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Abstract The 1-D piston problem for the pressure gradient equations arising from the

flux-splitting of the compressible Euler equations is considered. When the total variations

of the initial data and the velocity of the piston are both sufficiently small, the author

establishes the global existence of entropy solutions including a strong rarefaction wave

without restriction on the strength by employing a modified wave front tracking method.

Keywords Piston problem, Pressure gradient equations, Rarefaction wave, Wave

front tracking method, Interaction of waves

2000 MR Subject Classification 35A01, 35L50, 35Q35, 35R35, 76N10

1 Introduction

The piston problem is a special initial-boundary value problem in fluid dynamics which can

be described as follows (see [8, 16]). In a thin long tube closed at one end by a piston and

open at the other end, any motion of the piston causes the corresponding motion of the gas in

the tube. More precisely, if the piston is pulled backward relatively to the gas, a rarefaction

wave occurs and moves forward faster than the piston. Otherwise, a shock wave appears. In

reality, there also exist many multidimensional piston models, for example, the surface of an

inflatable balloon behaves as a spherically symmetric piston. The gas outside is compressed by

the expansion of the balloon, then a shock appears. When the location of the piston initially

degenerate into a single point, this phenomenon is related to explosive waves in physics. There

are many literatures on the existence and stability of shock front solutions for the classical

fluid. For one dimensional case, the global existence of strong shock front solutions to the 1-D

piston problem for the compressible isentropic Euler equations was established by Wang [14] in

BV space. For multidimensional case, the local existence of shock front solution to the axially

symmetrical piston problem for the full Euler systems was considered in [13]. The authors

in [6–7] considered the multidimensional axially symmetric piston problem and obtained the

global existence and stability of weak and strong shock solutions, respectively, for the isentropic

compressible Euler systems in BV space. When the function of piston boundary is smooth,

Chen [5] studied the piecewise smooth solutions for the multidimensional piston problem and

also established the global existence and stability of the shock front solutions for unsteady
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potential equations by partial hodograph transformation and nonlinear alternating iteration

techniques. Under the framework of L∞ space, the global entropy solution for the spherically

symmetric piston problem to Euler equations was constructed by the shock capturing approach

in [4].

Corresponding to the physical phenomenon when the piston is pulled back relatively to the

gas, Ding-Kuang-Zhang [9] proved the stability of strong rarefaction wave to this problem for

the full Euler equations from the mathematical point of view. In this paper, we are concerned

with the 1-D piston problem for pressure gradient equations. Our motivation is to establish

the stability of the strong rarefaction wave under the small perturbations of both the piston

velocity and the initial data. Comparing with the results involving strong shock waves, one

of the main difficulties is to capture and control the location of the strong rarefaction wave as

well as its strength when weak waves interact with strong rarefaction waves by Glimm scheme.

To overcome these obstacles, we employ the wave front tracking algorithm to construct the

approximate solutions. Developing from [15], we impose some weights on weak waves interacting

with strong rarefaction waves to measure the change of its strength after the interactions, and

prove the monotonously decreasing of the Glimm functional. Different from [9], due to lack of

the velocity in the eigenvalues of the pressure-gradient equations, we give some more restrictions

on the velocity of the piston to make 1-waves interact with the piston boundary possibly.

The pressure gradient equations of the compressible Euler system can be described by (see

[1, 11])





∂tρ = 0,

∂t(ρu) + ∂xp = 0,

∂t

(
ρ
(
e+

1

2
u2

))
+ ∂x(ρu) = 0,

(1.1)

where ρ, p and u represent the density, the pressure and the speed of the fluid, respectively,

and e is the internal energy. For the polytropic gas, the constitutive relations are given by

p = κργ exp(S/cv), e =
p

(γ − 1)ρ
,

where S stands for the entropy.

System (1.1) comes from the flux-splitting method in numerical analysis on the Euler system:





∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p) = 0,

∂t

(
ρ
(1
2
u2 + e

))
+ ∂x

(
u
(1
2
ρu2 + ρe+ p

))
= 0

(1.2)

by separating the pressure from the inertia in the flux (see [1, 11]). The pressure gradient

equations are still valid whenever the inertial effect is small compared to the pressure-gradient

effect of the flow as to be negligible. Thus, the pressure-gradient equations (1.1) have their

own physical meaning. Derived from the first equation of (1.1), ρ is independent of time. For
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simplicity, assume that ρ ≡ 1. Then system (1.1) can be written as





∂tu+ ∂xp = 0,

1

γ − 1
∂tp+ p∂xu = 0.

(1.3)

Through the following transformation




p = (γ − 1)p̃,

t =
1

γ − 1
t̃,

system (1.3) can be rewritten by
{
∂tu+ ∂xp = 0,

∂tp+ p∂xu = 0,
(1.4)

where t̃ and p̃ are still denoted as t and p provided no confusion occurs.

The eigenvalues of system (1.4) are

λ1 = −√
p, λ2 =

√
p. (1.5)

The corresponding right eigenvectors are

r1 = 2(1,−√
p)T, r2 = 2(1,

√
p)T. (1.6)

System (1.4) can be written in the general form of conservation law:

∂tW (U) + ∂xH(U) = 0, U = (u, p)T, (1.7)

where

W (U) =
(
u, p+

1

2
u2

)T

, H(U) = (p, pu)T.

The entropy-entropy flux pair of system (1.7) is a pair of C1 functions satisfying

∇W η(W (U))∇UH(U) = ∇Uq(W (U)).

Suppose that the initial gas satisfies u(x, 0) = u0(x), p(x, 0) = p0(x), and the piston moves

with a speed depending only on time t. Let the movement curve of the piston be x = b(t)

with the speed b′(t). We study the state of the gas in domain Ω = {(x, t) : x > b(t), t > 0}
with Γ = {(x, t) : x = b(t), t > 0} (see Figure 1). Then the initial-boundary conditions for the

piston problem can be described as
{
(u, p)(x, 0) = (u0(x), p0(x)),

u = b′(t) on x = b(t).
(1.8)

When the initial data is constant, and the function of piston boundary is convex, denoted

by x = b∗(t) (see Figure 2), the corresponding initial boundary conditions can be reduced to

the following:



(u, p)(x, 0) = (0, p)T,

u = b′∗(t), on x = b∗(t),
(1.9)
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Figure 1 Definition domain.

Figure 2 Background solution.

where b′∗(t) ∈ (u∗, 0), u∗ is the critical speed of the piston given by (2.10).

In this paper, we mainly consider the initial data and the piston boundary satisfying the

following assumptions:

(H1) The initial data U0 = (u0(x), p0(x))
T is a small perturbation of U = (0, p)T, i.e.,

‖U0 − U‖∞ +TV.U0(·) ≪ 1.

