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1 Introduction

For an autonomous dynamical system, the global attractor, if exists, will capture all the

asymptotic behavior in itself. As for non-autonomous dynamical systems, however, the

situation is much more complicated. Three distinct notions of attraction: Pullback attrac-

tion, forward attraction and uniform attraction give rise to three distinct notions of attractor:

Pullback attractor, forward attractor and uniform attractor. Simply speaking, a pullback or

forward attractor is a family of nonempty compact subsets of phase space X driven by the base

space Σ, which is invariant under a cocycle ϕ and attracting in the corresponding sense, and a

uniform attractor is the minimal closed set of X that has uniformly attracting property. The

notion of pullback attractor for non-autonomous dynamical systems can be regarded as a natu-

ral generalization of the concept of attractor for autonomous dynamical systems. The existence

results have been obtained for numerous non-autonomous dynamical systems (see [6, 9–10, 19]).

In contrast, forward attractor seems to be physically natural, but rarely exist mathematically.

They will exist only in some very specific and restrictive situations (see [16–17]). The existence

and the structure of uniform attractors have also been well-studied by many authors (see [11,

18, 22–23]). The “kernel sections” provide much finer information about the “structure” of the

uniform attractor (see [6, 21]).
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Note that the existence of a compact uniform attractor for a non-autonomous dynamical

system can imply the existence of a pullback attractor, but may not guarantee the existence

of a forward attractor. More information on the relationship between the uniform attractor

and the pullback attractor can be found in [4–5]. At the same time we need to be aware that

pullback attractor and forward attractor are usually completely unrelated (see [1–3, 8, 12–14]).

But if both the forward attractor and the pullback attractor exist, they will coincide. Indeed,

as the biggest invariant compact set of ϕ, the forward attractor will contain all of the pullback

ω-limit set of any bounded set in X . Thus it is natural to consider under what conditions

the pullback attractor might have forward attracting property. One simple case in which the

pullback attractor is uniformly pullback attracting, it must be a forward one. Besides, if the

pullback attractor A (σ) is continuous in σ (in fact, it is usually only upper semicontinuous),

the pullback attractor will deduce to a forward one (see [20]). Unfortunately, many facts have

shown that a pullback attractor in general does not have forward attracting property (except

for some particular cases such as [15, 24]). Now we are faced with a very natural question: How

to illustrate the forward asymptotical behavior of a non-autonomous dynamical system in the

case that it actually dose not have a forward attractor? This is a very realistic problem even for

the most general non-autonomous system, since its many physical characteristics will related

to its forward dynamics.

Assume the base space Σ is compact and the skew-product flow (ϕ, θ) is uniformly asympto-

tically compact, the authors in [20] have proved that, for any ε > 0, A(σ)(ε) ,
⋃

ρ(σ′,σ)≤ε

A (σ′),

which is called the parametrically inflated pullback attractor, uniformly forward attracts any

bounded subset B ⊂ X . However, A(σ)(ε) is only negative invariant and may be much larger

than A (σ). If one wants a better description of the forward dynamics of non-autonomous

system, it is necessary to get more refined sets with forward attracting property. In this paper,

we show that, under the same conditions as in [20], in any ε-neighborhood of A (σ) there exists

a forward invariant subset Aε(σ) of X which forward attracts any bounded set in phase space

X uniformly in σ. We call Aε(σ) an approximate global forward attractor of the skew-product

flow (ϕ, θ). Moreover, we extend this result to the case when A (σ) only is a local pullback

attractor.

This paper is organized as follows. In Section 2 we present some preliminary definitions,

results and some examples to illustrate the relationship between the three types of attractors.

In Section 3 we state and prove the main results. Finally, we give some examples to illustrate

the main results in Section 4.

2 Skew-Product Flows and Their Attractors

In this section, we present some notions, preliminary definitions and examples (see [4] for

more details).

A nonautonomous system consists of a “base flow” and a “cocycle semiflow” that is in some

sense driven by the base flow. More precisely, the base flow consists of the base space Σ, which

we take to be a metric space with metric ρ, and a group of continuous transformations {θt}t∈R
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from Σ into itself such that

(i) θ0 = idΣ,

(ii) θtθs = θt+s for all t, s ∈ R,

(iii) θtΣ = Σ for all t ∈ R.

