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Abstract The authors study a family of transcendental entire functions which lie outside

the Eremenko-Lyubich class in general and are of infinity growth order. Most importantly,

the authors show that the intersection of Julia set and escaping set of these entire functions

has full Hausdorff dimension. As a by-product of the result, the authors also obtain the

Hausdorff measure of their escaping set is infinity.
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1 Introduction

Let f be a transcendental entire function and denote by fn the n-th iteration of f , n ∈ N.

The Fatou set F (f) is defined as the set consisting of all z ∈ C, where {fn} forms a normal

family in the sense of Montel (or, equivalently, is equicontinuous). The complement J(f) of

F (f) is called the Julia set of f . Both sets are completely invariant. Maximal connected subset

of F (f) is called connected Fatou component. For an introduction to the basic properties of

these sets, we refer to the survey [3] and the books [2, 15].

Besides Julia set and Fatou set, there is another important and interesting set in the studies

of dynamics of transcendental entire functions, which is the escaping set I(f) := {z; fn(z) →

∞ as n → ∞}. Eremenko [9] proved that I(f) is not empty and J(f) = ∂I(f) for entire

functions.

In 1987, McMullen [14] proved a result on size of Julia set, that is dim J(Eλ) = 2 for λ 6= 0,

where Eλ = λ exp(z). In his proofs, he first showed that these results hold for the escaping set

I(f) := {z; fn(z) → ∞ as n → ∞}, and then I(f) ⊂ J(f) for the functions Eλ.

We denote by sing(f−1) the set of all values in which some branch of f−1 cannot be de-

fined; that is, the set of all critical and finite asymptotic values. A class B of entire functions,

introduced by Eremenko and Lyubich [10] as follows, has particular interests to many mathe-
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maticians.

B = {f : f is transcendental entire function and sing(f−1) is bounded}.

The importance of this class lies in the fact that functions in B have some expanding

properties near ∞, it is similar to the way in which the derivative of the exponential map is

large when the exponential itself is large. Using the expanding property, Eremenko and Lyubich

showed that I(f) ⊂ J(f) for f ∈ B. It is easy to see that Eλ ∈ B, thus I(Eλ) ⊂ J(Eλ).

McMullen’s result initiated a large body of research on Hausdorff dimension for Julia set

and escaping set (see [1, 8, 22]). In [1, 19], Barański and Schubert independently proved that

dim J(f) = 2 if f ∈ B has finite order of growth. For more results, we refer to the publication

[21].

In 2010, Bergweiler and Karpińska [7] studied entire functions f which could be outside of

the class B and proved the following theorem.

Theorem A Supposed that f is an entire function and that there exist A,B,C, r0 > 1 such

that

A logM(r, f) ≤ logM(Cr, f) ≤ B logM(r, f) for all r > r0.

Then

dim(I(f) ∩ J(f)) = 2.

The fast escaping set, Io(f) ⊂ I(f),which was introduced in [6] and has been studied

systematically in [18], is defined by

Io(f) = {z : There exists l ∈ N such that |fn+l(z)| ≥ Mn(r, f) for n ∈ N},

where Mn(r, f) denotes repeated iteration of M(r, f).

In 2015, Sixsmith [20] researched Hausdorff dimension of the Julia set and fasting escaping

set for a class entire functions of genus zero, which also lie outside the Eremenko-Lyubich class

in general.

Theorem B Suppose that f is an entire function of the form

f(z) = czq
∞
∏

n=1

(

1 +
z

an

)

, where c 6= 0, q ∈ N and 0 < |a1| ≤ |a2| ≤ · · · .

Suppose that there exist positive constants θ1 and θ2 such that 0 ≤ θ2− θ1 < π, and also N ∈ N

such that arg(an) ∈ [θ1, θ2] in the sense of modulus 2π, for n ≥ N . Then

dim Io(f) = 2.