(H2) The boundary of the piston x = b(t) is Lipschitz continuous, and a small perturbation

of the boundary x = b∗(t). Moreover,

b(0) = 0, b′+(t) ∈ BV(R+;R),

where

b′+(t) = lim
τ→t+

b(τ)− b(t)

τ − t
.

In the following, we will give the definition of the entropy solutions of problem (1.7) and

(1.8).
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Definition 1.1 A bounded measurable function U(x, t) is an entropy solution of problem

(1.7) and (1.8), if

(i)
∫

Ω

(W (U)ϕt +H(U)ϕx)dxdt +

∫

Γ

(H(U)−W (U)b′(t))ϕdS +

∫ +∞

0

W (U)(x, 0)ϕ(x, 0)dx = 0

holds for any ϕ(x, t) ∈ C∞
c (Ω);

(ii) The Lax entropy inequality holds in the sense of distributions:

∂tη(U) + ∂xq(U) ≤ 0 in D′(Ω)

for any C2 convex entropy-entropy flux pair (η(U), q(U)).

The main result of this paper is given in the following theorem.

Theorem 1.1 Under the assumptions of (H1) and (H2), there exist positive constants ε, δ0

and M0 such that, if

‖U0 − U‖∞ +TV.{U0(·, [0,∞))}+ |b′+(0)− b′∗+(0)|+TV.{(b′+ − b′∗+)(·)} < ε, (1.10)

then, there exists a global existence of entropy solution U(x, t) to problem (1.7) and (1.8), in-

cluding a strong 2-rarefaction wave, which is a small perturbation of the corresponding solutions

to problem (1.7) and (1.9). In addition, ∀t > 0, it satisfies

U(x, t) ∈ BV(Ω) ∩D(U, δ0), (1.11)

and

TV.{U(·, t) : [b(t),+∞)} ≤ M0, (1.12)

where D(U, δ0) is defined by (2.12) in §2, and M0 is a constant depending on the initial data,

the background solution and TV.{b′(·)}.

Remark 1.1 The background solution here means the solution with constant initial data

and convex piston boundary, which will be further discussed in §2.

This paper is organized as follows. In §2, we first present some basic properties of elemen-

tary waves (shock and rarefaction waves). Then, we find the background solution and give

the solvability of the Riemann piston problem for system (1.7). In §3, we construct approx-

imate solutions by a modified wave front tracking method. In §4, we first consider the local

interaction estimates of perturbation waves and their reflections on the piston and the strong

rarefaction wave. Next, we construct the Glimm functional and prove its monotonicity. Then,

the compactness and the convergence of the approximate solution follow.

2 Background Solution

In this section, we will establish the solvability to problem (1.7) and (1.9) when the initial

data is constant, denoted by (0, p), and the piston boundary is convex, denoted by x = b∗(t).

First of all, we consider the Riemann problem of (1.7) with initial data

U |t=t0 := (u, p)|t=t0 =

{
UL, x < x0,

UR, x > x0,
(2.1)
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where UL = (uL, pL) and UR = (uR, pR) represent the left and right constant states, respec-

tively. The solvability of the Riemann problem can be found in [10, 12] when |UL − UR| is
sufficiently small.

For any given left (right) state Ul (Ur), the shock (inverse shock) curve is the set of all

possible states U which can be connected to Ul (Ur) on the right (left) by 1-or 2-shock wave,

and denoted by S1 or S2 (S−1
1 or S−1

2 ), respectively. Similarly, we denote by R1 and R2 ( R−1
1

and R−1
2 ) the 1- and 2-rarefaction (inverse rarefaction) wave curves. For our use, we express

R−1
1 and R−1

2 explicitly as

R−1
1 (Ur) : u− ur = −2(

√
p−√

pr), p > pr, (2.2)

R−1
2 (Ur) : u− ur = 2(

√
p−√

pr), p < pr. (2.3)

The Rankine-Hugoniot conditions of (1.7) satisfy that




p− pr = si(u− ur),

pu− prur = si

(
p+

1

2
u2 − pr −

1

2
u2
r

)
,

(2.4)

where si denotes the velocity of the i-shock, i = 1, 2. We eliminate si to have

(p− pr)
2 =

1

2
(p+ pr)(u− ur)

2.

Therefore, we parameterize the inverse shock curves through Ur by

S−1
1 (Ur) : u− ur = −

√
2

p+ pr
(p− pr), u > ur, p < pr, (2.5)

S−1
2 (Ur) : u− ur = −

√
2

p+ pr
(p− pr), u > ur, p > pr. (2.6)

In addition, the Lax entropy conditions across the shock are

λ1(Ur) < s1 < λ2(Ur), s1 < λ1(Ul), (2.7)

λ1(Ul) < s2 < λ2(Ul), s2 > λ2(Ur). (2.8)

In the following, we give the background solution to problem (1.7) and (1.9). Let {t∗k}∞k=1

be a sequence of points with t∗0 = 0 < t∗k < t∗k+1 for any k > 1, and lim
k→+∞

t∗k = +∞. Suppose

that

b∗∆(t) = b∗(t
∗
k) + tan θ∗k(t− t∗k), t∗k < t < t∗k+1, (2.9)

where 0 > θ∗k > θ∗k+1 > arctanu∗ + δ for some δ > 0, and

u∗ = inf
{
u : u = 2

√
p− 2

√
p, 0 > u > −2

3

√
p
}
. (2.10)

When b(t) ≡ b∗∆(t), the solution of problem (1.7) and (1.9) is given by a constant state

(u∗k, p∗k) which is connected to the initial state (0, p) by 2-rarefaction wave fans issuing from

the corner point (b∗(t
∗
k), t

∗
k), k ≥ 0 (see Figure 3). Meanwhile, the state U∗k = (u∗k, p∗k)

satisfies

u∗k = 2
√
p∗k − 2

√
p, u∗k > −√

p∗k. (2.11)

Therefore, we can conclude this result as follows.
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Δ

Figure 3 The piston boundary is piecewise linear.

Theorem 2.1 Suppose that b′∗∆(t) ∈ (u∗, 0) and b′∗∆(t) is decreasing. If TV. b′∗∆(·) < +∞,

then there exists a unique solution U∗∆(x, t) of problem (1.7) and (1.9), which are connected to

the initial state (0, p) by the 2-rarefaction wave fans, satisfying (2.11).

As a corollary, we can prove the similar result for more general boundary x = b∗(t) as

Theorem 2.1.

Corollary 2.1 Suppose that b′∗(t) ∈ (u∗, 0) and b′∗(t) is monotonously decreasing. If

TV. b′∗(·) < +∞, then there exists a unique solution U∗(x, t) of problem (1.7) and (1.9) in

the region {U : u > u∗} that are connected to the initial state (0, p) by strong 2-rarefaction wave

fans for one dimensional piston problem with convex piston boundary x = b∗(t).