Let X be a complete metric space with metric d(·, ·). Let A and B be nonempty subsets

of X . Denote the ε-neighborhood of A by Oε(A) := {x ∈ X | d(x,A) < ε}. The Hausdorff

semidistance and the Hausdorff distance of A and B are defined, respectively, as

dH(A,B) = sup
x∈A

d(x,B), δ H(A,B) = max{dH(A,B), dH(B,A)}.

We also assign dH(∅, B) = 0.

The dynamics on the phase space (X, d) is given by a family of continuous mappings

R
+ × Σ ∋ (t, σ) → ϕ(t, σ) ∈ C(X),

collectively “the cocycle”, that satisfy

(i) ϕ(0, σ) = idX for all σ ∈ Σ,

(ii) R× Σ ∋ (t, σ) 7→ ϕ(t, σ)x ∈ X is continuous,

(iii) for all t, s ≥ 0 and σ ∈ Σ,

ϕ(t+ s, σ) = ϕ(t, θsσ)ϕ(s, σ),

the “cocycle property”.

In the paper, a “non-autonomous set” A(·) is a family of subsets of X indexed by σ ∈ Σ,

A(·) = {A(σ) : σ ∈ Σ}.

We say A(·) is invariant under a skew-product flow (ϕ, θ) if

ϕ(t, σ)A(σ) = A(θtσ)

for all σ ∈ Σ, t ≥ 0. There are different types of “attractors” for non-autonomous systems.

Definition 2.1 A family of compact sets A (·) is called a global pullback (forward) attractor

for a skew-product flow (ϕ, θ) if it is invariant and pullback (forward) attracts any bounded

subset B ⊂ X, i.e.,

lim
t→∞

dH(ϕ(t, θ−tσ)B, A (σ)) = 0, lim
t→∞

dH(ϕ(t, σ)B, A (θtσ)) = 0.

The fundamental result gives a necessary and sufficient condition for the existence of pullback

attractors of skew-product flows.

Proposition 2.1 A skew-product flow (ϕ, θ) has a global pullback attractor A (·) if and only

if there exists a family of compact sets K(·) that pullback attracts every bounded subset of X.

It should be emphasized that the pullback and forward dynamics are essentially independent.
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Example 2.1 We consider a simple example on R,

{

ẋ = h(t)x,

x(s) = x0,

where h : R → R is a function. This equation has an explicit solution

x(t, s;x0) = e
∫

t

s
h(r)drx0. (2.1)

We choose the base space Σ = R and the time shift {θt}t∈R : R → R, θtσ = σ + t as base flow.

Let ϕ(t, σ)x0 := x(t+ σ, σ;x0), then the pair (ϕ, θ) is a skew-product flow. Then the following

assertions hold:

(1) Let

h(t) =

{

et − 1, t < 0;

−e−t + 1, t ≥ 0.

It is clear that h : R → R is a continuous odd function and lim
t→−∞

h(t) = −1 and lim
t→∞

h(t) = 1.

Observe that the solution (2.1) converges to 0 as s→ −∞, while (2.1) goes to infinity as t→ ∞.

This means that 0 is a pullback attractor but not a forward attractor.

(2) Let

h(t) =

{

et + 1, t < 0;

e−t − 1, t ≥ 0.

It is easy to verify that 0 turns out to be a forward attractor but not a pullback attractor

anymore.

The uniform attractor is an important approach to study the asymptotic dynamics of a

non-autonomous equation, which has been developed by Chepyzhov and Vishik [6].

Definition 2.2 (see [6–7]) A closed set AΣ ⊂ X is called a global uniform attractor for a

skew-product flow (ϕ, θ) if it is the minimal closed set that uniform attracts any bounded subset

B ⊂ X, i.e.,

lim
t→∞

(

sup
σ∈Σ

dH(ϕ(t, σ)B,AΣ)
)

= 0.

Let A (·) be a global pullback attractor. We say A (·) is uniformly pullback attracting if for

any bounded subset B ⊂ X ,

lim
t→∞

(

sup
σ∈Σ

dH(ϕ(t, θ−tσ)B, A (σ))
)

= 0.

Obviously, A (·) is uniformly pullback attracting if and only if it is uniformly forward attracting,

i.e., for any bounded set B ⊂ X ,

lim
t→∞

(

sup
σ∈Σ

dH(ϕ(t, σ)B,A (θtσ))
)

= 0.

