{equation*}
\frac{1}{\left|B_{2 r}\right|} \int_{B_{2 r}} u^{2} \mathrm{~d} x \leq \frac{1}{r^{4}} 2^{C\left(N_{1}(1)+N_{2}(1)\right)+C} \frac{1}{\left|B_{r}\right|} \int_{B_{r}} u^{2} \mathrm{~d} x, \tag{3.4}
\end{equation*}
$$

where $N_{1}(r)$ is the frequency of $u, N_{2}(r)$ is the frequency of $\triangle u$, and C is a positive constant depending only on n.

Lemmas 3.2-3.3 can be seen in [9] and [13], respectively.
Now we will show the doubling condition for a polyharmonic function.
Theorem 3.1 Let u be a k-polyharmonic function, i.e., u satisfies that $\triangle^{k} u=0$ in $B_{1} \subseteq \mathbb{R}^{n}$ and assume that $2 r<1, n \geq 2$. Then it holds that

$$
\begin{equation*}
\frac{1}{\left|B_{2 r}\right|} \int_{B_{2 r}} u^{2} \mathrm{~d} x \leq \frac{1}{r^{C}} 2^{C\left(\sum_{i=1}^{k} N_{i}(1)\right)+C} \frac{1}{\left|B_{r}\right|} \int_{B_{r}} u^{2} \mathrm{~d} x \tag{3.5}
\end{equation*}
$$

where C is a positive constant depending only on n and k.
Proof We prove this lemma by the inductions.
Assume that we have already known that for any j satisfies $k \geq j \geq l$, form (3.5) and the following inequality

$$
\begin{equation*}
\int_{B_{r}} u_{j+1}^{2} \mathrm{~d} x \leq \frac{1}{r^{C}} 2^{C} \sum_{i=j+1}^{k} N_{i}(1)+C \quad \int_{B_{r}} u_{j}^{2} \mathrm{~d} x \tag{3.6}
\end{equation*}
$$

holds for u_{j}. From the above two lemmas, we know that for $j=k$ and $j=k-1$, these two inequalities hold. Now we will prove that the inequalities (3.5) and (3.6) hold for u replaced by u_{l-1} and thus the theorem is proved.

Noting that

$$
\triangle^{2} u_{l-1}=u_{l+1},
$$

it holds that for any text function $\psi \in C_{0}^{\infty}\left(B_{1}\right)$,

$$
\begin{equation*}
\int_{B_{1}} \triangle u_{l-1} \Delta \psi \mathrm{~d} x=\int_{B_{1}} u_{l+1} \psi \mathrm{~d} x . \tag{3.7}
\end{equation*}
$$

Choose $\psi=u_{l-1} \phi^{2}$, where ϕ satisfies

$$
\phi=1 \quad \text { in } B_{r}, \quad \phi=0 \quad \text { outside } B_{2 r},
$$

and

$$
|\nabla \phi|<\frac{C}{r}, \quad\left|\nabla^{2} \phi\right|<\frac{C}{r^{2}}
$$