When the function x = b(t) is a small perturbation of b∗(t), some elementary waves will be

produced. We introduce the perturbation domain D(U, δ0) defined as follows:

D(U, δ0) = {U : |u− 2
√
p+ 2

√
p| < δ0, δ0 > u > u∗ + δ0} (2.12)

for some δ0 > 0.

Hereinafter, we denote by αi, βi, γi the parameters of the corresponding i-waves, i = 1, 2,

while by their absolute values the corresponding strengths of the waves. We also use the

parameters to represent the i-waves provided no confusion occurs. We introduce the notation

Ψ(Ur;α1, α2) to represent the left state Ul and the right state Ur can be connected by 1-wave

α1 and 2-wave α2 when |Ul − Ur| ≪ 1. From [12], we have

∂Ψ

∂αi

(Ur;α1, α2)
∣∣
α1=α2=0

= −ri(Ur), i = 1, 2, (2.13)

where ri represents the right eigenvector of the system (1.1). In addition, αi > 0 along R−1
i (Ur),

while αi < 0 along S−1
i (Ur). We can also use the notation

Φ(Ul;α1, α2) = Ur,

and let (Ul, Ur) denote the nonlinear waves to solve the Riemann problem with the left state

Ul and the right state Ur.
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Remark 2.1 For any given state U ∈ D(U, δ0), we can parameterize the 2-inverse rarefac-

tion wave curve R−1
2 (U) by solving

dΨ(U ; 0, σ)

dσ
= −r2(Ψ(U ; 0, σ)), (2.14)

Ψ(U ; 0, 0) = U. (2.15)

3 Construction of the Approximate Solutions

In this section, we use the (piston) Riemann problem as building blocks to construct app-

roximate solutions of problem (1.7) and (1.8) by a modified wave front tracking scheme.

3.1 Riemann problem

As mentioned in §2, the solution to the Riemann problem (2.1) is given by at most three

constant states connected by shocks, or rarefaction waves. Exactly speaking, there exist C2

curves: αj → Φj(αj , U), j = 1, 2, such that

Φ(UL;α1, α2) := Φ2(α2,Φ1(α1, UL)) = UR, (3.1)

where |UL − UR| ≪ 1.

By the wave front tracking method, we adopt two types of the Riemann solver to Riemann

problem (2.1).

Case 1 Accurate Riemann solver.

The accurate Riemann solver is as mentioned in §2, except that we replace every rarefaction

wave Ri, i = 1, 2, by dividing into ν equal parts.

Suppose that the left state UL and the middle state UM are connected by 1-rarefaction wave

α1. If α1 > 0, then let U0,0 = UL, U0,ν = UM , for any 1 ≤ k ≤ ν,

U0,k = Φ1

(1
ν
α1, U0,k−1

)
, x1,k = x0 + (t− t0)λ1(U0,k).

Therefore, we can replace 1-rarefaction wave by

Uν
A =





UL, x < x1,1,

U0,k, x1,k < x < x1,k+1,

UM , x1,ν < x < x0 + (t− t0)λ
∗
1,

(3.2)

where λ∗
1 ∈ (maxλ1,minλ2).

Similarly, we can approximate 2-rarefaction wave by ν 2-rarefaction fronts in the domain

{(x, t) : x > x0 + λ∗(t− t0)}, λ∗ ∈ (maxλ1,minλ2).

Case 2 Simplified Riemann solver.

Let λ̂ (strictly larger than all the characteristic speeds of system (1.7)) be the speed of

non-physical waves, which are introduced so that the number of the wave fronts is finite for all

t ≥ 0. The strength of the non-physical waves is the error due to the simplified Riemann solver.

It occurs in the following two cases:
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Subcase 1 A j-wave βj and an i-wave αi interact at (x0, t0), 1 ≤ i ≤ j ≤ 2. Suppose that

UL, UM , and UR are three constant states, satisfying

UM = Φj(βj , UL), UR = Φi(αi, UM ). (3.3)

We define an auxiliary right state

U ′
R =

{
Φj(βj ,Φi(αi, UL)), j > i,

Φj(αj + βj , UL), j = i.
(3.4)

Then the simplified Riemann solver US(UL, UR) at (x0, t0) of problem (1.7) and (2.1) can be

given by

US(UL, UR) =

{
Uν
A(UL, U

′
R), x− x0 < λ̂(t− t0),

UR, x− x0 > λ̂(t− t0),
(3.5)

where Uν
A(UL, U

′
R) is constructed by the accurate Riemann solver in Case 1. The non-physical

wave is defined by

Unp =

{
U ′
R, x− x0 < λ̂(t− t0),

UR, x− x0 > λ̂(t− t0)
(3.6)

and the strength of the non-physical wave is |UR − U ′
R|.

Subcase 2 A non-physical wave interacts with a weak i-wave front αi (i = 1, 2) from the

right at (x0, t0). Suppose that the three states UL, UM , and UR, satisfy

|UM − UL| = ǫ, UR = Φi(αi, UM ).

Then, the simplified Riemann solver US(UL, UR) of problem (1.7) and (2.1) is

US(UL, UR) =





UL, x− x0 < λi(UL)(t− t0),

Φi(αi, UL), λi(UL)(t− t0) < x− x0 < λ̂(t− t0),

UR, x− x0 > λ̂(t− t0).

3.2 Piston Riemann problem

Let h = ∆t be a length in t. Choose a series of points {Ak}|+∞
k=0, where Ak = (b(k∆t), k∆t),

and connect Ak with Ak+1. In the sequel, the points Ak, k ≥ 0, are called corner points.

We introduce the notations tk = k∆t, bk = b(k∆t). The movement curve of the piston is

approximated by a piecewise linear function denoted as

x = b∆(t) = bk +
bk+1 − bk
tk+1 − tk

(t− tk), tk ≤ t < tk+1, k = 0, 1, · · · .

In addition, denote by θk the angle between the straight line x = bk + bk+1−bk
∆t

(t − tk) and

t-axis and by ωk the angle between the straight lines x = bk + tan θk(t − tk) and x = bk−1 +

tan θk−1(t− tk−1), where θk = arctan
bk+1−bk

∆t
. Then we have ωk = θk − θk−1. Let

Ω∆ = {(x, t) : x > b∆(t), t > 0}, Γ∆ = {(x, t) : x = b∆(t), t > 0},
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and

Ω∆,k = {(x, t) : x > b∆(t), kh ≤ t < (k + 1)h},

Γ∆,k = {(x, t) : x = b∆(t), kh ≤ t < (k + 1)h}.

We will define the approximate solutions near the piston boundary in {tk ≤ t < tk+1}∩Ω∆

in two cases.