In other words, if a global pullback attractor A (·) is uniformly pullback attracting, then it is

also a global forward attractor. Furthermore,
⋃

σ∈Σ

A (σ)
X

is a global uniform attractor.

An example of uniform attractors is given below.
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Example 2.2 We consider the following Bernoulli equation on R
+ :

{

ẋ = −x− h(t)x2,

x(s) = x0,
(2.2)

where h : R → R
+ is bounded and continuous.

This equation has an explicit solution

x(t, s;x0) =
e−t

x−1
0 e−s +

∫ t

s

e−rh(r)dr

.

The solution converges to 0 as s→ −∞ or t→ ∞, which shows 0 is a global pullback attractor

and a global forward attractor. It is worth noting that 0 is also a global uniform attractor.

Indeed, (2.2) implies that ẋ ≤ −x and this shows |x(t, s;x0)| ≤ e−(t−s)|x0|, then the result

follows immediately.

Given a skew-product flow (ϕ, θ), we can define an associated autonomous semigroup S on

X := X × Σ by setting

S(t)(x, σ) = (ϕ(t, σ), θtσ), t ≥ 0.

The group property of θ and the cocycle property of ϕ ensure that S satisfies the semigroup

property

S(t+ s)(x, σ) = S(t)S(s)(x, σ), t, s ≥ 0.

It is well known that an autonomous semigroup S has a global attractor A if and only if it

has a compact attracting set K ⊂ X , i.e., for any bounded set B,

lim
t→∞

dH(S(t)B, K) = 0.

A skew-product flow (ϕ, θ) is uniformly asymptotically compact if there exists a compact

set K ⊂ X such that

lim
t→∞

(

sup
σ∈Σ

dH(ϕ(t, σ)B, K)
)

= 0

for every bounded subset B of X .

Proposition 2.2 (see [4–5]) Let (ϕ, θ) be a skew-product flow and S be the associated semi-

group on X. Assume (ϕ, θ) is uniformly asymptotically compact. Then the following statements

hold.

(1) For the skew-product flow (ϕ, θ), there exists a global uniform attractor AΣ and a global

pullback attractor A (·). Moreover,

AΣ ⊇
⋃

σ∈Σ

A (σ).

(2) Suppose further that Σ is compact. Then

AΣ =
⋃

σ∈Σ

A (σ)
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and S has a global attractor A with

A =
⋃

σ∈Σ

{σ} × A (σ).

Remark 2.1 Under assumptions of Proposition 2.2, the global pullback attractor A (σ) is

upper semicontinuous in σ in the sense of Hausdorff distance. If A (σ) is also lower semicontin-

uous in σ, then the global pullback attractor A (·) is also a global forward attractor.

Since uniform attractors are not required to be invariant, the existence of uniform attractors

may not imply the existence of forward attractors.

Example 2.3 Consider one linear problem on R:

{

ẋ = −x+ sin t,

x(s) = x0.

The equation can be solved explicitly, with solution

x(t, s;x0) =
(

x0 −
1

2
(sin s− cos s)

)

e−(t−s) +
1

2
(sin t− cos t). (2.3)

It is clear that x(t) = 1
2 (sin t− cos t), t ∈ R, is a bounded solution. From (2.3), we have

∣

∣

∣
x(t, s;x0)−

1

2
(sin t− cos t)

∣

∣

∣
≤

(

|x0|+
√
2

2

)

e−(t−s),

which shows 1
2 (sin t− cos t) is a global uniform forward attractor. Since

⋃

t∈R

(

1
2 (sin t− cos t)

)

=

[

−
√
2
2 ,

√
2
2

]

, then
[

−
√
2
2 ,

√
2
2

]

is a uniform attractor.

Let T := inf
{

t ≥ s : |x(t, s;x0)| ≤
√
2
2

}

. Now we construct a new system: When s ≤ t < T ,

ẋ = −x+ sin t, when t ≥ T , ẋ = x− x3. Then the new system possesses a uniform attractor in

[−1, 1], and its every solution goes to −1, 0 or 1 as t → ∞. However, none of −1, 0 and 1 is

invariant for the system. It follows that the new system dose not have a forward attractor.

3 Approximate Forward Attractors

In this section, the base space Σ is assumed to be compact. We first state and prove a basic

lemma.