Suppose also that f has only simply connected Fatou components. Then

dim(J(f) ∩ Io(f)) = 2.
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Recently, Bergweiler and Chyzhykov [5] studied a class of entire functions whose zeros are

in the neighborhood of certain rays and that have completely regular growth with a certain

growth error term (also see [4]). They proved the following theorem.

Theorem C Let θ1 < θ2 < · · · < θm < θm+1 = θ1 + 2π and let h : R → R be a continuous

function satisfying h(θ) > 0 for θj < θ < θj+1 and j = 1, · · · ,m. Let f be an entire function,

ρ(r) be a proximate order and ε(r) = 1
logN (r)

for some N ∈ N, where logN denotes the N -th

iterate of the logarithm. Suppose that

log |f(reiθ)| = h(θ)rρ +O(rρ(r)ε(r)),

whenever |θ − θj | > ε(r) for j = 1, · · · ,m. Then I(f) ∩ J(f) has positive measure.

In this paper, as a complement of Theorems A, B and C, we study a family of entire functions

which are of infinitely order rather than finite order and whose zeros are equally distributed

on circles rather than in a sectors or rays. Also the family of entire functions are outside of

Eremenko-Lyubich class B, and most importantly, dim(J(f) ∩ Io(f)) = 2. However, it seems

difficult to prove J(f)∩ I(f) has positive Lebesgue measure. In Section 5, we also obtain some

theorems on Hausdorff measures of the intersection of Julia set and escaping set.

Let α1(r) be any positive differentiable increasing function on the interval (1, ∞) with

α′
1(r) > α1(r) (e.g. e

2r). Set

α(x) =

∫ x

1

α1(t)

t
dt. (1.1)

Let {rj} be the sequence defined by

α1(rj) = 2j+1, j = 1, 2, 3, · · · . (1.2)

This sequence {rj} is uniquely determined, strictly increasing and unbounded. Let

f(z) =

∞
∏

j=1

(

1 +
( z

rj

)nj
)

, (1.3)

where

nj = 2j . (1.4)

The entire functions in (1.3) have been studied in [23].

Theorem 1.1 Let f be defined as in (1.3). Then

dim(J(f) ∩ Io(f)) = 2.

Obviously, the following corollary is a straightforward consequence of the above theorem.

Corollary 1.1 Let f be defined as in (1.3). Then

dim(J(f) ∩ I(f)) = 2.
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2 Notation and Definitions

First, we need some notations in Nevanlinna theory. We denote the maximum modulus of

f by M(r, f) = max
|z|=r

|f(z)|; the number of zeros of f − a in the disc {z; |z| < r} by n(r, a); or

simply, by M(r), n(r), respectively. The growth order of entire function f is defined by

ρ(f) = lim sup
r→∞

=
log logM(r, f)

log r
.

For more introduction, we refer the reader to books [11, 13].

To state McMullen’s technique, we first give what it means for a family of sets to satisfy

the ‘nesting condition’.

Definition 2.1 (Nesting Condition) Let Al be a finite collection of compact, disjoint and

connected subsets of C with positive Lebesgue measure. Let Al be the union of the elements of

Al, we say {Al} satisfy the Nesting conditions if it has the following conditions:

(a) For every element l ∈ N and G ∈ Al+1, there exists unique F ∈ Al such that G ⊂ F.

(b) There exists a decreasing sequence (dl) tend to 0 such that

max
F∈Al

{diamF} ≤ dl for all l ∈ N.

(c) There exists a sequence {∆l} of positive real such that

dens(Al+1, F ) =
area(Al+1 ∩ F )

area(F )
≥ ∆l for all l ∈ N, F ∈ Al.

Thus the intersection A =
∞
⋂

l=1

Al is a non-empty and compact set.

A gauge function is a monotonically increasing function h : [0, ε) → [0,+∞) which is

continuous from the right and satisfies h(0) = 0.