3.2.1 Reflection on the approximate piston boundary

Assume that 1-wave α1 hits the boundary at the non-corner point. Suppose that Uk and Ub

denote the left and right states of α1, respectively. Since the velocity of the flow close to the

boundary has the same speed with that of the piston, the reflection wave is 2-wave, denoted by

β2. Let the left and right states of β2 be Uk+1 and Ub, respectively (see Figure 4). Then we

have (Uk, Ub) = (α1, 0), (Uk+1, Ub) = (0, β2). Consider the piston problem as





∂tW (U) + ∂xH(U) = 0 in Ω∆,k,

U |t=k∆t = Ub,

u|x=b(t) = tan θk on Γ∆,k.

(3.7)

Figure 4 Reflection on the approximate piston boundary.

Lemma 3.1 Assume that Uk and Ub are given as above, and Uk, Ub ∈ Oǫ(U∗k), where

Oǫ stands for a small neighborhood. Then problem (3.7) has a unique solution (β2, Uk+1).

Moreover,

β2 = Kb1α1,

where Kb1 = Kb1(Ub, α1) is negative. Moreover, Kb1 |α1=0 = −1.

Proof It is easy to obtain that

Ψ2(Ub;α1, 0) = Ψ2(Ub; 0, β2) = uk. (3.8)
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Differentiate the equality (3.8) with respect to β2, and let β2 = 0. Then we have

∂Ψ2

∂β2

∣∣∣
β2=0

= −r22(Ub) = −2
√
pb < 0.

By the implicit function theorem, near the point α1 = 0, there exists a function f ∈ C1 such

that

β2 = f(α1). (3.9)

Differentiating (3.8) with respect to α1, we have

∂Ψ2

∂β2

∂β2

∂α1
− ∂Ψ2

∂α1
= 0. (3.10)

Let α1 = 0, then

−r22(Ub)
∂β2

∂α1

∣∣∣
α1=0

+ r12(Ub) = 0.

Hence
∂β2

∂α1

∣∣∣
α1=0

= −1.

From the Taylor’s expansion, we have

β2 = f(α1)− f(0) + f(0) = Kb1α1,

where f(0) = 0 and Kb1 |α1=0 = −1.

From (3.10), we can easily obtain that Kb1 is bounded. Therefore, we complete the proof

of this lemma.

This lemma illustrates that 1-weak wave has changed into 2-weak wave while hitting the

boundary by changing its type.

3.2.2 New waves issuing from the corner points

Suppose that Uk and Uk+1 denote the states close to the piston boundary x = bk−1 +

tan θk−1(t− tk−1) and x = bk+tan θk(t− tk) (see Figure 5), respectively, where ωk = θk−θk−1.

Consider the following initial-boundary value problem




∂tW (U) + ∂xH(U) = 0 in Ω∆,k,

U |t=k∆t = Uk,

u|x=b∆(t) = tan θk on Γ∆,k.

(3.11)

Lemma 3.2 When |ωk| ≪ 1 and Uk ∈ Oǫ(U∗k), problem (3.11) has a unique solution

(β2, Uk+1). Moreover,

β2 = Kb0ωk,

where Kb0 < 0 is bounded, depending only on the background solution.

Proof From the definition of Ψ, we have

Ψ2(Uk; 0, β2) = uk+1, (3.12)

arctanuk+1 − arctanuk = ωk. (3.13)
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Figure 5 New wave issuing from the corner points.

It is easy to verify the condition of the implicit function theorem near the point ωk = 0.

There exists a function g ∈ C1 such that β2 = g(ωk). From Taylor’s expansion,

β2 = g(ωk)− g(0) + g(0) = Kb0ωk,

where g(0) = 0.

Differentiating (3.13) with respect to ωk, and letting ωk = 0, we have

1

1 + u2
k+1

∂Ψ2

∂β2

∂β2

∂ωk

− 1 = 0, (3.14)

therefore
∂β2

∂ωk

∣∣∣
ωk=0

= − 1 + u2

r22(U)

∣∣∣
U=Uk

= −1 + u2

2
√
p

∣∣∣
U=Uk

< 0.

Therefore, from (3.14), we can obtain that Kb0 is bounded.

Hence, we finish the proof of the lemma.

Lemma 3.3 Suppose that θ(k−1) =
k−1∑
j=0

|ωj | and assume that θ(k−1) < − arctanu∗, and

θ(k−1) + arctanu∗ < ωk < 0. Then problem (3.11) has a unique solution Uk+1, connected to

the right state Uk by a rarefaction wave issuing from the corner point (bk, k∆t). Moreover,

β2 = O(1)ωk.

Proof Differentiating (3.12) with respect to β2, it yields that

∂Ψ2

∂β2
= −r22(Uk+1) = −2

√
pk+1 < 0.

We rewritten (3.13) as

β2

∫ 1

0

( ∂

∂α
arctanΨ2(Uk; 0, α)

∣∣∣
α=β2t

)
dt = ωk.

Hence, 0 < β2 ≤ M |ωk|. From the parametrization (2.14) of the rarefaction wave, we can easily

obtain that O(1) is bounded, depending only on the background solution and TV.{b′(·)}.
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3.3 Approximate solutions

For any ν ∈ N such that

sup
U

Kb1

ν
≪ 1,

sup
U,k

(|Kb0 ||ωk|)

ν
≪ 1,

M sup
k

|ωk|

ν
≪ 1,

we can construct a ν-approximate solution Uν(x, t) by induction in the region Ω∆ as follows.

Step 1 For k = 1, Uν,h(x, t) on Ω∆ ∩ {0 ≤ t < ∆t} can be constructed by accurate

Riemann solver to solve a series of Riemann (piston) problem, which can be carried out as

shown in §3.1–§3.2. Approximate rarefaction wave or shock front is generated from the corner

point A0.

Step 2 By induction, we assume that ν, h-approximate solution Uν,h has been constructed

for t < τ , for some τ > 0, and assume that Uν,h|t<τ consists of a finite number of wave fronts

and some of them interact at t = τ at the first time. As shown in §3.1–§3.2, we solve the

Riemann problem when two wave fronts interact, or the Riemann piston problem when a wave

front hits the boundary or a new wave issues from a corner point. Assume that each front has

been assigned a generation order in the following way.

(A) A wave front of order n hits the boundary at non-corner point (b∆(τ), τ). We solve the

generated initial-boundary problem by the accurate Riemann solver as shown in Lemma 3.1,

and the generation order of the outgoing 2-wave from the point (b∆(τ), τ) is n + 1. If n = ν,

then the generation order of the outgoing wave is set to be ν + 1.

(B) All the wave fronts issuing from the corner points can be constructed according to

Lemmas 3.2–3.3, and have order 1.

(C) An i-wave front αi of order n1 interacts with a j-wave front βj of order n2 at the point

(x0, τ). We adopt the the following wave front algorithm:

(1) When n1, n2 < ν, we adopt the accurate Riemann solver to construct the outgoing wave

front, and assign the generation order of the l-wave by




max(n1, n2) + 1, if l 6= i, j,

min(n1, n2), if l = i = j,

n1, if l = i 6= j,

n2, if l = j 6= i.