Lemma 3.1 Suppose that a skew-product flow (ϕ, θ) is uniformly asymptotically compact

and A (·) is a global pullback attractor of (ϕ, θ). Then for any ε > 0, there exists a non-

autonomous set Aε(·) ⊂ X such that for each σ ∈ Σ,

A (σ) ⊂ Aε(σ) ⊂ Oε(A (σ)),

and the mapping σ → Aε(σ) is continuous in the sense of Hausdorff distance.

Proof Since the base space Σ is compact and the skew-product flow (ϕ, θ) is uniformly

asymptotically compact, by Proposition 2.2, (ϕ, θ) has a global pullback attractor A (·) and a
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compact global uniform attractor AΣ =
⋃

σ∈Σ

A (σ), and the associated semigroup S has a global

attractor

A =
⋃

σ∈Σ

{σ} × A (σ).

Take any bounded open set D ⊂ X with AΣ ⊂ D. Then D , Σ×D is a bounded neighborhood

of A, so for any ε > 0 there is a T > 0 independent of σ ∈ Σ such that

A ⊂ S(T )D ⊂ Oε(A),

where Oε(A) is the ε-neighborhood of A in X × Σ in the metric

d1((σ1, x1), (σ2, x2)) =
√

ρ2(σ1, σ2) + d2(x1, x2).

We denote by Aε(σ) ⊂ X the section of S(T )D over σ ∈ Σ, i.e.,

S(T )D =
⋃

σ∈Σ

{σ} × Aε(σ). (3.1)

It is clear that

Aε(σ) = ϕ(T, θ−Tσ)D, A (σ) ⊂ Aε(σ) ⊂ Oε(A (σ)).

For any fixed T > 0, the continuity of σ → ϕ(T, θ−Tσ) implies σ → Aε(σ) is continuous in the

sense of Hausdorff distance. This completes the proof.

Remark 3.1 (1) If S(T )D in the proof of Lemma 3.1 is replaced by
⋃

t≥T

S(t)D, then Aε(σ)

is forward invariant.

(2) If A(σ) is singleton for each σ ∈ Σ, then σ → A(σ) is continuous, hence we can take

Aε(σ) = A(σ).

In general, a pullback attractor of a skew-flow dose not have froward attracting property.

We show in the following theorem that every neighborhood of a pullback attractor contains a

set which froward attracts every bounded set of phase space.

Theorem 3.1 Suppose that a skew-product flow (ϕ, θ) is uniformly asymptotically compact

and A (·) is a global pullback attractor of (ϕ, θ). Then for any ε > 0, Aε(·) (obtained in Lemma

3.1 ) forward attracts every bounded set B of X uniformly in σ, i.e.,

lim
t→∞

sup
σ∈Σ

dH(ϕ(t, σ)B,Aε(θtσ)) = 0. (3.2)

Remark 3.2 Since for any ε > 0, there is a Aε(·) such that A (σ) ⊂ Aε(σ) ⊂ Oε(A (σ)) for

each σ ∈ Σ, then Aε(·) is called an approximate global forward attractor of the skew-product

flow (ϕ, θ).

Proof of Theorem 3.1 Suppose that (3.2) is not true. Then for some δ > 0 there are

sequences tn ∈ R
+, xn ∈ B and σn ∈ Σ with tn → ∞ as n→ ∞ such that

d(ϕ(tn, σn)xn,Aε(θtnσn)) ≥ δ. (3.3)
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Since Σ is compact, we can assume that the sequence {θtnσn} is convergent as n→ ∞. Suppose

θtnσn → σ0, n→ ∞. (3.4)

By the continuity of Aε(σ) in σ, for n sufficiently large, we have

dH(Aε(σ0),Aε(θtnσn)) <
δ

2
. (3.5)

On the other hand, since A =
⋃

σ∈Σ

{σ} × A (σ) is the global attractor of the semigroup S, then

we can suppose that ϕ(tn, σn)xn → x0, n→ ∞. From (3.4), one knows x0 ∈ A (σ0).

We conclude from (3.3) that

δ ≤ d(ϕ(tn, σn)xn,Aε(θtnσn)) ≤ d(ϕ(tn, σn)xn,Aε(σ0)) + d(Aε(σ0),Aε(θtnσn)).

This together with (3.5) show that

d(x0,Aε(σ0)) ≥
δ

2
,

which is a contradiction.