Put this Ψ into (3.7), we have

$$
\begin{aligned}
\int_{B_{1}} u_{l+1} u_{l-1} \phi^{2} \mathrm{~d} x & =\int_{B_{1}} \triangle u_{l-1} \triangle\left(u_{l-1} \phi^{2}\right) \mathrm{d} x \\
& =\int_{B_{1}} u_{l}^{2} \phi^{2} \mathrm{~d} x+4 \int_{B_{1}} u_{l} \phi \nabla u_{l-1} \nabla \phi \mathrm{~d} x+2 \int_{B_{1}} u_{l} u_{l-1}\left(|\nabla \phi|^{2}+\phi \triangle \phi\right) \mathrm{d} x \\
& =\int_{B_{1}} u_{l}^{2} \phi^{2} \mathrm{~d} x-4 \int_{B_{1}} u_{l-1} \phi \nabla u_{l} \nabla \phi \mathrm{~d} x-2 \int_{B_{1}} u_{l} u_{l-1}\left(|\nabla \phi|^{2}+\phi \triangle \phi\right) \mathrm{d} x .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int_{B_{1}} u_{l}^{2} \phi^{2} \mathrm{~d} x & =\int_{B_{1}} u_{l-1} u_{l+1} \phi^{2} \mathrm{~d} x+4 \int_{B_{1}} u_{l-1} \phi \nabla u_{l} \nabla \phi \mathrm{~d} x+2 \int_{B_{1}} u_{l} u_{l-1}\left(|\nabla \phi|^{2}+\phi \triangle \phi\right) \mathrm{d} x \\
& \leq\left(\int_{B_{1}} u_{l+1}^{2} \phi^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{B_{1}} u_{l-1}^{2} \phi^{2} \mathrm{~d} x\right)^{\frac{1}{2}}+4\left(\int_{B_{1}} u_{l-1}^{2}|\nabla \phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{B_{1}}\left|\nabla u_{l}\right|^{2} \phi^{2} \mathrm{~d} x\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
+2\left(\int_{B_{1}} u_{l}^{2}\left(|\nabla \phi|^{2}+|\phi \Delta \phi|\right) \mathrm{d} x\right)^{\frac{1}{2}}\left(\int_{B_{1}} u_{l-1}^{2}\left(|\nabla \phi|^{2}+|\phi \Delta \phi|\right) \mathrm{d} x\right)^{\frac{1}{2}}
$$

Now we consider the estimate of the term $\int_{B_{1}}\left|\nabla u_{l}\right|^{2} \phi^{2} \mathrm{~d} x$.

$$
\begin{aligned}
& \int_{B_{1}}\left|\nabla u_{l}\right|^{2} \phi^{2} \mathrm{~d} x \\
= & -\int_{B_{1}} u_{l} u_{l+1} \phi^{2} \mathrm{~d} x-2 \int_{B_{1}} u_{l} \phi \nabla u_{l} \nabla \phi \mathrm{~d} x \\
\leq & \left(\int_{B_{1}} u_{l}^{2} \phi^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{B_{1}} u_{l+1}^{2} \phi^{2} \mathrm{~d} x\right)^{\frac{1}{2}}+\left(\int_{B_{1}} u_{l}^{2}|\nabla \phi|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{B_{1}}\left|\nabla u_{l}\right|^{2} \phi^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \\
\leq & \left(\int_{B_{1}} u_{l}^{2} \phi^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{B_{1}} u_{l+1}^{2} \phi^{2} \mathrm{~d} x\right)^{\frac{1}{2}}+2 \int_{B_{1}} u_{l}^{2}|\nabla \phi|^{2} \mathrm{~d} x+\frac{1}{2} \int_{B_{1}}\left|\nabla u_{l}\right|^{2} \phi^{2} \mathrm{~d} x .
\end{aligned}
$$

Thus we have

$$
\int_{B_{1}}\left|\nabla u_{l}\right|^{2} \phi^{2} \mathrm{~d} x \leq 2\left(\int_{B_{1}} u_{l}^{2} \phi^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\left(\int_{B_{1}} u_{l+1}^{2} \phi^{2} \mathrm{~d} x\right)^{\frac{1}{2}}+4 \int_{B_{1}} u_{l}^{2}|\nabla \phi|^{2} \mathrm{~d} x .
$$

From

$$
\int_{B_{r}} u_{l+1}^{2} \mathrm{~d} x \leq \frac{1}{r^{C}} 2^{C} \sum_{i=l+1}^{k} N_{i}(1)+C \quad \int_{B_{r}} u_{l}^{2} \mathrm{~d} x
$$

and the doubling condition for u_{l}, we have

$$
\begin{equation*}
\int_{B_{r}} u_{l}^{2} \mathrm{~d} x \leq \frac{1}{r^{C}} 2^{C \sum_{i=l}^{k} N_{i}(1)+C} \int_{B_{2 r}} u_{l-1}^{2} \mathrm{~d} x . \tag{3.8}
\end{equation*}
$$

This shows that (3.6) holds for $j=l-1$. Then from Lemma 3.1 and the induction assumptions, we have

$$
\begin{equation*}
\int_{B_{r}} u_{l-1}^{2} \mathrm{~d} x \leq \frac{1}{r^{C}} 2^{C} \sum_{i=l-1}^{k} N_{i}(1)+C \quad \int_{B_{2 r}} u_{l-1}^{2} \mathrm{~d} x \tag{3.9}
\end{equation*}
$$

and thus the desired result holds by inductions.