(3.15)

(2) When max(n1, n2) = ν, we adopt the simplified Riemann solver to construct the outgoing

wave front at the interacting point (x0, τ). We introduce the generation order of the i-wave

front according to (3.15), i = 1, 2, and the generation order of the non-physical wave front is

ν + 1.

(3) When n1 = ν + 1 and n2 ≤ ν, αi is non-physical wave front, we adopt the simplified

Riemann solver to construct the outgoing wave front from (x0, τ). The generation order of the

outgoing non-physical wave front is ν+1, while the generation order of the physical wave front

is the same as that of the incoming wave βj.

The wave front tracking algorithm to construct the approximate solutions is given by the

following:

Case 1 There are no more than two wave fronts interacting at the point (x0, τ) by changing

the speed of a single wave front by a quantity O(1)2−ν . Only one wave front hits Γ∆ at the

non-corner point and no front hits the corner point.
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Case 2 If two wave fronts α and β interact at (x0, τ), then the Riemann problem at the

interacting point is solved in two ways:

(1) If |αβ| > µν and the two wave fronts are physical, where µν is a fixed small parameter

with µν → 0 as ν → +∞, then we adopt the accurate Riemann solver.

(2) If |αβ| < µν and the two wave front are physical, or one of them is non-physical wave,

then we adopt the simplified Riemann solver.

Case 3 The physical wave hits the boundary, or a new wave front issues from the corner

point of the piston. We adopt the accurate Riemann solver.

4 Monotonicity of the Glimm Functional

In this section, we construct the Glimm functional and prove its monotonicity based on

the local interaction estimates. The total variation of the approximate solutions is equivalent

to the Glimm functional, which leads to the bounds on the total variation of the approximate

solutions. First of all, we give the definition of the strong 2-rarefaction wave.

Definition 4.1 (Strong 2-Rarefaction Wave Front) A wave front s is called a front of the

strong rarefaction wave provided that s is a 2-rarefaction wave front with order 1. Otherwise,

it is called a weak wave.

For any weak wave α, denote its position and magnitude by (xα(t), t) and α, respectively.

For a front s of the strong rarefaction wave, denote the location and magnitude of s by (xs(t), t)

and s(t), respectively. Let

ΩRa
(t) = {ω(Ak) | ω(Ak) ≤ 0, Ak = (b(k∆t), k∆t), t ≤ k∆t},

where ω(Ak) = θk − θk−1.

We first redefine the approaching waves as follows.

Definition 4.2 (Approaching Waves)

(1) (αi, βj) ∈ A1 : Two weak waves αi and βj (i, j ∈ {1, 2}) located at points xα and xβ

respectively, with xα < xβ , satisfy the following condition: Either i > j or i = j and at least

one of them is a shock.

(2) α ∈ As : A weak i-wave α is approaching a strong 2-rarefaction wave front if (xα, tα) ∈
Ω−, i = 2 and α2 is a shock or (xα, tα) ∈ Ω+, i = 1, or i = 2 and α2 is a shock, where

Ω− = {(x, t) : b(t) < x < xs(t), t > 0}, Ω+ = {(x, t) : x > xs(t), t > 0}.

Remark 4.1 The approaching waves in A1 are in fact the original approaching waves

between weak waves.

Considering the interaction between the weak waves and the strong rarefaction wave fronts,

we introduce some weights for the weak waves. For any weak wave α and any non-physical

wave ǫ, at non-interacting point at time t, denote

R(t, α, l) = {s | s is a front of the strong rarefaction wave with xs(t) ≤ xα(t)},
R(t, ǫ, r) = {s | s is a front of the strong rarefaction wave with xs(t) > xǫ(t)}
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and

W (αi, t) = exp(KbΣ{|ω| : ω ∈ ΩRa
(t)} +KωΣ{|s(t)| : s ∈ R(t, αi, l)}), i = 1,

W (ǫ, t) = exp(KnpΣ{|s(t)| : s ∈ R(t, ǫ, r)}).

Now we introduce some notations as follows:

Li(t) = Σ{|αi| : αi is a weak i-physical wave}, 1 ≤ i ≤ 2,

Lnp(t) = Σ{|ǫ| : ǫ is a non-physical wave}

and

Q0(t) = Σ{|αi||βj | : (αi, βj) ∈ A1},

QB1
(t) = Σ{|αi|W (αi, t) : αi is a weak i-physical wave, i = 1},

QB2
(t) = Σ{|α2| : α2 is a weak 2-wave},

Qnp(t) = Σ{|ǫ|W (ǫ, t) : ǫ is a non-physical wave},

Qc(t) = Σ{|ω(Ak)| : Ak = (b∆(k∆t), k∆t) is a corner point and ω(Ak) > 0, k∆t > t}.

In order to assure that the Glimm functional is sufficiently small, we need to control the

strength of the rarefaction wave before time t. For any t /∈ {k∆t : k ∈ N
+}, we define

F1(t) = | TV. {arctanuν,h(·, t) : [b∆(t),+∞)} − θ̂(t)|,

where

θ̂(t) = Σ{|ω(Ak)| : Ak = (b∆(k∆t), k∆t) is a corner point and ω(Ak) ≤ 0, k∆t < t}.

In the sequel, we can redefine the Glimm functional as

Lw(t) =

2∑

i=1

Li(t) + Lnp(t),

Q(t) = K0Q0(t) +K1QB1
(t) +QB2

(t) +Qnp(t) +KcQc(t)

and

F0(t) = Lw(t) +KQ(t),

F (t) = F1(t) + C∗F0(t),

where C∗, K, K0, K1 and Kc are positive constants, determined later.

In order to obtain the global interaction estimates and the bound of the total strength of

the strong rarefaction waves, we give the following lemmas.

Lemma 4.1 There exists a δ′∗ > 0 such that for any state Ul ∈ D(U, δ0), the function

arctanΦ2(Ul; 0, α2) is strictly increasing with respect to α2 in {α2 | α2 ≥ −δ′∗, Φ(Ul; 0, α2) ∈
D(U, δ0)}. Moreover, there exist two positive constants C1 and C2 such that

C1|α2| ≤ | arctanΦ2(Ul; 0, α2)− arctanul| ≤ C2|α2|. (4.1)
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Proof When α2 > 0, by the properties of the rarefaction waves, we have

∂

∂α2
arctanu

∣∣∣
u=Φ2(Ul; 0, α2)

=
1

1 + u2
(r22(U))

∣∣∣
U=Φ(Ul; 0, α2)

=
2
√
p

1 + u2

∣∣∣
U=Φ(Ul; 0, α2)

> 0

for any Ul,Φ(Ul; 0, α2) ∈ D(U, δ0).

When −δ′∗ ≤ α2 < 0, we can similarly obtain (4.1). Therefore, the proof of this lemma is

completed.