Corollary 3.1 Suppose that A (·) is a global pullback attractor of a skew-product flow (ϕ, θ)

and A (·) is uniformly pullback attracting and
⋃

σ∈Σ

A (σ) is precompact. Then Aε(·) (obtained

in Lemma 3.1) is a global approximate forward attractor of (ϕ, θ).

Proof By Theorem 15.8 of the reference [4], we know that A =
⋃

σ∈Σ

{σ}×A (σ) is the global

attractor of S, then
⋃

σ∈Σ

A (σ) is compact and uniformly attracts every bounded set B of X ,

i.e., the skew-product flow (ϕ, θ) is uniformly asymptotically compact. It is now an immediate

corollary of Theorem 3.1.

We now extend Theorem 3.1 to the case of local pullback attractors. The following are

efficient definitions and results.

Definition 3.1 Let (ϕ, θ) be a skew-product flow. A family of compact sets A(·) is called a

local pullback attractor if it is invariant and pullback attracts one of its neighborhoods.

An example of the local pullback attractors is given in the following.

Example 3.1 Consider the following system on R,

ẋ = x− x2.

Observe that {1} is a local attractor, but {0} is not a local attractor.

The pullback behavior of non-autonomous model

ẋ = x− h(t)x2

with x(s) = x0 and h(t) > 0 for all t ∈ R is qualitatively similar. Indeed, we can obtain the

explicit solution

x(t, s;x0) =
et

x−1
0 es +

∫ t

s

erh(r)dr

,
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provided that the integral
∫ 0

−∞
erh(r)dr

converges. Thus,

(1) for any x0 > 0, there is a unique pullback attracting global solution given by

x∗(t) =
et

∫ t

−∞
erh(r)dr

;

(2) for any x0 < 0, every solution x(t, s;x0) will blow up in finite time.

This shows that x∗(t) is a local pullback attractor which pullback attracts every bounded

set of [0,∞).

Comparing to the notion of global uniformly asymptotically compact, we have the following

definition.

Definition 3.2 A skew-product flow (ϕ, θ) is called local uniformly asymptotically compact

if there exists a compact set K ⊂ X and a set B which is a neighborhood of K such that

lim
t→∞

(

sup
σ∈Σ

dH(ϕ(t, σ)B, K)
)

= 0.

Lemma 3.2 Assume that a skew-product flow (ϕ, θ) is local uniformly asymptotically com-

pact. Let S be the associated semigroup on X. Then there exists a local pullback attractor A(·)
of (ϕ, θ) and S has a local attractor Aloc such that

Aloc =
⋃

σ∈Σ

{σ} × A(σ).

Proof Since the skew-product flow (ϕ, θ) is local uniformly asymptotically compact, there

exists a compact set K ⊂ X and a set B which is a neighborhood of K such that

lim
t→∞

(

sup
σ∈Σ

dH(ϕ(t, σ)B, K)
)

= 0. (3.6)

Take K = K×Σ and B = B×Σ, then B is a neighborhood of K and K is compact since K and

Σ are both compact. Moreover,

S(t)B =
[

⋃

σ∈Σ

ϕ(t, σ)B
]

× Σ.

It follows that

dH(S(t)B, K) ≤ sup
σ∈Σ

dH(ϕ(t, σ)B, K) = sup
σ∈Σ

dH(ϕ(t, θ−tσ)B, K),

whence K pullback attracts B. Hence the compact set K attracts its neighborhood B under S,

so S has a local attractor A ⊂ K, which is the maximal invariant set in B.

On the other hand, (3.6) shows that for each σ ∈ Σ,

lim
t→∞

dH(ϕ(t, θ−tσ)B, K) = 0,
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hence the skew-product flow (ϕ, θ) has local pullback attractor in B, denoted by A(·), which is

the maximal invariant set in B. It follows that

⋃

σ∈Σ

{σ} × A(σ)

is the maximal invariant set in B, which means

Aloc =
⋃

σ∈Σ

{σ} × A(σ).

The proof is completed.

Theorem 3.2 Suppose that a skew-product flow (ϕ, θ) is local uniformly asymptotically

compact and A(·) is the corresponding local pullback attractor of (ϕ, θ). Then for any ε > 0

and σ ∈ Σ, there exists a set Aε(σ) ⊂ X which is a neighborhood of A(σ) such that Aε(σ) ⊂
Oε(A(σ)) and Aε(·) forward attracts one of its neighborhoods uniformly in σ. We call Aε(·) an
approximate local forward attractor.