4 Measure Estimates of Nodal Sets

In this section, we will show the upper bound of the measure of the nodal set for a polyharmonic function u, i.e., we will give the proof of Theorem 1.1.

To estimate the measure of the nodal set, we need an estimate for the number of zero points of analytic functions which was first proved in [2].

Lemma 4.1 Suppose that $f: B_{1} \subseteq \mathbb{C} \rightarrow \mathbb{C}$ is analytic with

$$
|f(0)|=1 \quad \text { and } \quad \sup _{B_{1}}|f| \leq 2^{N}
$$

for some positive constant N. Then for any $r \in(0,1)$, there holds

$$
\begin{equation*}
\mathcal{H}^{0}\left(\left\{z \in B_{r}: f(z)=0\right\}\right) \leq C N \tag{4.1}
\end{equation*}
$$

where C is a positive constant depending only on r.

We also need the following priori estimate.
Lemma 4.2 Let u be a polyharmonic function. Then if $2 r<1$, we have

$$
\begin{equation*}
|u|_{L^{\infty}\left(B_{r}\right)} \leq \frac{1}{r^{C}} 2^{C} \sum_{i=1}^{k} N_{i}(1)+C \quad \sum_{i=1}^{k}\left(\frac{1}{\left|B_{R}\right|} \int_{B_{r}} u_{i}^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \tag{4.2}
\end{equation*}
$$

where C is a positive constant depending only on n and k.
Proof Let

$$
w_{i, r}(x)=\int_{B_{r}} \Gamma(x-y) u_{i+1}(y) \mathrm{d} y, \quad i=1,2, \cdots, k-1
$$

where $\Gamma(x-y)=c|x-y|^{2-n}$ is the fundamental solution of the Laplace operator. Then

$$
\left|w_{i, r}(x)\right|=\left|\int_{B_{r}} \Gamma(x-y) u_{i+1}(y) \mathrm{d} y\right| \leq C r^{2} \sup _{B_{r}}\left|u_{i+1}(y)\right| .
$$

It also holds that

$$
\Delta w_{i, r}=u_{i+1} \quad \text { in } B_{r}
$$

So

$$
\triangle\left(u_{i}-w_{i, r}\right)=0 \quad \text { in } B_{r} .
$$

Because u_{k} is a harmonic function, it is known that for any $y \in B_{r}$,

$$
\begin{aligned}
\left|u_{k}(y)\right| & =\left|\frac{1}{\left|B_{r}(y)\right|} \int_{B_{r}(y)} u_{k}(z) \mathrm{d} z\right| \leq\left(\frac{1}{\left|B_{r}(y)\right|} \int_{B_{r}(y)} u_{k}^{2}(z) \mathrm{d} z\right)^{\frac{1}{2}} \\
& \leq C\left(\frac{1}{\left|B_{2 r}\right|} \int_{B_{2 r}} u_{k}^{2}(z) \mathrm{d} z\right)^{\frac{1}{2}} \leq 2^{C N_{k}(1)+C}\left(\frac{1}{\left|B_{r}\right|} \int_{B_{r}} u_{k}^{2}(z) \mathrm{d} z\right)^{\frac{1}{2}}
\end{aligned}
$$

Thus for any $x \in B_{r}$,

$$
\left|w_{k-1, r}(x)\right| \leq 2^{C N_{k}(1)+C} r^{2}\left(\frac{1}{\left|B_{r}\right|} \int_{B_{r}} u_{k}^{2}(z) \mathrm{d} z\right)^{\frac{1}{2}}
$$

