IRRATIONAL ROTATION C^*-ALGEBRA
FOR GROUPOID C^*-ALGEBRA**

CHEN XIAOMAN* XU QINGXIANG* XU SHENZHI*

Abstract

This paper characterizes the irrational rotation C^*-algebra associated with the Toeplitz C^*-algebra over the L-shaped domain in D^2 in the sense of the maximal radical series, which is an isomorphism invariant.

Keywords L-shaped domain, Toeplitz C^*-algebra, Irrational rotation, Invariant subset, Maximal ideal.

1991 MR Subject Classification 46L.

§1. Preliminaries

Irrational rotation C^*-algebra on the unit circle was first studied by M. Rieffel in [13]. Since 1980's many people have paid great attention to this subject (see [15], [16], [17], [18] and [19]). It has played an important part in the analysis of C^*-algebras, K-theory and index theory. In recent years the study of rotation C^*-algebras on group C^*-algebras and Toeplitz C^*-algebras has been developed. For Example, in [19] Handelman and Yin obtained a complete invariant for rotation C^*-algebra of Toeplitz C^*-algebra on the polydisk. In this paper from the view of groupoid we establish the structure of rotation C^*-algebras of Toeplitz C^*-algebras on L-shaped domain in D^2. This idea will get further developing in our other papers.

Suppose that Y is a locally compact Hausdorff and second countable space, and X is a both open and compact subset of Y. \mathbb{Z}^n acts on Y on the right continuously so that $(Y \mathbb{Z}^n)$ is a transformation group. For the n-tuple θ in \mathbb{Z}^n, define the homomorphism $C_\theta : Y \times \mathbb{Z}^n \to \mathbb{I}$ by

$$C_\theta(y, p) = \theta^p.$$

Denote the reduction of $Y \times \mathbb{Z}^n$ on X by G. Then the reduction of the skew product $(Y \times \mathbb{Z}^n)(C_\theta)$ on $X \times \mathbb{I}$ is the skew product $G(C_\theta)$.

Proposition 1.1. The groupoid G and $G(C_\theta)$ are r-discrete and amenable.

The skew product $G(C_\theta) = G \times_{C_\theta} \mathbb{I}$ is a locally compact groupoid with composable pairs

$$G(C_\theta)^{(2)} = \{ ((x, p, a), (y, q, b)) | ((x, p), (y, q)) \in G^{(2)} \text{ and } b = a\theta^p \}.$$
The product is
\[(x, p, a)(y, q, b) = (x, p + q, a),\]
and the inverse is
\[(x, p, a)^{-1} = (x + p, -p, a\theta^p).\]
The domain map is
\[d(x, p, a) = (x + p, 0, \theta^p),\]
and the range map is
\[r(x, p, a) = (x, 0, a).\]
So the unit space may be identified with \(X\) and the range map is \(T\), named \(\times\).

Remark 1.1. Indeed, \(G(C_\theta)\) is the reduction of the skew product of \((Y \times \mathbb{Z}^p)(C_\theta)\) on \(X \times \mathbb{I}^n\).

Proposition 1.2. \(C^*(G(C_\theta)) \cong C^*(G) \times_{\alpha_\theta} \mathbb{Z}^p\).**

Proposition 1.3. The groupoid \((Y \times \mathbb{Z}^p)(C_\theta)\) is principal if there is no solution of nonzero integers to the equation \(\theta^p = 1\).

Proof. We have to prove that the isotropy group \((Y \times \mathbb{Z}^n)(C_\theta)]_u\) at every point \(u\) in the unit space is trivial. Suppose that \((x, m, a)\) is in the isotropy group of \(u\). Then we have
\[(x + p, 0, \theta^p a) = (x, 0, a) = u.\]
It follows that \(\theta^p = 1\). Therefore \(p = 0\) and \((x, m, a) = u.\)

Remark 1.2. \(G(C_\theta)\) is principal if \((Y \times \mathbb{Z}^n)(C_\theta)\) is.