Lemma 4.2 Suppose that the three constant states U1, U2, U3 ∈ D(U, δ0), satisfying U2 =

Φ(U1;α1, α2), and that U2 and U3 are connected by a non-physical wave front with the strength

ǫ. Then

|u3 − 2
√
p3 − u1 + 2

√
p1| = O(1)(|α1|+ |α−

2 |+ |ǫ|),

where α−
2 = min{α2, 0} and O(1) is bounded.

Proof From the mean value theorem and the expression of rarefaction wave curves, we

have

(u − 2
√
p)(Φ(U ; 0, α2)) = (u− 2

√
p)(U)

for any α2 > 0.

Therefore, we complete the proof of this lemma.

Suppose that (αi, βj) ∈ A1 (1 ≤ i, j ≤ 2). We use ǫ and s to represent a non-physical wave

and a 2-strong rarefaction wave front, respectively. Let

Eν,h(τ) =





|αi||βj |, Case 1,

|α1|, Case 2,

|ωk|, Case 3,

|α2| or |s|, Case 4,

|α1||s|, Case 5,

|ǫ||s|, Case 6.

(4.2)

Suppose that two weak wave fronts interact, or a weak wave front hits at the non-corner

point on the piston boundary, or a new wave front issues from the corner point due to the

turning of the piston boundary at the interaction time τ.

In the following, we prove that the Glimm functional is decreasing based on the local inter-

action estimates. Before the interaction time τ , we give the inductive hypotheses.

A1(τ−): Before τ , the strength of every wave front is less than δ∗.

A2(τ−): Uν,h|t<τ ∈ D(U, δ∗).

A3(τ−):
∑
k

|ω(Ak)| ≤ − arctanu∗ − δ∗,

where u∗ is the critical speed of the piston.
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Theorem 4.1 Suppose that A1(τ−)–A3(τ−) hold for any k∆t ≤ τ < (k + 1)∆t. Then

there exist positive constants δ1, C∗, K0, K1 and Kc such that if

F (τ−) < δ1, (4.3)

then

Q(τ+)−Q(τ−) < −1

2
Eν,h(τ) (4.4)

and

F (τ+)− F (τ−) ≤ −1

4
Eν,h(τ). (4.5)

Moreover, it holds that:

(i) Before τ1, the strength of the wave front is less than δ∗.

(ii) There exists a positive constant C > 0, independent of τ1 and τ such that for any

2-strong rarefaction wave front s0(t),

|s0(t)| ≤
C

ν
. (4.6)

(iii) For any fixed ν ∈ N
+, the number of the wave fronts of the approximate solution Uν

is finite and the total strength of the non-physical wave is O(1)2−ν , i.e., there exists a positive

constant Cnp, independent of ν and τ1, such that

∑

ǫ0

|ǫ0(t)| ≤
Cnp

2ν
(4.7)

for any t < τ1, where τ1 is next to τ when the wave interaction occurs.

Proof Based on the local interaction estimates, the proof can be divided into the following

six cases.

Case 1 Interaction between the weak waves.

Let the two weak waves be αi and βj interacting on the line t = τ (i, j = 1, 2), where

τ 6∈ {k∆t : k is a positive integer}, let γl be the generated waves, l = 1, 2, and let ǫ be the

outgoing non-physical wave. By a standard procedure (see [3]), we obtain the following uniform

estimates for the interactions between weak waves.

Lemma 4.3 It holds that

γi = αi +O(1)|αi||βj |, γj = βj +O(1)|αi||βj | for i 6= j (4.8)

and for i = j, it satisfies that

γi = αi + βj +O(1)|αi||βj |, (4.9)

γl = O(1)|αi||βj |, l 6= i, ǫ = O(1)|αi||βj |, (4.10)

where O(1) is bounded.
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Based on the estimates (4.8)–(4.10), we have

Li(τ+) − Li(τ−) = O(1)|αi||βj |, i = 1, 2,

F (τ+)− F (τ−) = K0(O(1)|αi||βj |Lω(τ−)− |αi||βj |) +O(1)|αi||βj |.

When Lw(τ−) is sufficiently small, we can choose K0 large enough such that

F (τ+) − F (τ−) ≤ −1

4
|αi||βj |.

Case 2 Reflection on the piston boundary.

Assume that a weak 1-wave front α1 hits the boundary at the point (b∆(τ), τ), where

τ 6∈ {k∆t, k is a positive integer}. Denote the outgoing wave by β2. From Lemma 3.1, we have

L1(τ+) − L1(τ−) = −|α1|,

L2(τ+) − L2(τ−) = Kb1 |α1|,

Q(τ+)−Q(τ−) = K0(|β2| − |α1|)Lw(τ−) −K1W (α1, τ−)|α1|+ |β2|.

Therefore, when Lw(τ−) is sufficiently small, we can chooseK1 suitably large, i.e., K1 > K∗
1 ,

such that

Q(τ+)−Q(τ−) < −1

2
|α1|. (4.11)

Then, we can choose K and C∗ large enough such that

F (τ+)− F (τ−) < −1

4
|α1|. (4.12)

Case 3 New waves issuing from the boundary corner.

Suppose that the flow moves past the corner point Ak(b(k∆t), k∆t) for some k > 0. Let

the new outgoing wave be β2, and denote the turning angle ωk between the two approximate

piston boundary x = bk + tan θk(t − tk) and x = bk−1 + tan θk−1(t− tk−1). From Lemma 3.2,

we have the following cases:

(1) When ωk > 0, we have

L1(τ+)− L1(τ−) = 0,

L2(τ+)− L2(τ−) = |β2|,

Q(τ+)−Q(τ−) ≤ K0|β2|Lw(τ−) + |β2| −Kc|ωk|.

Thus, when Lw(τ−) is sufficiently small, we can choose Kc large enough such that

Q(τ+)−Q(τ−) < −1

2
|ωk|. (4.13)

On the other hand, we can obtain that

F1(τ+)− F1(τ−) = O(1)|ωk|. (4.14)
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Therefore, according to (4.13)–(4.14), we can choose K and C∗ large enough such that

F (τ+) − F (τ−) ≤ −1

4
|ωk|.

(2) When ωk < 0, from Lemma 3.3 and the wave front tracking algorithm, β2 is a front of

2-strong rarefaction wave. We have

Li(τ+)− Li(τ−) = 0, i = 1, 2,

Q(τ+)−Q(τ−) = K1

∑

i=1

(W (βi, τ+)|βi| −W (βi, τ−)|βi|),

where

W (βi, τ+)−W (βi, τ−) = exp(O+(1))(exp(Kω|β2|)− exp(Kb|ωk|))

= exp(O+(1))(Kω|β2| −Kb|ωk|),

hence, when Lw(τ−) is sufficiently small, we can choose Kb large enough such that

Q(τ+)−Q(τ−) ≤ −1

2
|ωk|. (4.15)

In addition, it holds

F1(τ+)− F1(τ−) = O(1)|ωk|. (4.16)

By combining (4.15) with (4.16), when K and C∗ are large enough, it yields that

F (τ+) − F (τ−) ≤ −1

4
|ωk|.