On the other hand, from the fact that $u_{k-1}-w_{k-1,2 r}$ is harmonic in $B_{2 r}$, we know that for any $x \in B_{r}$,

$$
\begin{aligned}
& \left|u_{k-1}(x)-w_{k-1,2 r}(x)\right| \\
= & \left|\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}\left(u_{k-1}(z)-w_{k-1,2 r}(z)\right) \mathrm{d} z\right| \\
\leq & \left(\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} u_{k-1}^{2}(z) \mathrm{d} z\right)^{\frac{1}{2}}+\left(\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}\left|w_{k-1,2 r}(z)\right| \mathrm{d} z\right) \\
\leq & C\left(\frac{1}{\left|B_{2 r}\right|} \int_{B_{2 r}} u_{k-1}^{2}(z) \mathrm{d} z\right)^{\frac{1}{2}}+C r^{2} \sup _{y \in B_{2 r}}\left|u_{k}(y)\right| \\
\leq & \frac{1}{r^{C}} 2^{C\left(N_{k}(1)+N_{k-1}(1)\right)+C}\left(\frac{1}{\left|B_{r}\right|} \int_{B_{r}} u_{k-1}^{2}(z) \mathrm{d} z\right)^{\frac{1}{2}}+2^{C N_{k}(1)+C}\left(\frac{1}{\left|B_{r}\right|} \int_{B_{r}} u_{k}^{2}(z) \mathrm{d} z\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\leq \frac{1}{r^{C}} 2^{C\left(N_{k}(1)+N_{k-1}(1)\right)+C}\left(\left(\frac{1}{\left|B_{r}\right|} \int_{B_{r}} u_{k-1}^{2}(z) \mathrm{d} z\right)^{\frac{1}{2}}+\left(\frac{1}{\left|B_{r}\right|} \int_{B_{r}} u_{k}^{2}(z) \mathrm{d} z\right)\right)
$$

Then for $x \in B_{r}$,

$$
\begin{aligned}
\left|u_{k-1}(x)\right| & \leq\left|u_{k-1}(x)-w_{k-1,2 r}(x)\right|+\left|w_{k-1,2 r}(x)\right| \\
& \leq \frac{1}{r^{C}} 2^{C\left(N_{k}(1)+N_{k-1}(1)\right)+C}\left(\left(\frac{1}{\left|B_{r}\right|} \int_{B_{r}} u_{k-1}^{2}(z) \mathrm{d} z\right)^{\frac{1}{2}}+\left(\frac{1}{\left|B_{r}\right|} \int_{B_{r}} u_{k}^{2}(z) \mathrm{d} z\right)^{\frac{1}{2}}\right)
\end{aligned}
$$

That is the desired result for u_{k-1}. Repeat this argument k times, the desired result can be proved.

Now we show the measure estimate of the nodal set $\{x: u(x)=0\}$.
Proof of Theorem 1.1 Without loss of generality, we may assume

$$
\frac{1}{\left|B_{1}\right|} \int_{B_{1}} u^{2} \mathrm{~d} x=1
$$

Then from Theorem 3.1 and Lemma 2.5, it holds that

$$
\frac{1}{\left|B_{\frac{1}{16}}(p)\right|} \int_{B_{\frac{1}{16}}(p)} u^{2} \mathrm{~d} x \geq 4^{-C \sum_{i=1}^{k} N_{i}(1)-C}
$$

for any $p \in \partial B_{\frac{1}{4}}$. Then there exists a point $x_{p} \in B_{\frac{1}{16}}(p)$ such that

$$
\left|u\left(x_{p}\right)\right| \geq 2^{-C \sum_{i=1}^{k} N_{i}(1)-C}
$$

On the other hand, from Lemma 4.2 and (3.6), one knows that for any $x \in B_{\frac{1}{4}}$,

$$
|u(x)| \leq 2^{C \sum_{i=1}^{k} N_{i}(1)+C}
$$

Choose $p_{j} \in \partial B_{\frac{1}{4}}$ to be the point on the j-axis and take $f_{j}(\omega ; t)=u\left(x_{p_{j}}+t \omega\right)$ for $t \in\left(-\frac{5}{8}, \frac{5}{8}\right)$, where $\omega \in \mathcal{S}^{n-1}$. Then f_{j} is an analytic function with respect to t. Extend it to a complex analytic function $f_{j}(\omega ; z)$, and keep the upper bound. Then we have

$$
\begin{equation*}
\left|f_{j}(\omega ; 0)\right| \geq 2^{-C \sum_{i=1}^{k} N_{i}(1)-C} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f_{j}(\omega ; z)\right| \leq 2^{C \sum_{i=1}^{k} N_{i}(1)+C} \tag{4.4}
\end{equation*}
$$