It is easy to prove the following lemma.

Lemma 1.1. Suppose that \(G\) is a groupoid and \(A\) a group. Let \(c : G \to A\) be a homomorphism. \(G(c)\) is the skew product \(G \times_c A\). Suppose that \(E\) is a subset of \(G^0\). Then \(E \times A\) is invariant in \(G(c)\) if \(E\) is invariant in \(G\).

Let \(\Omega = \{(z_1, z_2) \in \mathbb{D}^2 | |z_1| < \delta_1, |z_2| < 1 \text{ or } |z_1| < 1, |z_2| < \delta_2\}\), where \(\delta_1, \delta_2 < 1\). Then \(\Omega\), named \(L\)-shaped domain, is a Reinhardt domain in \(\mathbb{D}^2\). P. E. Curto and P. S. Muhly have represented the Toeplitz \(C^*-\)algebra \(C^*(\Omega)\) faithfully by a groupoid \(C^*-\)algebra \(C^*(\mathbb{D})[\mathbb{T}]\). Let us repeat the procedure briefly here with some new notations introduced. Let \(T(p) : A^2(\Omega) \to A^2(\Omega)\) be the Toeplitz operator of the symbol \(z^p\). Then \(\{T(p) | p \in \mathbb{Z}^+\}\) is a contractable representation of \(\mathbb{Z}^+\) by a weighted function
\[w_+(p, q) = \|z^{p+q}\|,\]
for \(p, q \in \mathbb{Z}^+\).

A direct calculation shows
\[w_+(\epsilon_1, p) = \sqrt{(p_1 + 1)(\delta_1^{2p_1 + 4} + \delta_2^{2p_2 + 2} - \delta_1^{2p_1 + 4} \delta_2^{2p_2 + 2})/(p_1 + 2)(\delta_1^{2p_1 + 4} + \delta_2^{2p_2 + 2} - \delta_1^{2p_1 + 4} \delta_2^{2p_2 + 2})},\]
and
\[w_+(\epsilon_2, p) = \sqrt{(p_2 + 1)(\delta_1^{2p_1 + 2} + \delta_2^{2p_2 + 4} - \delta_1^{2p_1 + 2} \delta_2^{2p_2 + 4})/(p_2 + 2)(\delta_1^{2p_1 + 2} + \delta_2^{2p_2 + 2} - \delta_1^{2p_1 + 2} \delta_2^{2p_2 + 2})}.\]
Extend each \(w_+ (p, \cdot) \) to \(\mathbb{Z}^2 \) by taking zero on \(\mathbb{Z}^2 \setminus \mathbb{Z}_+^2 \). Let \(A \) denote the translation-invariant \(C^* \)-subalgebra of \(\ell^\infty (\mathbb{Z}^2) \) generated by the family \(\{ w(p, \cdot) \mid p \in \mathbb{Z}_+ \} \) not including the identity. The maximal ideals space of \(A \), denoted by \(Y \), is locally compact and second countable. The natural action, \(\tau : \mathbb{Z}^2 \to \text{Aut}(A) \), defined by translation induces an action of \(\mathbb{Z}^2 \) on \(Y \) according to this prescription: \((y + p)(a) = y(\tau_p(a)) \). Since the evaluation at \(p \) gives a multiplicative linear functional, say \(\alpha(p) \), we get an injection \(\alpha : \mathbb{Z}^2 \to Y \) both open and continuous. The subset \(\bar{\alpha}(\mathbb{Z}^2) \), denoted by \(X \), is open and compact. \(G \) is the reduction of \(Y \times \mathbb{Z}^2 \) by \(X \) as defined above. Then \(C^*(\Omega) \) is faithfully represented by \(C^*(G) \) (see [7]).