Definition 2.2 (Hausdorff Dimension and Hausdorff Measure) Let A ⊂ Rn is a set, δ > 0

and h is a gauge function. Then we call

Hh(A) := lim inf
δ→0

{

∞
∑

j=1

h(diam(Aj)); A ⊂
∞
⋃

j=1

Aj and diam(Aj) < δ
}

the Hausdorff measure with respect to h, where diam(Aj) = sup
x,y∈Aj

|x− y| is the diameter of Aj.

The Hausdorff measure is an outer measure for Borel sets which is measurable. In particular,

when hs(r) = rs (s > 0) then Hhs

(A) is the s-dimension Hausdorff measure of A. If Hhs

(A) <

∞ and t > s, then Hht

(A) = 0; if Hhs

(A) > 0 and t < s, then Hht

(A) = ∞.

Moreover, there exists a constant s such that Hht

(A) = 0 for all t > s and Hht

(A) = ∞ for

all t < s. The above s is called Hausdorff dimension of A and denote s = dim(A).

As we known, for given λ ∈
(

0, 1e
)

, the function Eλ has two fixed points αλ and βλ, where

αλ is attracting and βλ > 1 is repelling. Recall that a classical result of Koenigs says that

there exists a function Φλ holomorphic in a neighborhood D(λ) of βλ which satisfies Φλ(βλ) =

0, Φ′
λ(βλ) = 1 and

Φλ(Eλ(z)) = βλΦλ(z), z, Eλ(z) ∈ U. (2.1)
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It is easy to see from Φλ(x) ∈ R for x ∈ R ∩ U and (2.1) that Φλ admits a real value

continuation to [βλ,∞). Moreover, Φλ(x) tends to ∞ as x → ∞.

3 Properties of Our Function f and Lemmas

In the sequel, we will replace N(r, 0) and n(r, 0) by the simpler notations N(r) and n(r),

if there are no any confusions.

Lemma 3.1 Let rj be as in (1.2). Then

lim
j→∞

(rj+1

rj

)

= 1.

Proof By (1.2), there is a ξ ∈ (rj , rj+1) such that

α1(rj) = α1(rj+1)− α1(rj) = α′
1(ξ)(rj+1 − rj).

Also

rj+1 − rj =
α1(rj)

α′
1(ξ)

≤
α1(rj)

α1(rj)
≤ 1.

Since rj is increasing to ∞, we now have that

0 ≤ lim inf
(rj+1

rj
− 1

)

≤ lim sup
(rj+1

rj
− 1

)

= 0.

This proves the lemma.

Lemma 3.2 Let f be defined as in (1.3). Then f is an entire function and satisfies (z = reiθ)

log |f(z)| = N(r) +O(1), (3.1)

N(r) ≤ Tf (r) ≤ logM(r) = N(r) +O(1), (3.2)
∣

∣

∣

zf ′(z)

f(z)

∣

∣

∣
= n(r) − log r +O(1) (3.3)

for all large r ∈
∞
⋃

j=j0

(rj + aj , rj+1 − aj+1), where j0 is a large positive integer and a ∈ R with

1
2 < |a| < 1.

Proof Let r > 0, with r ∈ [rk−1, rk). Then n(r) = 2k − 2 ≤ α1(r)− 2 and

n(r) =
1

2
α1(rk)− 2 ≥

1

2
α1(r)− 2. (3.4)

Our upper bound for n(r) and (1.1) yield that

N(r) ≤ α(r) − 2 log r, r > r0. (3.5)

Choose a ∈
(

1
2 , 1

)

, and set

sj = rj − aj , Sj = rj + aj ,

Ej = [sj , Sj ], E = ∪Ej ,
(3.6)
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and observe that µ(E) ≤
∞
∑

j=1

2aj = A, where A depends only on a. Clearly, for all sufficiently

large j, we can assume that Ej ∩ Ej+1 = ∅. Therefore, there is a j0 such that for all large r

with r /∈
⋃

j=j0

Ej if and only if r ∈
∞
⋃

j=j0

(rj + aj , rj+1 − aj+1). Since α1(r) > 2r, so we have for

large j,

rj < j + 1. (3.7)

We first prove that (1.3) defines an entire function.