Proof From Lemma 3.2, one knows that Aloc =
⋃

σ∈Σ

{σ} × A(σ) is a local attractor of the

associated semigroup S, hence it attracts one of its neighborhoods B ⊂ X × Σ, it follows that

for any ε > 0 there is a T > 0 such that

S(T )B ⊂ Oε(Aloc),

where Oε(Aloc) is the ε-neighborhood of Aloc in X × Σ with the metric

d1((σ1, x1), (σ2, x2)) =
√

ρ2(σ1, σ2) + d2(x1, x2).

We denote by Aε(σ) the section of S(T )B over σ ∈ Σ, i.e.,

S(T )B =
⋃

σ∈Σ

{σ} × Aε(σ).

Similar to the proof of Lemma 3.1, we know that

A(σ) ⊂ Aε(σ) ⊂ Oε(A(σ))

and Aε(σ) is continuous in σ.

Denote by B(σ) the section of B over σ ∈ Σ, then B(·) is a neighborhood of A(·). Similar

to the proof of Theorem 3.1, we have Aε(·) forward attracts B(·).

4 Applications

When the base space of a skew-product flow is compact, from Theorem 3.1, we know that

the skew-product flow is uniformly asymptotically compact, then for any ε > 0 it will have an

approximate global forward attractor Aε(·). In this section, we give two examples to illustrate

the result.
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4.1 Delay differential equations

Let p : R → R
n be a continuous, bounded, and be periodic, quasi-periodic or almost periodic

function. Then the hull H(p) = {p(τ + ·); τ ∈ R} of p is compact in the metric d(p1, p2) =

sup
s∈R

d(p1(s), p2(s)). Moreover, the shift operator θt : H(p) → H(p) defined for each t ∈ R by

θ(p)(·) = p(t+ ·) forms a continuous dynamical system on the compact metric space H(p).

We now consider a delay differential equation on R
n:







dx

dt
(t) = f1(x(t)) + f2(x(t − r)) + p(t), t > 0,

x(t) = ψ(t), −r ≤ t ≤ 0,

(4.1)

where r > 0 is the delay, the initial condition ψ is specified in the space X = C0([−r, 0] : Rn)

with the usual norm ‖ ·‖, p ∈ H(p). For a function x ∈ X , the notation xs denotes the function

in X given by xs(t) = x(s+ t), t ∈ [−r, 0] and makes sense for any 0 ≤ s ≤ T .

Assume that the system is sufficiently regular such that (4.1) possesses a unique solution,

so we can define a continuous cocycle ϕ(t, p) on X , which gives the solution at time t when

x0 = ψ, via

ϕ(t, p)ψ = xt(·, p; 0, ψ), p ∈ H(p).

Lemma 4.1 Suppose that f1 : Rn → R
n is continuous and satisfies the dissipativity condi-

tion

〈f1(x), x〉 ≤ −α0|x|2 + β0

for all x ∈ R
n and that f2 : Rn → R

n is continuous and bounded, i.e., there exists K ≥ 0 such

that

|f2(x)| ≤ K

for all x ∈ R
n. Then the skew-product flow (ϕ, θ) induced by (4.1) is uniformly asymptotically

compact on X ×H(p).

Proof Taking inner product (4.1) by x(t) we get

d

dt
|x(t)|2 ≤ 2〈x(t), f1(x(t))〉 + 2〈x(t), f2(x(t− r))〉 + 2〈x(t), p(t)〉

≤ −2α0|x(t)|2 + 2β0 + 2(K +Mp)|x(t)|

≤ −α0|x(t)|2 + 2β0 +
(K +Mp)

2

α0
,

where Mp > 0 is a constant such that ‖p‖ ≤Mp and is independent of p.

Gronwall’s lemma shows

|x(t)|2 ≤ |x(0)|2e−α0t +
2β

α0
+

(K +Mp)
2

α2
0

.

It follows that

‖ϕ(t, p)ψ‖ = sup
τ∈[t−r,t]

|x(t, p; 0, ψ)|2
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≤ sup
θ∈[−r,0]

|ψ(θ)|2e−α0(t−r) +
2β

α0
+

(K +Mp)
2

α2
0

= ‖ψ‖2e−α0c(t−r) +
2β

α0
+

(K +Mp)
2

α2
0

,

which shows the skew-product flow (ϕ, θ) is uniformly dissipative on X×H(p). Then by Arzelà-

Ascoli theorem, we know that (ϕ, θ) is uniformly asymptotically compact on X ×H(p). The

proof of the lemma is complete.