According to [7], \(Y \) consists of four parts, i.e.,

\[
Y = \alpha(\mathbb{Z}^2) \cup \alpha(\mathbb{Z} \times \{ \infty \}) \cup \alpha(\{ \infty \} \times \mathbb{Z}) \cup \beta([-\infty, +\infty]) ,
\]

where

\[
\alpha(p_1, \infty) = \lim_{p_2 \to +\infty} \alpha(p_1, p_2).
\]

and

\[
\alpha(\infty, p_2) = \lim_{p_1 \to +\infty} \alpha(p_1, p_2)
\]

in \(Y \); and \(\beta : [-\infty, +\infty] \to \infty \) is the realization of the subset, \(\infty \), of \(Y \) consisting of all the possible limits \(\lim_{k_1,k_2 \to +\infty} \alpha(k) \) in \(Y \). Indeed, \(\beta(t) \) is uniquely determined by

\[
(\beta(t)(w(\epsilon_1, \cdot)), \beta(t)(w(\epsilon_2, \cdot))) = \begin{cases} (\delta_1, 1) & \text{for } t = -\infty, \\ \left(\frac{\delta_1^2 + \exp(t)}{1 + \exp(t)}, \sqrt{\frac{1 + \delta_2^2 \exp(t)}{1 + \exp(t)}} \right) & \text{for } t \in \mathbb{R}, \\ (1, \delta_2) & \text{for } t = +\infty. \end{cases}
\]

Thus

\[
X = \alpha(\mathbb{Z}_+^2) \cup \alpha(\mathbb{Z}_+ \times \{ \infty \}) \cup \alpha(\{ \infty \} \times \mathbb{Z}_+) \cup \beta([-\infty, +\infty]).
\]

Given a pair of numbers \(\theta = (\theta_1, \theta_2) \in \mathbb{R}^2 \), satisfying the condition that there is no nonzero integer \(n \) such that \(\theta_1^n = 1 \) or \(\theta_2^n = 1 \), which is weaker than that in Proposition 1.3, there is an automorphism \(\varphi_\theta : \Omega \to \Omega \) defined via

\[
\varphi_\theta(z_1, z_2) = (\theta_1 z_1, \theta_2 z_2), \text{ for } (z_1, z_2) \in \Omega.
\]

Thus there is an induced \(C^* \)-dynamical system \((C^*(\Omega), \mathcal{Z}, \varphi_\theta) \), where \(\varphi_\theta \) is the induced automorphism of \(C^*(\Omega) \) such that \(\varphi_\theta(T_f) = T_{f \circ \varphi_\theta^{-1}} \) for \(f \in C(\Omega) \).

Proposition 1.4. \(C^*(G) \times_{\alpha_{\theta}} \mathcal{Z} \cong C^*(\Omega) \times_{\varphi_\theta} \mathcal{Z} \).

Remark 1.3. \(\lim_{p_1 \to +\infty} \alpha(p_1, +\infty) = \beta(-\infty) \) and \(\lim_{p_2 \to +\infty} \alpha(+\infty, p_2) = \beta(+\infty) \).

§2. Invariant Maximal Radical Series of \(C^*(G(\theta)) \)

The maximal radical series of a \(C^* \)-algebra is invariant under the isomorphism. It plays an important part in the classification of some \(C^* \)-algebras. By the definition[20], the maximal radical of a \(C^* \)-algebra \(A \) is the intersection of all closed two-sided maximal ideals of \(A \), and is denoted by \(m(A) \), the composition series

\[
\cdots \triangleleft m(m(A)) \triangleleft m(A) \triangleleft A.
\]
is called the maximal radical series. In this section we will determine the maximal radical series of the rotational C^*-algebra $C^*(G(C_0))$.

By [1], there is an order-preserving homomorphism from the family of the invariant open subsets to the family of the closed ideals in the reduced groupoid C^*-algebra. And now, we will first determine the minimal invariant closed subsets in the groupoid $G(C_0)$.