If r > Sk, we have from (3.6)–(3.7) that for all large k,

log
r

rk
≥ log

(

1 +
ak

rk

)

≥
ak

2rk
≥

ak

2(1 + k)
,

so that by (1.4),

( r

rk

)nk

≥ exp
( (2a)k

2(k + 1)

)

. (3.8)

If r < sk, we see from (3.6)–(3.7) that for all large k,

log
r

rk
≤ log

(

1−
ak

rk

)

≤ −
ak

rk
≤ −

ak

(1 + k)

and so

( r

rk

)nk

≤ exp
(

−
(2a)k

1 + k

)

. (3.9)

In general, the {Ej} need not be disjoint. But for any r /∈ E, there exists a unique rk such

that r ∈ (rk, rk+1) \ E, r > Sj (j = 1, · · · , k) and r < sj (j = k + 1, · · · ). Thus we have with

z = reiθ,

log |f(z)| =
k

∑

j=1

nj log
∣

∣

∣

z

rj

∣

∣

∣
+

k
∑

j=1

log
∣

∣

∣

(rj
z

)nj

+ 1
∣

∣

∣
+

∞
∑

j=k+1

log
∣

∣

∣
1 +

( z

rj

)nj
∣

∣

∣

= N(r) +

k
∑

j=1

log
∣

∣

∣

(rj
z

)nj

+ 1
∣

∣

∣
+

∞
∑

j=k+1

log
∣

∣

∣
1 +

( z

rj

)nj
∣

∣

∣

= N(r) + I1 + I2. (3.10)

Since 2a > 1, we see from (3.8)–(3.9) respectively that if r is large enough, then

|I1| ≤
k

∑

j=1

(rj
r

)nj

≤
∞
∑

j=1

exp
(

−
(2a)j

2(j + 1)

)

+O(1) = O(1),

|I2| ≤
∞
∑

j=k+1

( r

rj

)nj

≤
∞
∑

j=1

exp
(

−
(2a)j

1 + j

)

+O(1) = O(1).

Thus f is entire, and (3.1)–(3.2) hold. Furthermore, it follows from (3.5) and (3.2) that

Tf(r) = N(r) +O(1) ≤ α(r), r > r∗, r /∈ E.
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As above, we assume that r ∈ (rk, rk+1)\E, with k large. Thus, as in (3.10),

zf ′(z)

f(z)
=

k
∑

j=1

nj +

k
∑

j=1

−nj

1 +
( z

rj

)nj
+

∞
∑

j=k+1

nj

( z

rj

)nj

1 +
( z

rj

)nj

= n(r) + J1 + J2.

Since 2a > 1, we see from (1.4) and (3.8)–(3.9) that

|J1| ≤ 2

k
∑

j=1

nj
( r

rj

)nj
≤ 2

∞
∑

j=1

2j exp
(

−
(2a)j

2(1 + j)

)

+O(1) = O(1),

|J2| ≤
∞
∑

j=k+1

nj

( r

rj

)nj

1−
( r

rj

)nj
≤ 3

∞
∑

j=1

2j exp
(

−
(2a)j

1 + j

)

+O(1) = O(1).

Consequently, if z = reiθ,

zf ′(z)

f(z)
= n(r) +O(1), r > r∗, r /∈ E,

and so (3.3) holds. Thus, the lemma is completely proved.

Lemma 3.3 (see [12]) Let g(r) : (0,∞) → R, h(r) : (0,∞) → R be non-decreasing

functions. If g(r) ≤ h(r), r 6∈ (0, 1] ∪ H, where H ⊂ (1,∞) is a set of finite logarithmic

measure, then for any α > 1, there exists r0 such that g(r) ≤ h(α r) for all r ≥ r0.