Using Lemma 4.1, we have

$$
\mathcal{H}^{0}\left(\left\{|t|<\frac{5}{8}: u\left(x_{p_{j}}+t \omega\right)=0\right\}\right) \leq C \sum_{i=1}^{k} N_{i}(1)+C
$$

That means

$$
\mathcal{H}^{0}\left(\left\{t: u\left(x_{p_{j}}+t \omega\right)=0, x_{p_{j}}+t \omega \in B_{\frac{1}{16}}\right\}\right) \leq C \sum_{i=1}^{k} N_{i}(1)+C
$$

Then from the integral geometric formula, which can be seen in [3, 10], we have

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(\left\{x \in B_{\frac{1}{16}}: u(x)=0\right\}\right) \leq C \sum_{i=1}^{k} N_{i}(1)+C, \tag{4.5}
\end{equation*}
$$

and this is the desired result.

5 Growth Property of Polyharmonic Functions

In this section, we will derive a growth behavior of the polyharmonic functions in the whole space \mathbb{R}^{n}. The result is written in Theorem 1.2 .

Proof of Theorem 1.2 First assume that $N(r)$ is bounded, i.e., $N(r) \leq N_{0}$ on \mathbb{R}^{n}. Then we need to show that u is a polynomial.

Without loss of generality, assume

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{\left|\partial B_{1}\right|} \int_{\partial B_{1}} u_{i}^{2} \mathrm{~d} \sigma=1 \tag{5.1}
\end{equation*}
$$

From the mean value formula and the fact that u_{k} is a harmonic function, we have that

$$
\sup _{B_{r}}\left|u_{k}\right| \leq C r\left(\frac{1}{\left|\partial B_{2 r}\right|} \int_{\partial B_{2 r}} u_{k}^{2} \mathrm{~d} \sigma\right)^{\frac{1}{2}}
$$

holds for any $r>1$. For each $i=1,2, \cdots, k-1$, write u_{i} as $u_{i}=u_{i 1}^{2 r}+u_{i 2}^{2 r}$ as in the proof of Lemma 2.4, i.e.,

$$
\begin{array}{ll}
\triangle u_{i 1}^{2 r}=u_{i+1} & \text { in } B_{2 r}, \\
u_{i 1}^{2 r}=0 & \text { on } \partial B_{2 r}
\end{array}
$$

and

$$
\begin{array}{ll}
\triangle u_{i 2}^{2 r}=0 & \text { in } B_{2 r}, \\
u_{i 2}^{2 r}=u_{i} & \text { on } \partial B_{2 r} .
\end{array}
$$

Then from the priori estimate of $u_{i 1}^{2 r}$ and the mean value property of $u_{i 2}^{2 r}$, we have

$$
\begin{aligned}
\sup _{B_{r}}\left|u_{i}\right| & \leq \sup _{B_{r}}\left|u_{i 1}^{2 r}\right|+\sup _{B_{r}}\left|u_{i 2}^{2 r}\right| \\
& \leq C r^{2} \sup _{B_{2 r}}\left|u_{i+1}\right|+C r\left(\frac{1}{\left|\partial B_{2 r}\right|} \int_{\partial B_{2 r}} u_{i}^{2} \mathrm{~d} \sigma\right)^{\frac{1}{2}} .
\end{aligned}
$$