Lemma 2.1. There are only two minimal invariant closed subsets in the unit space of the groupoid $G(C_0)$, i.e., $\{\beta(+)\} \times \mathbb{I}$ and $\{\beta(-)\} \times \mathbb{I}$, denoted by F_1 and F_2 respectively. Their complements are denoted by B_1 and B_2 respectively. Any invariant closed subset contains at least one of the F_i’s.

Proof. The F_i’s are obviously minimal invariant and closed. Given an invariant closed subset F, take any $u \in F$.

1) If u is in either F_1 or F_2, then $F_i \subseteq F$ or $F_2 \subseteq F$.

2) If u is in $\beta(B) \times \mathbb{I}$, then

$$\lim_{m \to +\infty} (u + (0, m)) = (\beta(+)t),$$

for some t in \mathbb{I}. Hence $F \cap F_1 \neq \emptyset$, and by 1) $F_1 \subseteq F$.

3) If u is in $\alpha(\mathbb{Z} \times \{\infty\}) \times \mathbb{I}$, then

$$\lim_{m \to +\infty} (u + (m, 0)) = (\beta(-)t),$$

for some t in \mathbb{I}. Hence $F \cap F_2 \neq \emptyset$, and by 1) $F_2 \subseteq F$.

4) If u is in $\alpha(\{\infty\} \times \mathbb{Z}^+) \times \mathbb{I}$, then by the same reason as above, $F_1 \subseteq F$.

5) If u is in $\alpha(\mathbb{Z}^+ \times \{\infty\}) \times \mathbb{I}$, then

$$\lim_{m \to +\infty} (u + (m, 0)) = (\alpha(\infty, n)t),$$

for some t in \mathbb{I}. Hence by the same reason as in 4), $F_1 \subseteq F$.

The lemma follows now.

Remark 2.1. We have used the fact that $\{\theta^p | p \in \mathbb{Z}^+\}$ is dense in \mathbb{I} if there is no integer n of nonzero such that $\theta^n_1 = 1$ or $\theta^n_2 = 1$.

Lemma 2.2. If the ratio $\frac{\ln \delta_1}{\ln \delta_2}$ is irrational, the isotropy group $G(C_0)|u$ is trivial for $u \notin F_1 \cup F_2$, i.e., $u \in B$.

Proof. For any (x, p, t) in $G(C_0)|u$, we have two equalities

$$x + p = x, \quad (I)$$

$$\theta^p = 1. \quad (II)$$

1) If x is in $\alpha(\mathbb{Z}^+ \times \{\infty\})$, say $x = \alpha(q)$, then equality (I) becomes $\alpha(q+p) = \alpha(q)$. Consequently, $p = 0$ since α is injective.

2) If x is in $\alpha(\mathbb{Z} \times \{\infty\})$, say $x = \alpha(m, +\infty)$, then equality (I) becomes $\alpha(m + p_1, +\infty) = \alpha(m, +\infty)$. Thus $p_1 = 0$. It follows that $p_2 = 0$ from equality (II).

3) If x is in $\alpha(\{\infty\} \times \mathbb{Z}^+)$, then $p = 0$ by the same reason as in case (2).

4) If x is in $\beta(-\infty, +\infty)$, say $x = \beta(s)$, then equation (I) becomes $\beta(s + 2p_2 \ln \delta_2 - 2p_1 \ln \delta_1) = \beta(s)$. It follows that $p_2 \ln \delta_2 = p_1 \ln \delta_1$. Therefore $p = 0$.

Finally we get $(x, p, t) = u$. The lemma follows.

Theorem 2.1. The maximal radical of the groupoid C^*-algebra $C^*(G(C_0))$ is $I(B)$.