Lemma 3.4 Let f be defined as in (1.3). Then, for all large r,

logM(3r) ≥
3

2
logM(r).

Proof We know that, for r ∈ [rk, rk+1) and s ∈ [rk+1, rk+2), n(r) = 2k+1 − 2 and n(s) =

2k+2 − 2. Therefore (later, we take s = rk+1)

n(s) = 2n(r)− 6.

Further, when r ∈ [rk, rk+1),

2r ≥ 2rk ≥
3

2
rk+1

for all large r, or, all large k since
rk+1

rk
→ 1 < 4

3 . Thus, for any large r, there is a k such that

r ∈ [rk, rk+1), 2r ∈ [rk+1,∞).

Hence, n(2r) ≥ n(rk+1) = 2n(r)− 6 for all large r. Consequently,

∫ r

r0

n(2t)

t
dt ≥ 2

∫ r

r0

n(t)

t
dt− C log r,

which implies

N(2r) ≥ 2N(r)− c log r ≥
7

4
N(r).
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By Lemma 3.2, we have logM(r) = N(r) +O(1) for r ∈ E with mE < ∞. Set

F = {r, r ∈ E or 2r ∈ E}.

Then mF < ∞ and when r ∈ R \ F , we get

logM(2r) ≥
3

2
logM(r).

It follows from Lemma 3.3 that logM(3r) ≥ 3
2 logM(r) for all large r. Thus, the lemma is

proved.

Remark 3.1 It seems logM(3r) cannot be bounded from above by C logM(r) for any

positive constant C.

We also need the following lemmas. Firstly, we introduce the Koebe distortion theorem.

Lemma 3.5 (Koebe Distortion Theorem) Let z0 ∈ C, r > 0 and f be a univalent function

in this disk D(z0, r). If z ∈ D(z0, r), then

r2|f ′(z0)|
r − |z − z0|

(r + |z − z0|)3
≤ |f ′(z)| ≤ r2|f ′(z0)|

r + |z − z0|

(r − |z − z0|)3

and

r2|f ′(z0)|
|z − z0|

(r + |z − z0|)2
≤ |f(z)− f(z0)| ≤ r2|f ′(z0)|

|z − z0|

(r − |z − z0|)2
.

For our use, we need the following version.

Lemma 3.6 Let G be a domain and K be a compact subset of G. Then there exists a

positive constant C such that if f is univalent in G and z, ξ ∈ K, then |f ′(ξ)| ≤ C|f ′(z)|.

Remark 3.2 The constant C in above lemma only depends on the relative location of G

and K.

The following lemma developed by McMullen [16, Proposition 2.2], plays an important role

in calculating that Hausdorff dimension.

Lemma 3.7 (see [14, Proposition 2.2]) Let A,∆l and dl be as in Definition 2.1. Then

lim sup
l→∞

l
∑

n=1

| log∆n|

| log dl|
≥ 2− dimA.

In order to construct the intersection nesting setsA, we shall use the Ahlfors islands theorem.

Lemma 3.8 (see [13, Theorem 6.2]) Let Ωv, v ∈ {1, 2, 3} are Jordan domains with pairwise

disjoint closures, let a ∈ C, r > 0 and f be a analytic function from the disk D(a, r) to the

complex plane C. If there exists µ > 0 such that

|f ′(a)|

1 + |f(a)|2
≥

µ

r
.

Then D(a, r) has a subdomain U which is mapped bijectively onto one of the domain Ωv.
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Lemma 3.9 (see [24, Corollary 5]) Let f be a transcendental meromorphic function with

at most finitely many poles and let d > 1 be a constant. If for all sufficiently large R > 0, we

have

logM(CR, f) > d logM(R, f) for some C > 1,

then J(f) has an unbounded component and all components of F (f) are simply connected.

4 Proof of Theorem 1.1

First, we construct a family {An}∞n=1, which is of the nesting condition defined in (2.1). As

before, we denote the disk with radius r and center a by D(a, r) and the annulus Aj = {z; Sj <

|z| < sj+1} for j ≥ j0, as in Lemma 3.2.