Apply Theorem 3.1 to the above delay differential equations, one obtains the following

theorem.

Theorem 4.1 Let (ϕ, θ) be the skew-product flow induced by (4.1) on X × H(p) and let

A (·) be the global pullback attractor. Then for any ε > 0 there is a set Aε(·) such that for each

p ∈ H(p), A (p) ⊂ Aε(p) ⊂ Oε(A (p)), and Aε(·) forward attracts every bounded set B ⊂ X

uniformly on p ∈ H(p).

4.2 A class of evolutionary equations in infinite-dimensional Banach spaces

Let X be a Banach space with metric ‖ · ‖. Let A be sectorial operator on X . Assume

Reσ(A) ≥ δ > 0, then for t > 0,

‖e−At‖ ≤ Ce−δt, ‖Aαe−At‖ ≤ Ct−αe−δt, 0 ≤ α < 1,

for some constant C. We can define for each α ≥ 0, Xα = D(Aα) with the graph norm

‖x‖α = ‖Aαx‖, x ∈ Xα. Assume in addition that A has compact resolvent, then one has a

compact imbedding Xβ →֒ Xα, 0 ≤ α < β < 1.

Let p : R → Xα be continuous, bounded, and uniformly continuous on R. We define the

hull of p as follows:

H(p) = {p(τ + ·); τ ∈ R},

where the closure is taken with respect to some metric such that H(p) is compact, for example:

d(f, g) =

∞
∑

n=1

1

2n
pn(f, g)

1 + pn(f, g)

where pn(f, g) = sup
t∈[−n,n]

‖f(t)− g(t)‖α. Define the shift operator θt : H(p) → H(p), t ∈ R, as

θtp = p(t+ ·), then θt is continuous.
Now we consider the nonlinear equation







dx

dt
+Ax = f(x) + p(t), t > t0,

x(t0) = x0,

(4.2)

where we assume f : Xα → X is bounded. Then this system is sufficiently regular to ensure

the existence and the uniqueness of mild solution x(t, t0;x0), t ≥ t0, which satisfies

x(t) = e−A(t−t0)x0 +

∫ t

t0

e−A(t−s)[f(x(s)) + p(s)]ds. (4.3)



Approximate Forward Attractors 553

x(t, t0;x0) generates a continuous cocycle ϕ on Xα by ϕ(t, p)x0 := x(t, 0;x0), t ≥ 0. The cocycle

ϕ is driven by the shift operator θt on H(p), i.e., (ϕ, θ) is skew-product flow on Xα ×H(p).

Lemma 4.2 The skew-product flow (ϕ, θ) induced by (4.3) is uniformly asymptotically com-

pact on Xα ×H(p).

Proof If α < β < 1, Xβ ⊂ Xα has compact inclusion. Without loss of generality, we

suppose ‖f(x(t, t0;x0))‖ ≤ C, t ≥ t0 and sup
t∈R

‖p(t)‖ ≤ C for some constant C. Hence

‖x(t, t0, x0)‖β ≤M(t− t0)
−(β−α)e−δ(t−t0)‖x0‖α + 2MC

∫ t

t0

(t− s)−βe−δ(t−s)ds.

Let C∞ := 2MC
∫∞
0
u−βe−δudu and K := {x ∈ X : ‖x‖β ≤ C∞}. Then K ⊂ Xα is compact

and

lim
t→∞

(

sup
p∈H(p)

sup
x0∈B

dH(x(t; t0, x0), K)
)

= 0

for every bounded subsetB ofXα, i.e., (ϕ, θ) is uniformly asymptotically compact onXα×H(p).

By Theorem 3.1, we immediately have the following theorem.

Theorem 4.2 Let (ϕ, θ) be the skew-product flow induced by (4.2) on Xα×H(p) and A (·)
be the global pullback attractor. Then for any ε > 0 there is an approximate global forward

attractor Aε(·). Specifically, for each p ∈ H(p), A (p) ⊂ Aε(p) ⊂ Oε(A (p)) and Aε(·) forward

attracts every bounded set B ⊂ Xα uniformly on p ∈ H(p).
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