Proof. If 1, \(\frac{\arg \theta_1}{2\pi} \) and \(\frac{\arg \theta_2}{2\pi} \) are linearly independent over the field \(\mathcal{Q} \) of the rational numbers, the groupoid is principal, the maximal closed ideals are \(I(B_1) \) and \(I(B_2) \). Therefore the intersection of the maximal closed ideals is \(I(B) \).

If 1, \(\frac{\arg \theta_1}{2\pi} \) and \(\frac{\arg \theta_2}{2\pi} \) are linearly dependent over the field \(\mathcal{Q} \), we will prove the following claims:

1. There is indeed a maximal closed ideal in the groupoid \(C^* \)-algebra and the intersection of the maximal closed ideals is contained in \(I(B) \).

2. Each maximal closed ideal \(I \) in the groupoid \(C^* \)-algebra contains \(I(B) \).

And now

\[
C^*(G(C_\theta))/I(B_1) \cong C^*(G(C_\theta)|_{F_1}) = C^*(\beta\{+\infty\} \times \mathbb{F} \times \mathbb{Z}^2) \\
\cong C^*(\mathbb{F} \times \mathbb{Z}^2) \\
\cong C(\mathbb{F}^2) \times_{\alpha_\theta} \mathbb{Z}
\]

where \(\alpha_\theta(f)(\lambda_1, \lambda_2) = f(\theta_1\lambda_1, \theta_2\lambda_2) = f \cdot \varphi_\theta(\lambda_1, \lambda_2) \). Since the homeomorphism \(\varphi_\theta \) is not minimal, the crossed product \(C(\mathbb{F}^2) \times_{\alpha_\theta} \mathbb{Z} \) is not simple by [1]. However, the nontrivial closed ideal must be contained in some maximal ones since the crossed product is unital. Suppose that \(I \) is the maximal closed ideal in the crossed product. Then the quotient \(C(\mathbb{F}^2) \times_{\alpha_\theta} \mathbb{Z}/I \) is simple. So there is a surjective homomorphism from \(C^*(G(C_\theta)) \) onto \(C(\mathbb{F}^2) \times_{\alpha_\theta} \mathbb{Z}/I \), whose kernel is a maximal closed ideal in \(C^*(G(C_\theta)) \).

Since the closed orbit \(\{\varphi_\theta^n(\lambda) | n \in \mathbb{Z}^2 \} \) is minimal for every \(\lambda \in \mathbb{F}^2 \), by [1] the intersection of the maximal closed ideals in the crossed product is \(\{0\} \). Hence the maximal radical is contained in \(I(B_1) \). A similar argument shows that the maximal radical is contained in \(I(B_2) \). The claim (1) follows.

For each maximal closed ideal \(I \), there is an integrated representation, \(\pi = (\mu, L, \mathcal{H}) \), of \(C^*(G(C_\theta)) \) with kernel \(I \). It follows that the representation \(\pi \) is weakly contained in the induced left regular representation living on \(\mu \). Therefore \(I(F) \subseteq \ker(\pi) \), where \(F \) denotes the support of \(\mu \). \(F \) is an invariant closed subset. By the proof of Lemma 2.1, \(F \) contains either \(F_1 \) or \(F_2 \).

If \(F = F_1 \) or \(F = F_2 \), then \(I(B_1) \subseteq I \) or \(I(B_2) \subseteq I \); thus \(I(B) \subseteq I \).

If \(F \neq F_1 \) and \(F \neq F_2 \), then

1) \(F \) only contains \(F_1 \). Then \(\bar{F} \setminus F_1 \) is a nontrivial invariant closed subset, say \(\bar{F}_2 \), contained in \(F \). Therefore it contains \(F_1 \), i.e., \(\bar{F}_2 = F \). By the proof of Proposition 4.4 in [1],

\[
\sup_{u \in F} |f(u)| \leq \|\pi(f)\|
\]

it follows that \(I \subseteq I(B_1) \). Therefore \(I = I(B_1) \). Thus \(I(B) \subseteq I \).