For any large integer k and a ∈ Ak, recalling that f(z) has no zeros in the domain Ak, we

can define a holomorphic function

h(z) = log f(z)− log f(a)

in a neighborhood of a.

Thus h(a) = 0 and Lemma 3.2 implies

h′(a)

1 + |h(a)|2
= |h′(a)| =

|f ′(a)|

|f(a)|
=

n(|a|)

|a|
+ o(1) ≥

n(Sk)

sk+1
,

when k is large.

Since
rj+1

rj
tends to 1,

sj+1

Sj
also holds. There exists a constant µ < 1 satisfying

n(Sk)

sj+1
≥ µ

n(Sj)

Sj

for all large Sj .

Let tk = Sk

n(Sk)
and Ωv = {z; 0 ≤ Re(z − log f(a)) ≤ log 2, Im(z − log f(a) − 8πv) ≤ 2π},

where v = 1, 2, 3. It follows form Ahlfors islands theorem, i.e., Lemma 3.8, that there is a

set U ⊂ D(a, tk) ⊂ Ak such that h(z) is univalent from U onto one of Ωv. Noting that

f(z) = elog f(z), we obtain that the set U ⊂ D(a, tk) ⊂ Ak is mapped bijectively by f onto the

annulus

{z : |f(a)| < |z| < 2|f(a)|}.

Because of |f(a)| is much bigger than 1 for all large k, there must be some positive integer

k1 greater than k and satisfying

|f(a)| < Sk1 < sk1+1 < 2|f(a)|. (4.1)

Therefore, there are finitely pair-disjoint disks D(a, tk1), say, {D(a(k1,i), tk1)}
p1

i=1, that are

contained in Ak1 . Consequently, there are finitely many pair-disjoint subdomains V(k1,i) ⊂

D(a(k1,i), tk1) such that

dens
(

p1
⋃

i=1

V(k1,i), Ak1

)

>
1

2
,
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and further, for each i = 1, 2, · · · , p1, f bijectively maps V(k1,i) onto an annulus Ak2 , for some

integer k2 > k1, with

|f(a(k1,i))| < Sk2 < sk2+1 < 2|f(a(k1,i))|.

Now we use the above argument repeatedly to construct our An with the nesting condition

property. Set

A0 = {Aj0}, A1 = {V(j0,i) : i = 1, 2, · · · ,m0},

where for any 1 ≤ i ≤ m0, V(j0,i) is contained in Aj0 and f bijectively maps V(j0,i) onto an

annulus Aj1 for some integer j1 > j0 while

dens
(

m0
⋃

i=1

V(j0,i), Aj0

)

>
1

2
,

where A1 =
m0
⋃

i=1

V(j0,i), which is defined as the union of all elements in A1.

Now we construct A2. By using the above argument, we have finitely many pair-disjoint

subdomains V(j1,i) ⊂ D(a(j1,i), tj1) ⊂ Aj1 , say i = 1, · · · ,m1, such that, for any 1 ≤ i ≤ m1, f

bijectively maps V(j1,i) onto an annulus Aj2 for some integer j2 > j1 and

dens
(

m0
⋃

i=1

V(j1,i), Aj1

)

>
1

2
.

Therefore, we define

A2 = {f−1
V(j0,k)

(V(j1,i)), i = 1, 2, · · · ,m1, k = 1, · · · ,m0},

where f−1
V(j0,k)

is the inverse function f restricted on V(j0,k). Clearly, for any fixed k with

1 ≤ k ≤ m0, f
−1
V(j0 ,k)

(V(j1,i)) ⊂ V(j0,k) for i = 1, · · · ,m1. Moreover, for any V(j0,k) ∈ A1, we have

from Lemma 3.5 that

dens(A2, V(j0,k)) = dens
(

f−1
V(j0,k)

(

m0
⋃

i=1

V(j1,i)

)

, f−1
V(j0,k)

(Aj1 )
)

≥
1

C2
dens

(

m0
⋃

i=1

V(j1,i), Aj1

)

≥
1

2C2

def
= ∆1,

where, again, A2 is defined as the union of all elements in A2.