Case 4 Interaction between the 2-strong rarefaction wave front and 2-weak shocks from

the left (the right).

Suppose that a front of the strong rarefaction wave denoted by s and a 2-weak shock α2

from the left interact at the time t = τ , where τ 6∈ {k∆t : k is a positive integer}. Let γ1, γ2

and ǫ be the outgoing 1-wave, 2-wave and non-physical wave, respectively. In a similar way to

the argument of Lemma 4.3, we have the following result.

Lemma 4.4 It holds that

γ1 = O(1)|α2||s|,
γ2 = α2 + s+O(1)|α2||s|, ǫ = O(1)|α2||s|.

Based on this lemma, we have the following cases.

Subcase 4.1 γ2 ≥ 0. It holds that

|γ2| = |s| − |α2|+O(1)|α2||s|
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and

L1(τ+)− L1(τ−) = O(1)|α2||s|,
L2(τ+)− L2(τ−) = −|α2|,
Q(τ+)−Q(τ−) = K0(|γ1| − |α2|)Lw(τ−)

+K1

(∑

i=1

∑

βi 6=γi

(W (βi, τ+)|βi| −W (βi, τ−)|βi|)

+W (γ1, τ+)|γ1|
)
− |α2|+W (ǫ, τ+)|ǫ|

< 0,

where W (βi, τ+)|βi| −W (βi, τ−)|βi| < 0.

Therefore, we have

Q(τ+)−Q(τ−) < −1

2
|α2|. (4.17)

So, when K and C∗ are suitably large, we have

F (τ+)− F (τ−) < −1

4
|α2|. (4.18)

Subcase 4.2 γ2 < 0. We have

|γ2| = |α2| − |s|+O(1)|α2||s|

and

L1(τ+)− L1(τ−) = O(1)|α2||s|,
L2(τ+)− L2(τ−) = −|s|+O(1)|α2||s|,
Q(τ+)−Q(τ−) = K0(|γ1|+ |γ2| − |α2|)Lw(τ−)

+K1

(∑

i=1

∑

βi 6=γi

(W (βi, τ+)|βi| −W (βi, τ−)|βi|)

+W (γ1, τ+)|γ1|
)
+ |γ2| − |α2|+W (ǫ, τ+)|ǫ|

≤ 0,

where

W (βi, τ+) = exp(−Kω|s|)W (βi, τ−).

Therefore, we have

Q(τ+)−Q(τ−) < −1

2
|s|.

When K and C∗ are suitably large, we have

F (τ+) − F (τ−) < −1

4
|s|. (4.19)

The interaction between 2-strong rarefaction wave front and 2-weak waves from the right

can be proved similarly.
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Case 5 Interaction between the 2-strong rarefaction wave front and 1-weak waves or 2-shock

waves from the right.

Suppose that the left and right states of the strong 2-rarefaction wave front denoted by s

are Ul and Um, respectively. The incoming 1-weak wave α1 from the right connects the states

Um and Ur. Let the outgoing wave fronts be γ1, s
′ and the non-physical wave be ǫ, respectively,

satisfying

γ1 = (Ul, U
′
m), s′ = (U ′

m, U ′
r), ǫ = (U ′

r, Ur).

In a similar way to the proof of Lemma 4.3, we have following result.

Lemma 4.5 It satisfies that

γ1 = α1 +O(1)|α1||s|,
s′ = s+O(1)|α1||s|, ǫ = O(1)|α1||s|,

where O(1) is bounded, depending only on the system.

Based on this lemma, we have

Lw(τ+)− Lw(τ−) = O(1)|α1||s|,

K0Q0(τ+) +QB2
(τ+) +Qnp(τ+) +KcQc(τ+)

−K0Q0(τ−) −QB2
(τ−)−Qnp(τ−) −KcQc(τ−)

= O(1)|α1||s|Lw(τ−).

When Lw(τ−) is sufficiently small, we choose Kw large enough such that
∑

i=1

QB1
(τ+)−

∑

i=1

QB1
(τ−)

= |α1|W (α1, τ−)((1 +O(1)|s|)e−Kw |s| − 1)

+
∑

i=1

∑

βi 6=γi

|βi|W (βi, τ−)(eO(1)Kw |α1||s| − 1)

≤ −Kw

2
|α1||s|.

Therefore

Q(τ+)−Q(τ−) ≤ −1

2
|α1||s|. (4.20)

Next we need to make estimate for F1(τ). Denote

arctanu(Φ(U ;α1, α2)) = h(U ;α1, α2).

Hence we have

arctanu′
r − arctanu′

m − arctanum + arctanul

= h(Ul; γ1, s
′)− h(Ul; γ1, 0)− h(Ul; 0, s) + h(Ul; 0, 0)

= h(Ul;α1, s)− h(Ul;α1, 0)− h(Ul; 0, s) + h(Ul; 0, 0) +O(1)|α1||s|

= O(1)|α1||s|.
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Similarly, it holds that

arctanu′
m − arctanul − arctanur + arctanum = O(1)|α1||s|,

arctanur − arctanu′
r = O(1)|α1||s|.

So we have

TV. {arctanuν,h(·, τ+) : [b∆(τ+),+∞)} − TV. {arctanuν,h(·, τ−) : [b∆(τ−),+∞)}

= | arctanur − arctanu′
r|+ | arctanu′

r − arctanu′
m|+ | arctanu′

m − arctanul|

− | arctanur − arctanum| − | arctanum − arctanul|

= O(1)|α1||s|.

Therefore

F1(τ+)− F1(τ−) = O(1)|α1||s|. (4.21)

Finally, from (4.20)–(4.21), we choose K and C∗ large enough such that

F (τ+)− F (τ−) ≤ −1

4
|α1||s|.

Case 6 Interaction between the 2-strong rarefaction front and a non-physical wave.

Suppose that a front of the strong rarefaction wave denoted by s and a non-physical wave

ǫ interact at the time t = τ , where τ 6∈ {k∆t : k is a positive integer}. Let s0 and ǫ0 be the

outgoing rarefaction wave and non-physical wave, respectively. Then, we have the following

lemma.

Lemma 4.6 It holds that

s0 = s,

ǫ0 = ǫ+O(1)|ǫ||s|.

In this case,

Q(τ+)−Q(τ−)

= W (ǫ0, τ+)|ǫ0| −W (ǫ, τ−)|ǫ|
= W (ǫ0, τ+)|ǫ0| −W (ǫ0, τ+) exp(Knp|s|)|ǫ|
= W (ǫ0, τ+)|ǫ0|(1 +O(1)|s| − exp(Knp|s|)).