2) \(F \) only contains \(F_2 \). Then \(I(B) \subseteq I \) by the same reason as in case 1.

3) \(F \) contains both \(F_1 \) and \(F_2 \). Set

\[
F' = F \setminus (F_1 \cup F_2), \quad \mu'(E) = \mu(E \cap F'), \quad \mu_1(E) = \mu(E \cap (F_1 \cup F_2)).
\]

Then \(\pi_1 = (\mu_1, L, \mathcal{H}) \) and \(\pi' = (\mu', L, \mathcal{H}) \) are the integrated representations of the groupoid.
C^*-algebra $C^*(G(C_0))$. Moreover we have
\[\pi_1(f)(\zeta) = \pi(f)(\chi_{F_1 \cup F_2} \xi) = \chi_{F_1 \cup F_2} \pi(f)(\zeta), \]
\[\pi'(f)(\zeta) = \pi(f)(\chi_F \xi) = \chi_F \pi(f)(\zeta), \]
\[\ker(\pi) = \ker(\pi_1) \cap \ker(\pi'). \]
Since $\ker(\pi)$ is a maximal closed ideal, it coincides with either $\ker(\pi_1)$ or $\ker(\pi')$.

(1) If $I = \ker(\pi_1)$, it follows immediately that $I(B) \subseteq I$.
(2) If $I = \ker(\pi')$, one of the following cases occurs.
(i) $\text{supp}(\mu') = \overline{F}$ contains $F_1 \cup F_2$. By the proof of Proposition 4.4 in [1] we get
\[\sup_{u \in F} |f(u)| \leq \|\pi(f)\|, \]
and it follows immediately that $I = I(G(C_0)^0 \setminus \overline{F})$. Since B_1 and B_2 are the maximal invariant open subsets and
\[I(G(C_0)^0 \setminus \overline{F}) \subseteq I(B_1) \cap I(B_2), \]
this case can not occur.
(ii) $\text{supp}(\mu')$ contains only one of the F_i's. Then by the above discussion we have $I(B) \subseteq I$.

The claim (2) follows now. The theorem follows from the above claims.

Lemma 2.3. The groupoid $G(C_0)|_B$, denoted by $G(C_0)'$, is r-discrete, principal and amenable.

Lemma 2.4. The maximal radical of $C^*(G(C_0))$ is $I(\alpha(Z_+^2) \times \mathbb{I})$, denoted by $C^*(G(C_0))^{\prime\prime}$.

Proof. By Lemma 2.2 and [1], there is an order-preserving isomorphism between the family of the maximal closed ideals in $C^*(G(C_0))$ and the family \mathfrak{I} of the maximal invariant open subsets in $G(C_0)$. Let $\bigcap_{B \in \mathfrak{I}} I(B) = I$. Then there is an invariant open subset \widehat{B} such that $I = I(\widehat{B})$. We find that $\widehat{B} = \text{int} \bigcap_{B \in \mathfrak{I}} B$. Let us determine the minimal invariant closed subsets in the unit space of the groupoid $G(C_0)'$. Note first that any minimal invariant closed subset of the unit space must be a closed orbit $[\mathfrak{I}]$ for some t in the unit space.

The unit space of $G(C_0)'$ consists of four disjoint parts,
\[\alpha(Z_+^2) \times \mathbb{I}, \ \alpha(Z_+ \times \{\infty\}) \times \mathbb{I}, \ \alpha(\{\infty\} \times Z_+) \times \mathbb{I} \]
and $\beta(R) \times \mathbb{I}$. The first part is an invariant open subset, while the last ones are invariant closed subsets.