Repeating this process, we obtain

An+1 = {f−n
q (V(jn,i)) : i = 1, 2, · · · ,mn, q = 1, · · · ,mn−1},

where f−n
q is the n-th inverse of f restricted on related previous V(jt,s) for a suitable jt, s which

depend on q; V(jn,i) is contained in the annulus Ajn with

dens
(

mn
⋃

i=1

V(jn,i), Ajn

)

>
1

2
,
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and f is a univalent map from V(jn,i) to an annulus Ajn+1 . Thus, for any F ∈ An, applying

Lemma 3.5 to fn gives

dens(An+1, F ) = dens
(

f−n
q

(

mn−1
⋃

i=1

Vjn,i

)

, F
)

≥
1

C2
dens

(

mn−1
⋃

i=1

V(jn,i), Ajn

)

≥
1

2C2

def
= ∆n.

For any F ∈ An, say, Fn, by our construction, there is Fn−1 ∈ An−1 such that Fn ⊂ Fn−1

and fn−1(Fn) = V(jn−1,i) ⊂ Ajn for some i. In the following, we will drop i from the notation

a(jn,i), V(jn,i) and simply use ajn , Vjn , respectively.

Noting, Vjn ⊂ D(ajn , tjn), we get from Lemma 3.5 that

diamFn ≤ C1 |(f
−(n−1))′(ajn)| diam(Vjn−1)

≤ C1
1

|(fn−1)′(z0)|

Sjn−1

n(Sjn−1)
,

where z0 ∈ Fn with f (n−1)(z0) = ajn and C1 is a constant.

Moreover, by Lemma 3.2,

|(fn−1)′(z0)| =
n−2
∏

i=0

|f ′ (f i(z0))| ≥
1

2

n−2
∏

i=0

|f i+1(z0)|
n(|f i(z0)|)

|f i(z0)|

≥
1

2

n−1
∏

i=1

µSji+1

n(Sji)

Sji

=
µSjn

2Sj1

n−1
∏

i=1

n(Sji).

So

diamFn ≤
Sj1

C1 µ

n
∏

i=1

1

n(Sji)
. (4.2)

Recalling our definition of f , we have n(Sji) = 2ji+1 − 2 ≥ 2ji for all large ji. Thus

diamFn ≤ C2−(j1+j2+···+jn) def
= dn.

Hence,

lim sup
n→∞

n
∑

i=1

| log∆i|

| log dn|
= 0,

and consequently, Lemma 3.7 implies that

dimA = dim
(

∞
⋂

i=1

Ai

)

= 2.

Furthermore, applying Lemmas 3.4 and 3.9 to our f , we have Ajn ∩ J(f) is not empty for

all large jn. The completely invariance of J(f) implies that An ∩ J(f) is also not empty for all

n. So A ⊂ J(f) from the definition of A.

Lemma 3.2 also implies A ⊂ Io(f). Therefore, we have A ⊂ J(f) ∩ Io(f). The theorem is

completely proved.
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5 Results on Hausdorff Measure

In [14], McMullen remarked that Hh(J(Eλ)) = ∞ when h(t) = t2 logm
(

1
t

)

, m ∈ N for

exponential maps Eλ.

Recently, Peter [16–17] studied the Hausdorff measure on Julia set of exponential functions

and entire functions in class B by introducing gauge function Φ. He obtained the following

theorems.

Theorem D Define λ ∈
(

0, 1e
)

, βλ,Φλ as above, let Kλ = log 2
log βλ

and h(t) = t2g(t) be a

gauge function. If

lim inf
t→0

log g(t)

logΦ
λ
(

1
t

)

> Kλ,

then Hh(J(Eλ)) = ∞ for all λ ∈ C\{0}.