Thus for u_{k-1}, it holds that

$$
\begin{aligned}
\sup _{B_{r}}\left|u_{k-1}\right| & \leq C r^{2} \sup _{B_{2 r}}\left|u_{k}\right|+C r\left(\frac{1}{\left|\partial B_{2 r}\right|} \int_{\partial B_{2 r}} u_{i}^{2} \mathrm{~d} \sigma\right)^{\frac{1}{2}} \\
& \leq C r^{2}\left(\left(\frac{1}{\left|\partial B_{4 r}\right|} \int_{\partial B_{4 r}} u_{k}^{2} \mathrm{~d} \sigma\right)^{\frac{1}{2}}+\left(\frac{1}{\left|\partial B_{4 r}\right|} \int_{\partial B_{4 r}} u_{k-1}^{2} \mathrm{~d} \sigma\right)^{\frac{1}{2}}\right)
\end{aligned}
$$

Continue these arguments for k times, we get

$$
\begin{equation*}
\sup _{B_{r}}|u| \leq C r^{2 k-2} \sum_{i=1}^{k}\left(\frac{1}{\left|\partial B_{2^{k} r}\right|} \int_{\partial B_{2^{k_{r}}}} u_{i}^{2} \mathrm{~d} \sigma\right)^{\frac{1}{2}} . \tag{5.2}
\end{equation*}
$$

Thus from Lemma 3.1 and the assumption (5.1), we have that

$$
\begin{equation*}
\sup _{B_{r}}|u| \leq C r^{C N_{0}+C} \tag{5.3}
\end{equation*}
$$

holds for any $r>1$. Thus u must be a polynomial and the order of degree of u is less than or equal to $C N_{0}+C$, where C is a positive constant depending only on n and k.

If a k-polyharmonic function u is a polynomial, then from the fact that

$$
N(r)=r \frac{\sum_{i=1}^{k} \int_{\partial B_{r}} u_{i} u_{i \nu} \mathrm{~d} \sigma}{\sum_{\partial B_{r}} u_{i}^{2}}
$$

it is easy to check that $N(r)$ is bounded by the order of degree of u. Of course, for any $i=2, \cdot, k$, the functions u_{i} are all polynomials.

References

[1] Almgren, F. J., Dirichlet's problem for muptiple valued functions and the regularity of Mass minimizing integral currents, Minimal Submanifolds and Geodesics, Obata, M. (ed.), North Holland, Amsterdam, 1979, 1-6.
[2] Donnelly, H. and Fefferman, C., Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math., 93, 1988, 161-183.
[3] Federer, H., Geometric Measure Theory, Springer-Verlag, New York, 1969.
[4] Garofalo, N. and Lin, F. H., Monotonicity properties of variational integrals, A_{p}-weights and unique continuation, Indiana Univ. Math. J., 35, 1986, 245-267.
[5] Garofalo, N. and Lin, F. H., Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure. Appl. Math., 40, 1987, 347-366.
[6] Han, Q., Schäuder estimates for elliptic operators with applications to nodal sets, The Journal of Geometric Analysis, 10(3), 2000, 455-480.
[7] Han, Q., Hardt, R. and Lin, F. H., Singular sets of higher order elliptic equations, Communications in Partial Differential Equations, 28, 2003, 2045-2063.
[8] Han, Q. and Lin, F. H., Nodal sets of solutions of elliptic differential equations, http://nd.edu/qhan/ nodal.pdf.
[9] Lin, F. H., Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure. Appl. Math., 44, 1991, 287-308.
[10] Lin, F. H. and Yang, X. P., Geometric Measure Theory: An Introduction, Advanced Mathematics, 1, Science Press, Beijing; International Press, Boston, 2002.
[11] Liu, H. R., Tian, L. and Yang, X. P., The growth of H-harmonic functions on the Heisenberg group, Science China Mathematics, 54(4), 2014, 795-806.
[12] Schoen, R. M. and Yau, S. T., Lectures on Differential Geometry, International Press, Cambridge, MA, 1994.
[13] Tian, L. and Yang, X. P., Measure estimates of nodal sets of bi-harmonic functions, Journal of Differential Equations, 256(2), 2014, 558-576.

[^0]: Manuscript received April 16, 2015. Revised August 1, 2016.
 ${ }^{1}$ Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China. E-mail: tianlong19850812@163.com
 *This work was supported by the National Natural Science Foundation of China (Nos. 11401307, 1150 1292).