Given u in the unit space, we proceed in the following four cases.
(1) $u \in \beta(R) \times \mathbb{I}$, say $u = (\beta(s), t)$. Define the distance function d on $\beta(R) \times \mathbb{I}$ by
\[d((\beta(s), t), (\beta(s'), t')) = |s - s'| + |t - t'|. \]
Then the distance is an invariance under the action of Z^2 on $\beta(R) \times \mathbb{I}$. For each $v \in [u]$ there is a sequence $\{p_m\}_{m=1}^\infty$ in Z^2 such that $v = \lim_{m \to \infty} (u + p_m)$. However
\[\lim_{m \to \infty} d(u, v - p_m) = \lim d(u + p_m, v) = 0. \]
It follows that the closed orbits in $\beta(R) \times \mathbb{I}$ are either disjoint or identical. So the closed orbits in $\beta(R) \times \mathbb{I}$ are the minimal invariant closed subsets in the unit space.
(2) $u \in \alpha(Z_+ \times \{\infty\}) \times \mathbb{I}$, say $u = (\alpha(n, \infty), t)$. Now the subset
\[S := \{u + (0, m) = (\alpha(n, \infty), t\theta^m_2)|m \in \mathbb{Z}\} \]
is contained in the orbit \([u]\). It follows that \(\{\alpha(n, \infty)\} \times \mathbb{I}\) is contained in the closed orbit \([u]\). For any \(k \in \mathbb{Z}_+\)

\[u + (k - n, 0) = (\alpha(k, \infty), t\theta_1^{k-n})\]

It follows that

\[\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I} = [u].\]

Therefore \(\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I}\) is a minimal invariant closed subset in the unit space.

(3) \(u \in \alpha(\{\infty\} \times \mathbb{Z}_+) \times \mathbb{I}\). By the same reason as that in case (2), \(\alpha(\{\infty\} \times \mathbb{Z}_+) \times \mathbb{I}\) is a minimal invariant closed subset in the unit space.

(4) \(u \in \alpha(\mathbb{Z}_+^2) \times \mathbb{I}\), say \(u = (\alpha(p), t)\). Now the closed orbit \([u]\) contains at least one point in \(\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I}\) and therefore contains \(\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I}\), so the closed orbit \([u]\) is not minimal.

So the family of the minimal invariant closed subsets in the unit space is

\[\{\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I}; \alpha(\{\infty\} \times \mathbb{Z}_+) \times \mathbb{I}; [u]u \in \beta(\mathbb{R}) \times \mathbb{I}\},\]

whose union is

\[\alpha(\mathbb{Z}_+ \times \{\infty\}) \times \mathbb{I} \cup \alpha(\{\infty\} \times \mathbb{Z}_+) \times \mathbb{I} \cup \beta(\mathbb{R}) \times \mathbb{I}.\]

Therefore the intersection of the maximal invariant open subsets in the unit space is \(\alpha(\mathbb{Z}_+^2) \times \mathbb{I}\). The lemma follows now.

Lemma 2.5. The intersection of the maximal invariant open subsets in \(G(C_\theta)|_{\alpha(\mathbb{Z}_+^2) \times \mathbb{I}}\) is empty. Consequently the maximal radical of \(C^*(G(C_\theta))^{\gamma}\) is zero.

Proof. Given \(u \in \alpha(\mathbb{Z}_+^2) \times \mathbb{I}\) the closed orbit created by \(u\) is exactly the orbit created by \(u\). So every orbit in the unit space \(\alpha(\mathbb{Z}_+^2) \times \mathbb{I}\) is a minimal invariant closed subset. The lemma follows now.

In summary, we obtain the maximal radical series,

\[0 < C^*(G(C_\theta)^{\gamma}) < C^*(G(C_\theta)^\theta) < C^*(G(C_\theta)),\]

for the groupoid \(C^*\)-algebra \(C^*(G(C_\theta))\) in the case that both \(\frac{\arg \theta_1}{2\pi}\) and \(\frac{\arg \theta_2}{2\pi}\) are irrational. It is invariant under the isomorphism.

Remark 2.2. The classification and the \(K\)-theory of the rotational \(C^*\)-algebras will be given in our following paper.

References