Theorem E Let λ ∈
(

0, 1e
)

. There exists K > 0 with the following property: If f ∈ B and

ρ(f) = ρ > 1
2 , then Hh(J(f)) = ∞, where h(t) = t2

(

Φλ

(

1
t

))κ
and κ > log ρ+K

log βλ
.

Naturally, we want to know that, for which gauge functions h, the Hausdorff measure of

J(f) and Io(f) is ∞, where f is defined as (1.3). We obtain the following results.

Theorem 5.1 Let m ∈ N and h(t) = t2 logm
(

1
t

)

. Then Hh(J(f) ∩ Io(f)) = ∞.

Theorem 5.2 Suppose λ ∈
(

0, 1
e

)

, κ >
log( 1

∆ )

log βλ
and Φλ is as above. Let h(t) = t2g(t) be a

gauge function. If

lim inf
t→0

log g(t)

logΦλ

(

1
t

) > κ.

Then Hh(J(f) ∩ Io(f)) = ∞.

Peter in [16] developed McMullen’s technique and proved the following lemma which is a

main tool in this kind of studies.

Lemma 5.1 (see [16, Lemma 3.3]) Let A, {dn} and {∆n} be as above. Let ε > 0 and

ϕ : (0, ε) → R≥0 be a decreasing continuous function such that t2ϕ(t) is increasing. Further,

suppose that lim
t→0

t2ϕ(t) = 0 and

lim
n→∞

ϕ(dn)

n
∏

j=1

∆j = ∞. (5.1)

Define

h : [0, ε) → R, t 7→

{

t2ϕ(t), t > 0,
0, t = 0.

Then h(t) is a continuous gauge function and Hh(A) = ∞.

Proof of Theorem 5.1 All notations in the following proof are defined in the proof of

Theorem 1.1. Thanks to Lemma 5.1, it is sufficient to check that ϕ satisfies the condition (5.1).

To accomplish that, we need to estimate diamF , which is different what we have in the proof

of Theorem 1.1.
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Since α′
1(r) > α1(r), we can get α1(r) > 3r for sufficiently large r. Recalling (3.4), (4.2)

and the fact that n(r) is constant when r ∈ [Sjn , sjn+1], we get

diamFn ≤
Sj1

C1 µ

n
∏

i=1

1

n(Sji)
≤

1

n(Sjn)
=

1

n(sjn+1)
≤

1

sjn+1
.

Lemma 3.2 implies that |f(z)| ≥ KeN(|z|) ≥ e|z|, where K is a constant. Moreover, by the

augment used in (4.1) and the fact that |a(jn−1,i)| ∈ (Sjn−1 , sjn), we get

sjn+1 > |f(a(jn−1,i))| ≥ eSjn−1

for all n ∈ N. Thus sjn+1 > (ex)n
∣

∣

x=Sj0

, where (ex)n denote the n-th iteration of ex.

Thus (5.1) is verified for the decreasing continuous function ϕ(t) = logm
(

1
t

)

, ∆n = 1
2C2 and

dn = 1
(ex)n

∣

∣

x=sj
0

. It follows that the theorem is proved.

Proof of Theorem 5.2 As the same reason we need to check (5.1) holds for ϕ(t) =
(

Φλ

(

1
t

))κ
. Noting that the functional equation (2.1), we can deduce that

Φλ(Eλ(z)) = βλΦλ(z), z, Eλ(z) ∈ U.

Combining with dn = 1
(λex)n|x=r

0

, we get that

Φλ

( 1

dn

)κ
n
∏

j=1

∆j = Φλ((λe
x)n|x=r

0
)κ∆n = (βn

λΦλ(r0))
κ∆n = (βκ

λ∆)n Φλ(r0)
κ.

Thus the assumption κ >
(log( 1

∆ ))

log βλ
implies (5.1) is true, and consequently, the theorem is

proved.
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