Therefore, if Knp is large enough, then we have

Q(τ+)−Q(τ−) < −1

2
|ǫ||s|.

Hence, when K and C∗ are large enough, we have

F (τ+) − F (τ−) ≤ −1

4
|ǫ||s|.
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Combining the estimates of Case 1-Case 6, we can prove (4.4)–(4.5). Therefore, there exist

positive constants δ1, K0, Kc and C∗, independent of τ, ν, such that if F (τ−) < δ1, then the

strength of every wave front is less than δ∗.

In order to prove (ii), we introduce a new functional for any 2-strong rarefaction wave front

s as

F2(t) = |s(t)|eLs(t)+K2Q(t),

where

Ls(t) =
∑

α

{|α(t)| : α ∈ As}

and K2 is a positive constant to be determined later.

Similar to the proof of (4.5), there exists a positive constant K2 independent of τ and ν

such that

F2(τ+) < F2(τ−). (4.22)

Hence we have

F2(t) ≤ F2(k0∆t) ≤ O(1)|s(k0∆t)|,

where (b(k0∆t), k0∆t) is the point from which the rarefaction wave front s issues. On the other

hand, by the construction of the approximate solution, we have

|s(k0∆t)| ≤ O(1)
1

ν
,

which along with (4.22) yields (ii).

Finally, we need to show (iii). From (4.4), we know that Q(t) is decreasing and bounded.

By the wave front tracking algorithm, when |α||β| > 1
2ν , we adopt the accurate Riemann solver.

From (4.4), we have

Q(τ+)−Q(τ−) < −1

2
Eν,h(τ).

Therefore, the number of the interaction is finite. Hence, the number of the new physical waves

is finite. On the other hand, when we adopt the simplified Riemann solver, the number of the

wave fronts keeps the same after the interaction.

Hence, for any k∆t ≤ t < (k + 1)∆t, the number of the wave fronts is finite. On the other

hand, we know that the non-physical wave is introduced by the simplified Riemann solver.

Then, the number of the non-physical waves is also finite. By a standard procedure (see [3]),

we can also prove that the total strength of the non-physical waves at any t < τ1 is small,

satisfying (4.7).

In conclusion, we complete the proof of this theorem.

In the following, we will show that the inductive hypotheses A2(τ−) is reasonable, and the

total strength of the 2-strong rarefaction fronts is finite.

Lemma 4.7 For any τ < t < τ1, the following holds:
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(i) There exist positive constants η0 and δ2 independent of ν, h such that

|Uν,h(x, t)− U |x>η0
≤ δ2. (4.23)

(ii) Uν,h(·, t)|t<τ1 ∈ D(U, δ∗∗).

(iii) For any 2-strong rarefaction wave front s0(t), it satisfies that

∑

s0

|s0(t)| ≤ O(1)(| arctanu∗|+ 2δ0 + Lw(t)), (4.24)

where τ and τ1 are given in Theorem 4.1.

Proof Based on Theorem 4.1, there exists a positive constant η0 such that when x > η0,

there exists a positive constant ǫ∗ such that

TV. {Uν,h(·, t) : [η0,+∞)} < O(1)ε∗.

Due to the hypothesis A2(τ−), there exist positive constants 0 < δ∗∗ < δ∗
2 and δ2 such that

when x > η0, we have

|Uν,h(x, t)− U | ≤ TV. {Uν,h(x, t) : [η0,+∞)}+ |Uν,h(+∞, t)− U |

≤ O(1)ǫ∗ + δ∗∗

< δ2.

From Lemma 4.2, we have

|(u− 2
√
p)(Uν,h)− (u− 2

√
p)(U)| ≤

∑

i

|(u− 2
√
p)(Uν,h

i )− (u− 2
√
p)(Uν,h

i−1)|

= O(1)(|α1|+ |α−
2 |+ |ǫ|)

= O(1)F (t),

where Uν,h
i and Uν,h

i−1 are the constant states connected by the physical waves αi, i = 1, 2, or

non-physical wave ǫ.

Next, we need to make estimate for arctanu. Due to (i), there exists a positive constant C

such that

| arctanuν,h(x, t)− arctanu| ≤ Cδ2. (4.25)

Suppose that x0 < x1 < · · · < xN−1 < xN are the discontinuities of the approximate

solution Uν,h(x, t). From Lemma 4.1, we have

arctanuν,h(x, t)

= arctanuν,h(x, t)− arctanuν,h(2η0, t) + arctanuν,h(2η0, t)− arctanu,

=
∑

1≤k≤N

(arctanuν,h(xk, t)− arctanuν,h(xk−1, t)) + arctanuν,h(2η0, t)− arctanu

≤ O(1)F (t) + Cδ2.
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On the other hand, it holds

arctanuν,h(x, t)

= arctanuν,h(x, t)− arctanuν,h(2η0, t) + arctanuν,h(2η0, t)− arctanu

≥ −TV. arctanuν,h(·, t)− Cδ2

≥ −F0(t)− θ̂ − Cδ2

≥ θ∗ + δ∗∗.

Finally, from Lemma 4.1 and (i), we have

∑

s0

|s0(t)| ≤
1

C1
| arctanuν,h(Φ(Uν,h(x, t); 0, s0))− arctanuν,h(x, t)|

≤ 1

C1
| arctanuν,h(b∆(t), t) − arctanu|+ 1

C1
| arctanuν,h(x, t) − arctanu|

+
C2

C1
Lw(t)

≤ O(1)(| arctanu∗|+ δ0 + Lw(t)).

Therefore, we complete the proof of this lemma.

Finally, combining Lemmas 4.3–4.7 altogether, we can obtain the following theorem.

Theorem 4.2 There exist positive constants ε and M0 independent of ν, h such that, if

‖U0 − U‖∞ + |b′+(0)− b′∗+(0)|+TV.{U0(·) : [0,∞)}+TV.{(b′+ − b′∗+)(·)} < ε, (4.26)

then

TV.{Uν,h(·, t) : [b(t),+∞)} < M0. (4.27)

Proof By Theorem 4.1 and induction hypothesis, if F (0+) is sufficiently small, then for

any 0 < τ < t, we deduce that

F (t+) < F (0+)− 1

4

∑

τ>0

Eν,h(τ).

Since

F (0+) = O(1)
(
‖U0 − U‖∞ +TV. {U0(·) : [0,∞)}+

∑

k≥0

∣∣ω+
k

∣∣
)

and

∑

k≥0

|ω+
k | = O(1)(TV. {(b′+ − b′∗+)(·)} + |b′+(0)− b′∗+(0)|),

we combine the above estimates to get the desired result. The proof is complete.

By Theorem 4.2, the proof of the convergence of the approximate solution Uν,h(x, t) is a

standard procedure, also see [2–3]. Therefore, we complete the proof of Theorem 1.1.
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